Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 46 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
46
Dung lượng
2,24 MB
Nội dung
KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THƠNG NĂM 2009 Mơn thi : TỐN I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu 1. (3,0 điểm). Cho hàm số 2x 1 y x 2 + = − . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị (C),biết hệ số góc của tiếp tuyến bằng -5. Câu 2. (3,0 điểm) 1) Giải phương trình . 2) Tính tích phân 0 I x(1 cos x)dx π = + ∫ . 3) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số 2 f (x) x ln(1 2x)= − − trên đoạn [-2; 0]. Câu 3. (1,0 điểm). Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vng góc với mặt phẳng đáy. Biết góc BAC = 120 0 , tính thể tích của khối chóp S.ABC theo a. II. PHẦN RIÊNG (3,0 điểm) Thí sinh học chương trình nào thì chỉ được chọn phần dành riêng cho chương trình đó (phần 1 hoặc phần 2) 1. Theo chương trình Chuẩn : Câu 4a (2,0 điểm). Trong khơng gian Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình: ( ) ( ) ( ) 2 2 2 (S) : x 1 y 2 z 2 36 và (P) : x 2y 2z 18 0− + − + − = + + + = . 1) Xác định tọa độ tâm T và tính bán kính của mặt cầu (S). Tính khoảng cách từ T đến mặt phẳng (P). 2) Viết phương trình tham số của đường thẳng d đi qua T và vng góc với (P). Tìm tọa độ giao điểm của d và (P). Câu 5a. (1,0 điểm). Giải phương trình 2 (S) :8z 4z 1 0− + = trên tập số phức. 2. Theo chương trình Nâng cao: Câu 4b. (2,0 điểm). Trong khơng gian Oxyz, cho điểm A(1; -2; 3) và đường thẳng d có phương trình x 1 y 2 z 3 2 1 1 + − + = = − 1) Viết phương trình tổng qt của mặt phẳng đi qua điểm A và vng góc với đường thẳng d. 2) Tính khoảng cách từ điểm A đến đường thẳng d. Viết phương trình mặt cầu tâm A, tiếp xúc với d. Câu 5b. (1,0 điểm). Giải phương trình 2 2z iz 1 0− + = trên tập số phức. BÀI GIẢI Câu 1: 1) MXĐ : R \ {2} ; y’ = 2 5 ( 2)x − − < 0, ∀ x ≠ 2. Hàm luôn luôn nghòch biến trên từng khoảng xác đònh. 1 2 lim x y − → = −∞ ; 2 lim x y + → = +∞ ⇒ x = 2 là tiệm cận đứng lim 2 x y + →+∞ = ; lim 2 x y − →−∞ = ⇒ y = 2 là tiệm cận ngang BBT : x −∞ 2 +∞ y' − − y 2 - +∞ -∞ 2 + Giao điểm với trục tung (0; 1 2 − ); giao điểm với trục hoành ( 1 2 − ; 0) Đồ thị : 2) Tiếp tuyến tại điểm có hoành độ x 0 , có hệ số góc bằng –5 ⇔ 2 0 5 5 ( 2)x − = − − ⇔ x 0 = 3 hay x 0 = 1 ; y 0 (3) = 7, y 0 (1) = -3 Phương trình tiếp tuyến cần tìm là: y – 7 = -5(x – 3) hay y + 3 = -5(x – 1) ⇔ y = -5x + 22 hay y = -5x + 2 Câu 2: 1) 25 x – 6.5 x + 5 = 0 ⇔ 2 (5 ) 6.5 5 0 x x − + = ⇔ 5 x = 1 hay 5 x = 5 ⇔ x = 0 hay x = 1. 2) 0 0 0 (1 cos ) cosI x x dx xdx x xdx π π π = + = + ∫ ∫ ∫ = 2 0 cos 2 x xdx π π + ∫ Đặt u = x ⇒ du = dx; dv = cosxdx, chọn v = sinx 2 x y -½ -½ 0 2 2 ⇒ I = 2 0 0 sin sin 2 x x xdx π π π + − ∫ = 2 2 0 cos 2 2 2 x π π π + = − 3) Ta có : f’(x) = 2x + 2 2 4x 2x 2 1 2x 1 2x − + + = − − f’(x) = 0 ⇔ x = 1 (loại) hay x = 1 2 − (nhận) f(-2) = 4 – ln5, f(0) = 0, f( 1 2 − ) = 1 ln 2 4 − vì f liên tục trên [-2; 0] nên [ 2;0] max f(x) 4 ln5 − = − và [ 2;0] 1 minf (x) ln2 4 − = − Câu 3: Hình chiếu của SB và SC trên (ABC) là AB và AC , mà SB=SC nên AB=AC Ta có : BC 2 = 2AB 2 – 2AB 2 cos120 0 ⇔ a 2 = 3AB 2 ⇔ = 3 a AB 2 2 2 2 = a SA = 3 3 a a SA − ⇒ 2 2 0 1 1 3 a 3 = . .sin120 = = 2 2 3 2 12 ABC a S AB AC ∆ 2 3 1 2 3 2 = = 3 12 36 3 a a a V (đvtt) Câu 4.a.: 1) Tâm mặt cầu: T (1; 2; 2), bán kính mặt cầu R = 6 d(T, (P)) = 1 4 4 18 27 9 3 1 4 4 + + + = = + + 2) (P) có pháp vectơ (1;2;2)n = r Phương trình tham số của đường thẳng (d) : 1 2 2 2 2 x t y t z t = + = + = + (t ∈ R) Thế vào phương trình mặt phẳng (P) : 9t + 27 = 0 ⇔ t = -3 ⇒ (d) ∩ (P) = A (-2; -4; -4) Câu 5.a.: 2 8z 4z 1 0− + = ; / 2 4 4i∆ = − = ; Căn bậc hai của / ∆ là 2i± Phương trình có hai nghiệm là 1 1 1 1 z ihayz i 4 4 4 4 = + = − Câu 4.b.: 1) (d) có vectơ chỉ phương (2;1; 1)a = − r Phương trình mặt phẳng (P) qua A (1; -2; 3) có pháp vectơ a r : 2(x – 1) + 1(y + 2) – 1(z – 3) = 0 ⇔ 2x + y – z + 3 = 0 2) Gọi B (-1; 2; -3) ∈ (d) BA uuur = (2; -4; 6) ,BA a uuur r = (-2; 14; 10) 3 B A S a a a C d(A, (d)) = , 4 196 100 5 2 4 1 1 BA a a + + = = + + uuur r r Phửụng trỡnh maởt cau taõm A (1; -2; 3), baựn kớnh R = 5 2 : (x 1) 2 + (y + 2) 2 + (2 3) 2 = 50 Cõu 5.b.: 2 2z iz 1 0 + = 2 i 8 9 = = = 9i 2 Cn bc hai ca l 3i Phng trỡnh cú hai nghim l 1 z ihay z i 2 = = . THI TH I HC , nm 2009 Mụn: TON Khi A-B Thi gianlm bi: 180 phỳt. A. PHN CHUNG CHO TT C CC TH SINH: ( 8 im) Cõu 1: ( 2im) Cho hm s y = 4x 3 + mx 2 3x 1. Kho sỏt v v th (C) hm s khi m = 0. 2. Tỡm m hm s cú hai cc tr ti x 1 v x 2 tha x 1 = - 4x 2 Cõu 2: (2im) 1. Gii h phng trỡnh: 2 0 1 4 1 2 x y xy x y = + = 2. Gii phng trỡnh: cosx = 8sin 3 6 x + ữ Cõu 3: (2im) 1. Cho hỡnh chúp S.ABC cú SA vuụng gúc vi mt phng (ABC), tam giỏc ABC vuụng ti C ; M,N l hỡnh chiu ca A trờn SB, SC. Bit MN ct BC ti T. Chng minh rng tam giỏc AMN vuụng v AT tip xỳc vi mt cu ng kớnh AB. 2. Tớnh tớch phõn A = 2 ln .ln ex e e dx x x Cõu 4: (2 im) 1. Trong khụng gian vi h trc ta Oxyz, cho bn im A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0). Chng minh cỏc ng thng AB v CD chộo nhau. Vit phng trỡnh ng thng (D) vuụng gúc vi mt phngOxy v ct c cỏc ng thngAB; CD. 2. Cho ba s thc dng a, b, c tha: 3 3 3 2 2 2 2 2 2 1 a b c a ab b b bc c c ca a + + = + + + + + + Tỡm giỏ tr ln nht ca biu thc S = a + b + c B. PHN T CHN: Thớ sinh ch chn cõu 5a hoc 5b Cõu 5a: Theo chng trỡnh chun: ( 2 im) 1. Trong khụng gian vi h trc ta Oxyz, cho im A(4;5;6). Vit phng trỡnh mt phng (P) qua A; ct cỏc trc ta ln lt ti I; J; K m A l trc tõm ca tam giỏc IJK. 2. Bit (D) v (D) l hai ng thng song song. Ly trờn (D) 5 im v trờn (D) n im v ni cỏc im ta c cỏc tam giỏc. Tỡm n s tam giỏc lp c bng 45. Cõu 5b: Theo chng trỡnh nõng cao: ( 2 im) 1. Trong mt phng vi h trc ta Oxy, cho ng thng (D): x 3y 4 = 0 v ng trũn (C): x 2 + y 2 4y = 0. Tỡm M thuc (D) v N thuc (C) sao cho chỳng i xng qua A(3;1). 4 2. Tìm m để bất phương trình: 5 2x – 5 x+1 – 2m5 x + m 2 + 5m > 0 thỏa với mọi số thực x. Hết BÀI GIẢI TÓM TẮT A.PHẦN CHUNG: Câu 1: 1. m = 0 , y = 4x 3 – 3x - TXĐ: D = R - Giới hạn: lim , lim x x y y →+∞ →−∞ = +∞ = −∞ - y’ = 12x 2 – 3 ; y’ = 0 ⇔ x = 1 2 ± Bảng biến thiên: - y’’ = 24x , y” = ⇔ x = 0 , đồ thị có điểm uốn O(0;0) - Đồ thị: 2. TXĐ: D = R - y’ = 12x 2 + 2mx – 3 Ta có: ∆’ = m 2 + 36 > 0 với mọi m, vậy luôn có cực trị Ta có: 1 2 1 2 1 2 4 6 1 4 x x m x x x x = − + = − = − 9 2 m⇒ = ± Câu 2: 1. 2 0 (1) 1 4 1 2 (2) x y xy x y − − = − + − = Điều kiện: 1 1 4 x y ≥ ≥ Từ (1) 2 0 x x y y ⇒ − − = ⇒ x = 4y Nghiệm của hệ (2; 1 2 ) 5 2. cosx = 8sin 3 6 x π + ÷ ⇔ cosx = ( ) 3 3 sinx+cosx ⇔ 3 2 2 3 3 3 sin 9sin osx +3 3 sinxcos os osx = 0x xc x c x c+ + − (3) Ta thấy cosx = 0 không là nghiêm (3) ⇔ 3 2 3 3 tan 8t an x + 3 3 tanx = 0x + t anx = 0 x = k π ⇔ ⇔ Câu 3: 1.Theo định lý ba đường vuông góc BC ⊥ (SAC) ⇒ AN ⊥ BC và AN ⊥ SC ⇒AN ⊥ (SBC) ⇒ AN ⊥ MN Ta có: SA 2 = SM.SB = SN.SC Vây ∆MSN ∼ ∆CSB ⇒ TM là đường cao của tam giác STB ⇒ BN là đường cao của tam giác STB Theo định lý ba đường vuông góc, ta có AB ⊥ ST ⇒AB ⊥ (SAT) hay AB⊥ AT (đpcm) 2. 2 2 (ln ) ln (1 ln ) ln (1 ln ) e e e e dx d x A x x x x x = = + + ∫ ∫ = 2 1 1 (ln ) ln 1 ln e e d x x x − ÷ + ∫ = 2 2 ln(ln ) ln(1 ln ) e e x x e e − + = 2ln2 – ln3 Câu 4: 1. +) (4;5;5)BA = uuur , (3; 2;0)CD = − uuur , (4;3;6)CA = uuur , (10;15; 23)BA CD = − uuur uuur ⇒ , . 0BA CD CA ≠ uuur uuur uuur ⇒ đpcm + Gọi (P) là mặt phẳng qua AB và (P) ⊥ (Oxy) ⇒ có VTPT 1 ,n BA k = ur uuur r = (5;- 4; 0) ⇒ (P): 5x – 4y = 0 + (Q) là mặt phẳng qua CD và (Q) ⊥ (Oxy) có VTPT 1 ,n CD k = ur uuur r = (-2;- 3; 0) ⇒ (Q): 2x + 3y – 6 = 0 Ta có (D) = (P)∩(Q) ⇒ Phương trình của (D) 2. Ta có: 3 2 2 2 3 a a b a ab b − ≥ + + (1) ⇔ 3a 3 ≥ (2a – b)(a 2 + ab + b 2 ) ⇔ a 3 + b 3 – a 2 b – ab 2 ≥ 0 ⇔ (a + b)(a – b) 2 ≥ 0. (h/n) Tương tự: 3 2 2 2 3 b b c b bc c − ≥ + + (2) , 3 2 2 2 3 c c a c ac a − ≥ + + (3) Cộng vế theo vế của ba bđt (1), (2) và (3) ta được: 3 3 3 2 2 2 2 2 2 3 a b c a b c a ab b b bc c c ca a + + + + ≥ + + + + + + Vậy: S ≤ 3 ⇒ maxS = 3 khi a = b = c = 1 B. PHẦN TỰ CHỌN: Câu 5a: Theo chương trình chuẩn 6 1. Ta có I(a;0;0), J(0;b;0), K(0;0;c) ( ) : 1 x y z P a b c ⇒ + + = Ta có (4 ;5;6), (4;5 ;6) (0; ; ), ( ;0; ) IA a JA b JK b c IK a c = − = − = − = − uur uur uuur uur Ta có: 4 5 6 1 5 6 0 4 6 0 a b c b c a c + + = − + = − + = ⇒ 77 4 77 5 77 6 a b c = = = ⇒ ptmp(P) 2.Ta có: n 2 2 5 5 n C C+ = 45 ⇒ n 2 + 3n – 18 = 0 ⇒ n = 3 Câu 5b: 1.M ∈ (D) ⇒ M(3b+4;b) ⇒ N(2 – 3b;2 – b) N ∈ (C) ⇒ (2 – 3b) 2 + (2 – b) 2 – 4(2 – b) = 0 ⇒ b = 0;b = 6/5 Vậy có hai cặp điểm: M(4;0) và N(2;2) , M’(38/5;6/5) và N’(-8/5; 4/5) 2. Đặt X = 5 x ⇒ X > 0 Bất phương trình đã cho trở thành: X 2 + (5 + 2m)X + m 2 + 5m > 0 (*) Bpt đã cho có nghiệm với mọi x khi và chỉ khi (*) có nghiệm với mọi X > 0 ⇔∆ < 0 hoặc (*) có hai nghiệm X 1 ≤ X 2 ≤ 0 Từ đó suy ra m ĐỀ THI THỬ ĐẠI HỌC 2 , năm 2009 Môn: TOÁN – Khối A-B Thời gianlàm bài: 180 phút. A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số 4 2 ( ) 2y f x x x= = − 1. Khảo sát và vẽ đồ thị (C) của hàm số. 2. Trên (C) lấy hai điểm phân biệt A và B có hoành độ lần lượt là a và b. Tìm điều kiện đối với a và b để hai tiếp tuyến của (C) tại A và B song song với nhau. Câu II (2 điểm) 1. Giải phương trình lượng giác: ( ) 2 cos sin 1 tan cot 2 cot 1 x x x x x − = + − 2. Giải bất phương trình: ( ) 2 3 1 1 3 3 1 log 5 6 log 2 log 3 2 x x x x− + + − > + Câu III (1 điểm) Tính tích phân: ( ) 2 4 4 0 cos 2 sin cosI x x x dx π = + ∫ Câu IV (1 điểm) Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh liên tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc 45 0 . Tính diện tích xung quanh và thể tích của hình trụ. Câu V (1 điểm) Cho phương trình ( ) ( ) 3 4 1 2 1 2 1x x m x x x x m+ − + − − − = Tìm m để phương trình có một nghiệm duy nhất. 7 PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn. Câu VI.a (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) và đường thẳng ∆ định bởi: 2 2 ( ): 4 2 0; : 2 12 0C x y x y x y+ − − = ∆ + − = . Tìm điểm M trên ∆ sao cho từ M vẽ được với (C) hai tiếp tuyến lập với nhau một góc 60 0 . 2. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2;1;0), B(1;1;3), C(2;-1;3), D(1;-1;0). Tìm tọa độ tâm và bán kính của mặt cầu ngoại tiếp tứ diện ABCD. Câu VII.a (1 điểm) Có 10 viên bi đỏ có bán kính khác nhau, 5 viên bi xanh có bán kính khác nhau và 3 viên bi vàng có bán kính khác nhau. Hỏi có bao nhiêu cách chọn ra 9 viên bi có đủ ba màu? 2. Theo chương trình nâng cao. Câu VI.b (2 điểm) 1. Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I thuộc đường thẳng ( ) : 3 0d x y− − = và có hoành độ 9 2 I x = , trung điểm của một cạnh là giao điểm của (d) và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật. 2. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình là 2 2 2 ( ) : 4 2 6 5 0, ( ) : 2 2 16 0S x y z x y z P x y z+ + − + − + = + − + = . Điểm M di động trên (S) và điểm N di động trên (P). Tính độ dài ngắn nhất của đoạn thẳng MN. Xác định vị trí của M, N tương ứng. Câu VII.b (1 điểm) Cho , ,a b c là những số dương thỏa mãn: 2 2 2 3a b c+ + = . Chứng minh bất đẳng thức 2 2 2 1 1 1 4 4 4 7 7 7a b b c c a a b c + + ≥ + + + + + + + + Hết Đáp án. Câ u Ý Nội dung Điểm I 2,00 1 1,00 + MXĐ: D = ¡ 0,25 + Sự biến thiên • Giới hạn: lim ; lim x x y y →−∞ →+∞ = +∞ = +∞ • ( ) 3 2 0 ' 4 4 4 1 ; ' 0 1 x y x x x x y x = = − = − = ⇔ = ± 0,25 8 • Bảng biến thiên ( ) ( ) ( ) 1 2 1 1; 1 1; 0 0 CT CT y y y y y y= − = − = = − = = C§ 0,25 • Đồ thị 0,25 2 1,00 Ta có 3 '( ) 4 4f x x x= − . Gọi a, b lần lượt là hoành độ của A và B. Hệ số góc tiếp tuyến của (C) tại A và B là 3 3 '( ) 4 4 , '( ) 4 4 A B k f a a a k f b b b= = − = = − Tiếp tuyến tại A, B lần lượt có phương trình là: ( ) ( ) ( ) ( ) ( ) ' ' ( ) af' ay f a x a f a f a x f a= − + = + − ; ( ) ( ) ( ) ( ) ( ) ' ' ( ) f' by f b x b f b f b x f b b= − + = + − Hai tiếp tuyến của (C) tại A và B song song hoặc trùng nhau khi và chỉ khi: ( ) ( ) 3 3 2 2 4a 4a = 4b 4 1 0 (1) A B k k b a b a ab b= ⇔ − − ⇔ − + + − = Vì A và B phân biệt nên a b≠ , do đó (1) tương đương với phương trình: 2 2 1 0 (2)a ab b+ + − = Mặt khác hai tiếp tuyến của (C) tại A và B trùng nhau ( ) ( ) ( ) ( ) ( ) 2 2 2 2 4 2 4 2 1 0 1 0 ' ' 3 2 3 2 a ab b a ab b a b f a af a f b bf b a a b b + + − = + + − = ⇔ ≠ ⇔ − = − − + = − + , Giải hệ này ta được nghiệm là (a;b) = (-1;1), hoặc (a;b) = (1;-1), hai nghiệm này tương ứng với cùng một cặp điểm trên đồ thị là ( ) 1; 1− − và ( ) 1; 1− . Vậy điều kiện cần và đủ để hai tiếp tuyến của (C) tại A và B song song với nhau là 2 2 1 0 1 a ab b a a b + + − = ≠ ± ≠ II 2,00 1 1,00 9 Điều kiện: ( ) cos .sin 2 .sin . tan cot 2 0 cot 1 x x x x x x + ≠ ≠ 0,25 Từ (1) ta có: ( ) 2 cos sin 1 cos .sin 2 2 sin sin cos 2 cos cos 1 cos sin 2 sin x x x x x x x x x x x x − = ⇔ = + − 0,25 2sin .cos 2 sinx x x⇔ = ( ) 2 2 4 cos 2 2 4 x k x k x k π π π π = + ⇔ = ⇔ ∈ = − + ¢ 0,25 Giao với điều kiện, ta được họ nghiệm của phương trình đã cho là ( ) 2 4 x k k π π = − + ∈¢ 0,25 2 1,00 Điều kiện: 3x > 0,25 Phương trình đã cho tương đương: ( ) ( ) ( ) 1 1 2 3 3 3 1 1 1 log 5 6 log 2 log 3 2 2 2 x x x x − − − + + − > + ( ) ( ) ( ) 2 3 3 3 1 1 1 log 5 6 log 2 log 3 2 2 2 x x x x⇔ − + − − > − + ( ) ( ) ( ) ( ) 3 3 3 log 2 3 log 2 log 3x x x x⇔ − − > − − + 0,25 ( ) ( ) 3 3 2 log 2 3 log 3 x x x x − ⇔ − − > ÷ + ( ) ( ) 2 2 3 3 x x x x − ⇔ − − > + 2 10 9 1 10 x x x < − ⇔ − > ⇔ > 0,25 Giao với điều kiện, ta được nghiệm của phương trình đã cho là 10x > 0,25 III 1,00 1 1,00 ( ) 2 2 0 2 2 0 1 cos 2 1 sin 2 2 1 1 1 sin 2 sin 2 2 2 I x x dx x d x π π = − ÷ = − ÷ ∫ ∫ 0,50 ( ) ( ) 2 2 2 0 0 3 2 2 0 0 1 1 sin 2 sin 2 sin 2 2 4 1 1 sin 2 sin 2 0 2 12 | | d x xd x x x π π π π = − = − = ∫ ∫ 0,50 10 [...]... cả số có chữ số 0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 3 3 đứng đầu) và C 5 =10 cách chọn 2 chữ số lẽ => có C 52 C 5 = 100 bộ 5 số đợc chọn Mỗi bộ 5 số nh thế có 5! số đợc thành lập => có tất cả C 52 C 53 5! = 120 00 số 1 3 Mặt khác số các số đợc lập nh trên mà có chữ số 0 đứng đầu là C 4 C 5 4!= 960 Vậy có tất cả 120 00 960 = 11040 số thỏa mãn bài toán S 7 THI TH I HC, CAO NG NM 2009 Mụn thi :... 2; -1) và đờng thẳng d có phơng trình x 1 y z 1 = = Lập phơng trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là 2 1 3 lớn nhất Câu VIIb (1 điểm) Có bao nhiêu số tự nhiên có 5 chữ số khác nhau mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và ba chữ số lẻ.( 6) THI TH I HC, CAO NG NM 2009 Mụn thi : TON, khi B, D Thi gian lm bi : 180 phỳt, khụng k thi gian phỏt I:PHN... 2) 5(z + 1) = 0 7x + y -5z -77 = 0 2 Từ giả thi t bài toán ta thấy có C 4 = 6 cách chọn 2 chữ số chẵn (vì không có số 0)và C 52 = 10 cách chọn 2 chữ số lẽ => có C 52 C 52 = 60 bộ 4 số thỏa mãn bài toán 2 Mỗi bộ 4 số nh thế có 4! số đợc thành lập Vậy có tất cả C 4 C 52 4! = 1440 số 2.Ban nâng cao 1.( 1 điểm) Từ phơng trình chính tắc của đờng tròn ta có tâm I(1;-2), R = 3, từ A kẻ đợc 2 tiếp tuyến... = 0 x = m 2/Tacó y' = 3x 3mx = 3x( x m) = 0 2 ta thấy với m 0 thì y đổi dấu khi đi qua các nghiệm do vậy hàm số có CĐ,CT 1 3 m ;có CT tại x=m và y MIN = 0 2 1 = 0 ;có CT tại x=0 và y MIN = m 3 2 +Nếu m>0 hàm số có CĐ tại x=0 và y MAX = +Nếu m 0 x D (... ( x 3) ( x + 2 ) < 0 1 Khi ú: < x . ABCD. Câu VII.a (1 điểm) Có 10 viên bi đỏ có bán kính khác nhau, 5 viên bi xanh có bán kính khác nhau và 3 viên bi vàng có bán kính khác nhau. Hỏi có bao nhiêu cách chọn ra 9 viên bi có đủ ba màu? 2 hợp không có đủ ba viên bi khác màu là: + Không có bi đỏ: Khả năng này không xảy ra vì tổng các viên bi xanh và vàng chỉ là 8. + Không có bi xanh: có 9 13 C cách. + Không có bi vàng: có 9 15 C . + 5m > 0 (*) Bpt đã cho có nghiệm với mọi x khi và chỉ khi (*) có nghiệm với mọi X > 0 ⇔∆ < 0 hoặc (*) có hai nghiệm X 1 ≤ X 2 ≤ 0 Từ đó suy ra m ĐỀ THI THỬ ĐẠI HỌC 2 , năm 2009 Môn: