Aircraft Flight Dynamics Robert F. Stengel Lecture12 LateralDirectional Dynamics

11 278 0
Aircraft Flight Dynamics Robert F. Stengel Lecture12 LateralDirectional Dynamics

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Linearized Lateral-Directional Equations of Motion 
 Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012" •  Spiral, Dutch roll, and roll modes" •  Stability derivatives" Copyright 2012 by Robert Stengel. All rights reserved. For educational use only.! http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html ! 6-Component " Lateral-Directional Equations of Motion" State Vector, 6 components! Nonlinear Dynamic Equations!  v = Y / m + gsin φ cos θ − ru + pw  y I = cos θ sin ψ ( ) u + cos φ cos ψ + sin φ sin θ sin ψ ( ) v + −sin φ cos ψ + cos φ sin θ sin ψ ( ) w  p = I zz L + I xz N − I xz I yy − I xx − I zz ( ) p + I xz 2 + I zz I zz − I yy ( ) % & ' ( r { } q ( ) ÷ I xx I zz − I xz 2 ( )  r = I xz L + I xx N − I xz I yy − I xx − I zz ( ) r + I xz 2 + I xx I xx − I yy ( ) % & ' ( p { } q ( ) ÷ I xx I zz − I xz 2 ( )  φ = p + q sin φ + r cos φ ( ) tan θ  ψ = qsin φ + r cos φ ( ) sec θ x 1 x 2 x 3 x 4 x 5 x 6 ! " # # # # # # # # $ % & & & & & & & & = x LD 6 = v y p r φ ψ ! " # # # # # # # # $ % & & & & & & & & = Side Velocity Crossrange Body − Axis Roll Rate Body − Axis Yaw Rate Roll Angle about Body x Axis Yaw Angle about Inertial x Axis ! " # # # # # # # # $ % & & & & & & & & Douglas A-4! 4- Component " Lateral-Directional Equations of Motion" State Vector, 4 components! Nonlinear Dynamic Equations, neglecting crossrange and yaw angle!  v = Y / m + g sin φ cos θ − ru + pw  p = I zz L + I xz N − I xz I yy − I xx − I zz ( ) p + I xz 2 + I zz I zz − I yy ( ) $ % & ' r { } q ( ) ÷ I xx I zz − I xz 2 ( )  r = I xz L + I xx N − I xz I yy − I xx − I zz ( ) r + I xz 2 + I xx I xx − I yy ( ) $ % & ' p { } q ( ) ÷ I xx I zz − I xz 2 ( )  φ = p + qsin φ + r cos φ ( ) tan θ x 1 x 2 x 3 x 4 ! " # # # # # $ % & & & & & = x LD 4 = v p r φ ! " # # # # # $ % & & & & & = Side Velocity Body − Axis Roll Rate Body − Axis Yaw Rate Roll Angle about Body x Axis ! " # # # # # $ % & & & & & Eurofighter Typhoon! Lateral-Directional Equations of Motion Assuming Steady, Level Longitudinal Flight" Nonlinear dynamic equations, assuming steady, level, flight (longitudinal variables are constant )!  v = Y B / m + gsin φ cos θ N − ru N + pw N = Y B / m + gsin φ cos α N − ru N + pw N  p = I zz L B + I xz N B ( ) I xx I zz − I xz 2 ( )  r = I xz L B + I xx N B ( ) I xx I zz − I xz 2 ( )  φ = p + r cos φ ( ) tan θ N = p + r cos φ ( ) tan α N q N = 0 γ N = 0 θ N = α N Lockheed F-117! Lateral-Directional Force and Moments" Y B = C Y B 1 2 ρ N V N 2 S; Body − Axis Side Force L B = C l B 1 2 ρ N V N 2 Sb; Body − Axis Rolling Moment N B = C n B 1 2 ρ N V N 2 Sb; Body − Axis Yawing Moment Linearized Equations of Motion Body-Axis Perturbation Equations of Motion" Δ  v(t) Δ  p(t) Δ  r(t) Δ  φ (t) # $ % % % % % & ' ( ( ( ( ( = ∂ f 1 ∂ v ∂ f 1 ∂ p ∂ f 1 ∂ r ∂ f 1 ∂φ ∂ f 2 ∂ v ∂ f 2 ∂ p ∂ f 2 ∂ r ∂ f 2 ∂φ ∂ f 3 ∂ v ∂ f 3 ∂ p ∂ f 3 ∂ r ∂ f 3 ∂φ ∂ f 4 ∂ v ∂ f 4 ∂ p ∂ f 4 ∂ r ∂ f 4 ∂φ # $ % % % % % % % % % % % & ' ( ( ( ( ( ( ( ( ( ( ( Δv(t) Δp(t) Δr(t) Δ φ (t) # $ % % % % % & ' ( ( ( ( ( + Control [ ] + Disturbance [ ] Body-Axis Perturbation Variables" Δu 1 Δu 2 " # $ $ % & ' ' = Δ δ A Δ δ R " # $ % & ' = Aileron Perturbation Rudder Perturbation " # $ $ % & ' ' Δw 1 Δw 2 " # $ $ % & ' ' = Δ δ A Δ δ R " # $ % & ' = Side Wind Perturbation Vortical Wind Perturbation " # $ $ % & ' ' Δv Δp Δr Δ φ # $ % % % % % & ' ( ( ( ( ( = Side Velocity Perturbation Body − Axis Roll Rate Perturbation Body − Axis Yaw Rate Perturbation Roll Angle about Body x Axis Perturbation # $ % % % % % & ' ( ( ( ( ( Linearized Lateral-Directional Response to Yaw Rate Initial Condition" ~Roll-mode response of roll angle! ~Spiral-mode response of crossrange! ~Spiral-mode response of yaw angle! ~Dutch-roll- mode response of side velocity! ~Dutch-roll-mode response of roll and yaw rates! Dimensional Stability-and-Control Derivatives" ∂ f 1 ∂ v ∂ f 1 ∂ p ∂ f 1 ∂ r ∂ f 1 ∂φ ∂ f 2 ∂ v ∂ f 2 ∂ p ∂ f 2 ∂ r ∂ f 2 ∂φ ∂ f 3 ∂ v ∂ f 3 ∂ p ∂ f 3 ∂ r ∂ f 3 ∂φ ∂ f 4 ∂ v ∂ f 4 ∂ p ∂ f 4 ∂ r ∂ f 4 ∂φ # $ % % % % % & ' ( ( ( ( ( Stability Matrix! = Y v Y p + w N ( ) Y r −u N ( ) g cos θ N L v L p L r 0 N v N p N r 0 0 1 tan θ N 0 # $ % % % % % % & ' ( ( ( ( ( ( Dimensional Stability-and- Control Derivatives" ∂ f 1 ∂δ A ∂ f 1 ∂δ R ∂ f 2 ∂δ A ∂ f 2 ∂δ R ∂ f 3 ∂δ A ∂ f 3 ∂δ R ∂ f 4 ∂δ A ∂ f 4 ∂δ R # $ % % % % % & ' ( ( ( ( ( = Y δ A Y δ R L δ A L δ R N δ A N δ R 0 0 # $ % % % % % & ' ( ( ( ( ( ∂ f 1 ∂ v wind ∂ f 1 ∂ p wind ∂ f 2 ∂ v wind ∂ f 2 ∂ p wind ∂ f 3 ∂ v wind ∂ f 3 ∂ p wind ∂ f 4 ∂ v wind ∂ f 4 ∂ p wind " # $ $ $ $ $ % & ' ' ' ' ' = Y v Y p L v L p N v N p 0 0 " # $ $ $ $ $ % & ' ' ' ' ' Control Effect Matrix! Disturbance Effect Matrix! Stability Axes Stability Axes" •  Alternative set of body axes" •  Nominal x axis is offset from the body centerline by the nominal angle of attack, α N " Transformation from Original Body Axes to Stability Axes" H B S = cos α N 0 sin α N 0 1 0 −sin α N 0 cos α N # $ % % % & ' ( ( ( Δu Δv Δw " # $ $ $ % & ' ' ' S = H B S Δu Δv Δw " # $ $ $ % & ' ' ' B Δp Δq Δr " # $ $ $ % & ' ' ' S = H B S Δp Δq Δr " # $ $ $ % & ' ' ' B •  Side velocity (Δv) and pitch rate (Δq) are unchanged by the transformation " Stability-Axis State " •  Rotate body axes to stability axes" Δv(t) Δp(t) Δr(t) Δ φ (t) # $ % % % % % & ' ( ( ( ( ( Body−Axis ⇒  α N ⇒ Δv(t) Δp(t) Δr(t) Δ φ (t) # $ % % % % % & ' ( ( ( ( ( Stability−Axis Stability-Axis State" Δv(t) Δp(t) Δr(t) Δ φ (t) # $ % % % % % & ' ( ( ( ( ( Stability−Axis ⇒ Δ β ≈ Δv V N ⇒ Δ β (t) Δp(t) Δr(t) Δ φ (t) # $ % % % % % & ' ( ( ( ( ( Stability−Axis •  Replace side velocity by sideslip angle" Stability-Axis State" Δ β (t) Δp(t) Δr(t) Δ φ (t) $ % & & & & & ' ( ) ) ) ) ) Stability−Axis ⇒ Δr(t) Δ β (t) Δp(t) Δ φ (t) $ % & & & & & ' ( ) ) ) ) ) Stability−Axis = Stability − Axis Yaw Rate Perturbation Sideslip Angle Perturbation Stability − Axis Roll Rate Perturbation Stability − Axis Roll Angle Perturbation $ % & & & & & ' ( ) ) ) ) ) •  Revise state order" Stability-Axis Lateral-Directional Equations" Δ  r(t) Δ  β (t) Δ  p(t) Δ  φ (t) $ % & & & & & ' ( ) ) ) ) ) S = N r N β N p 0 Y r V N −1 + , - . / 0 Y β V N Y p V N g cos γ N V N L r L β L p 0 tan γ N 0 1 0 $ % & & & & & & & ' ( ) ) ) ) ) ) ) S Δr(t) Δ β (t) Δp(t) Δ φ (t) $ % & & & & & ' ( ) ) ) ) ) S + N δ A N δ R Y δ A V N Y δ R V N L δ A L δ R 0 0 $ % & & & & & & ' ( ) ) ) ) ) ) S Δ δ A(t) Δ δ R(t) $ % & & ' ( ) ) + N β N p Y β V N Y p V N L β L p 0 0 $ % & & & & & & & ' ( ) ) ) ) ) ) ) S Δ β wind Δp wind $ % & & ' ( ) ) Why Modify the Equations?" •  Dutch-roll mode is primarily described by stability-axis yaw rate and sideslip angle" •  Roll and spiral mode are primarily described by stability-axis roll rate and roll angle" •  Linearized equations allow the three modes to be studied" Stable Spiral! Unstable Spiral! Roll! Dutch Roll, top! Dutch Roll, front! Why Modify the Equations?" F LD = F DR F RS DR F DR RS F RS ! " # # $ % & & = F DR small small F RS ! " # # $ % & & ≈ F DR 0 0 F RS ! " # # $ % & & Effects of Dutch roll perturbations on Dutch roll motion" Effects of Dutch roll perturbations on roll-spiral motion" Effects of roll-spiral perturbations on Dutch roll motion" Effects of roll-spiral perturbations on roll-spiral motion" but are the off-diagonal blocks really small?! Dassault Rafale! Stability, Control, and Disturbance Matrices" F LD = F DR F RS DR F DR RS F RS ! " # # $ % & & = N r N β N p 0 Y r V N −1 ) * + , - . Y β V N Y p V N g cos γ N V N L r L β L p 0 tan γ N 0 1 0 ! " # # # # # # # $ % & & & & & & & G LD = N δ A N δ R Y δ A V N Y δ R V N L δ A L δ R 0 0 " # $ $ $ $ $ $ % & ' ' ' ' ' ' L LD = N β N p Y β V N Y p V N L β L p 0 0 " # $ $ $ $ $ $ $ % & ' ' ' ' ' ' ' Δx 1 Δx 2 Δx 3 Δx 4 " # $ $ $ $ $ % & ' ' ' ' ' = Δr Δ β Δp Δ φ " # $ $ $ $ $ % & ' ' ' ' ' Δu 1 Δu 2 " # $ $ % & ' ' = Δ δ A Δ δ R " # $ % & ' Δw 1 Δw 2 " # $ $ % & ' ' = Δ δ A Δ δ R " # $ % & ' Lateral-Directional Stability Derivatives 2 nd -Order Approximate Modes of Lateral- Directional Motion 2 nd -Order Approximations in System Matrices" F LD = F DR 0 0 F RS ! " # # $ % & & = N r N β 0 0 Y r V N −1 ) * + , - . Y β V N 0 0 0 0 L p 0 0 0 1 0 ! " # # # # # # # $ % & & & & & & & G LD = N δ A 0 Y δ A V N 0 0 L δ R 0 0 " # $ $ $ $ $ $ % & ' ' ' ' ' ' L LD = N β 0 Y β V N 0 0 L p 0 0 " # $ $ $ $ $ $ $ % & ' ' ' ' ' ' ' Second-Order Models of Lateral-Directional Motion" •  Approximate Spiral-Roll Equation" •  Approximate Dutch Roll Equation" Δ  x DR = Δ  r Δ  β # $ % % & ' ( ( ≈ N r N β Y r V N −1 + , - . / 0 Y β V N # $ % % % % & ' ( ( ( ( Δr Δ β # $ % % & ' ( ( + N δ R Y δ R V N # $ % % % & ' ( ( ( Δ δ R + N β Y β V N # $ % % % % & ' ( ( ( ( Δ β wind Δ  x RS = Δ  p Δ  φ # $ % % & ' ( ( ≈ L p 0 1 0 # $ % % & ' ( ( Δp Δ φ # $ % % & ' ( ( + L δ A 0 # $ % % & ' ( ( Δ δ A + L p 0 # $ % % & ' ( ( Δp wind Approximate Roll and Spiral Modes" Δ  p Δ  φ # $ % % & ' ( ( = L p 0 1 0 # $ % % & ' ( ( Δp Δ φ # $ % % & ' ( ( + L δ A 0 # $ % % & ' ( ( Δ δ A Δ RS (s) = s s − L p ( ) λ S = 0 λ R = L p •  Characteristic polynomial has real roots" •  Roll rate is damped by L p " •  Roll angle is a pure integral of roll rate" Δp t ( ) Δ φ t ( ) •  Initial condition response" Neutral stability! Generally < 0! Roll Damping Due to Roll Rate, L p ! L p ≈ C l p ρ V N 2 2I xx # $ % & ' ( Sb = C l ˆ p b 2V N # $ % & ' ( ρ V N 2 2I xx # $ % & ' ( Sb = C l ˆ p ρ V N 4 I xx # $ % & ' ( Sb 2 C l ˆ p ( ) Wing = ∂ ΔC l ( ) Wing ∂ ˆ p = − C L α 12 1 + 3 λ 1 + λ & ' ( ) * + •  Wing with taper" •  Thin triangular wing" C l ˆ p ( ) Wing = − π AR 32 C l ˆ p ≈ C l ˆ p ( ) Vertical Tail + C l ˆ p ( ) Horizontal Tail + C l ˆ p ( ) Wing •  Vertical tail, horizontal tail, and wing are principal contributors" < 0 for stability! NACA-TR-1098, 1952! NACA-TR-1052, 1951 ! Roll Damping Due to Roll Rate, L p ! •  Tapered vertical tail" •  Tapered horizontal tail" ˆ p = pb 2V N C l ˆ p ( ) ht = ∂ ΔC l ( ) ht ∂ ˆ p = − C L α ht 12 S ht S % & ' ( ) * 1+ 3 λ 1+ λ % & ' ( ) * •  pb/2V N describes helix angle for a steady roll" C l ˆ p ( ) vt = ∂ ΔC l ( ) vt ∂ ˆ p = − C Y β vt 12 S vt S % & ' ( ) * 1+ 3 λ 1+ λ % & ' ( ) * Approximate Dutch Roll Mode" Δ  r Δ  β # $ % % & ' ( ( = N r N β Y r V N −1 * + , - . / Y β V N # $ % % % % & ' ( ( ( ( Δr Δ β # $ % % & ' ( ( + N δ R Y δ R V N # $ % % % & ' ( ( ( Δ δ R Δ DR (s) = s 2 − N r + Y β V N $ % & ' ( ) s + N β 1− Y r V N ( ) + N r Y β V N * + , - . / ω n DR = N β 1− Y r V N ( ) + N r Y β V N ζ DR = − N r + Y β V N $ % & ' ( ) 2 N β 1− Y r V N ( ) + N r Y β V N ω n DR = N β + N r Y β V N ζ DR = − N r + Y β V N % & ' ( ) * 2 N β + N r Y β V N •  With negligible side-force sensitivity to yaw rate, Y r " •  Characteristic polynomial, natural frequency, and damping ratio" Initial Condition Response of Approximate Dutch Roll Mode" Δr t ( ) Δ β t ( ) Side Force due to Sideslip Angle " Y ≈ ∂C Y ∂ β qS • β = C Y β qS • β C Y β ≈ C Y β ( ) Fuselage + C Y β ( ) Vertical Tail + C Y β ( ) Wing C Y β ( ) Vertical Tail ≈ ∂C Y ∂ β $ % & ' ( ) vt η vt S VerticalTail S C Y β ( ) Fuselage ≈ −2 S Base S ; S B = π d Base 2 4 C Y β ( ) Wing ≈ −C D Parasite, Wing − kΓ 2 η vt = Vertical tail efficiency k = π AR 1+ 1+ AR 2 Γ = Wing dihedral angle, rad •  Fuselage, vertical tail, and wing are main contributors" Yawing Moment due to Sideslip Angle! N ≈ ∂ C n ∂β ρ V 2 2 % & ' ( ) * Sb • β = C n β ρ V 2 2 % & ' ( ) * Sb • β !  Side force contributions times respective moment arms" –  Non-dimensional stability derivative" C n β ≈ C n β ( ) Vertical Tail + C n β ( ) Fuselage + C n β ( ) Wing + C n β ( ) Propeller C n β ( ) Vertical Tail ≈ −C Y β vt η vt S vt l vt Sb  −C Y β vt η vt V VT Vertical tail contribution" V VT = S vt l vt Sb = Vertical Tail Volume Ratio η vt = η elas 1+ ∂σ ∂β ( ) V vt 2 V N 2 % & ' ( ) * Yawing Moment due to Sideslip Angle! l vt  Vertical tail length (+) = distance from center of mass to tail center of pressure = x cm − x cp vt [x is positive forward; both are negative numbers] C n β ( ) Fuselage = −2K Volume Fuselage Sb K = 1− d max Length fuselage " # $ % & ' 1.3 Fuselage contribution" C n β ( ) Wing = 0.75C L N Γ + fcn Λ, AR, λ ( ) C L N 2 Wing (differential lift and induced drag) contribution" Yawing Moment due to Sideslip Angle! Yaw Damping Due to Yaw Rate, N r ! •  Dimensional stability derivative" N r ≈ C n r ρ V N 2 2I zz # $ % & ' ( Sb = C n ˆ r b 2V N # $ % & ' ( ρ V N 2 2I zz # $ % & ' ( Sb = C n ˆ r ρ V N 4 I zz # $ % & ' ( Sb 2 < 0 for stability! •  High wing- sweep angle can lead to N r > 0" Martin Marietta X-24B! Yaw Damping Due to Yaw Rate, N r ! C n ˆ r ≈ C n ˆ r ( ) Vertical Tail + C n ˆ r ( ) Wing C n ˆ r ( ) Wing = k 0 C L 2 + k 1 C D Parasite, Wing k 0 and k 1 are functions of aspect ratio and sweep angle" •  Wing contribution" •  Vertical tail contribution" Δ C n ( ) Vertical Tail = − C n β ( ) Vertical Tail rl vt V N ( ) = − C n β ( ) Vertical Tail l vt b $ % & ' ( ) b V N $ % & ' ( ) r ˆ r = rb 2V N C n ˆ r ( ) vt = ∂ Δ C n ( ) Vertical Tail ∂ rb 2V N ( ) = ∂ Δ C n ( ) Vertical Tail ∂ ˆ r = −2 C n β ( ) Vertical Tail l vt b % & ' ( ) * NACA-TR-1098, 1952! NACA-TR-1052, 1951 ! Comparison of Fourth- and Second-Order Dynamic Models •  2 nd -order-model eigenvalues are close to those of the 4 th -order model" •  Eigenvalue magnitudes of Dutch roll and roll roots are similar" Bizjet Fourth- and Second-Order Models and Eigenvalues " Fourth-Order Model F = G = Eigenvalue Damping Freq. (rad/s) -0.1079 1.9011 0.0566 0 0 -1.1196 0.00883 -1 -0.1567 0 0.0958 0 0 -1.2 0.2501 -2.408 -1.1616 0 2.3106 0 -1.16e-01 + 1.39e+00j 8.32E-02 1.39E+00 0 0 1 0 0 0 -1.16e-01 - 1.39e+00j 8.32E-02 1.39E+00 Dutch Roll Approximation F = G = Eigenvalue Damping Freq. (rad/s) -0.1079 1.9011 -1.1196 -1.32e-01 + 1.38e+00j 9.55E-02 1.38E+00 -1 -0.1567 0 -1.32e-01 - 1.38e+00j 9.55E-02 1.38E+00 Roll-Spiral Approximation F = G = Eigenvalue Damping Freq. (rad/s) -1.1616 0 2.3106 0 1 0 0 -1.16 Unstable! Comparison of Second- and Fourth-Order Initial-Condition Responses of Business Jet" Fourth-Order Response! Second-Order Response! •  Speed and damping of responses is adequately portrayed by 2 nd -order models" •  Roll-spiral modes have little effect on yaw rate and sideslip angle responses" •  Dutch roll mode has large effect on roll rate and roll angle responses" Primary Lateral-Directional Control Derivatives" L δ A = C l δ A ρ V N 2 2I xx # $ % & ' ( Sb N δ R = C n δ R ρ V N 2 2I zz # $ % & ' ( Sb [...]...Next Time: Analysis of Time Response Reading Flight Dynamics, 298-314, 338-342 Virtual Textbook, Part 13 Body-Axis Perturbation Equations of Motion " •  Rolling and yawing motions" # % % % % % $ #  Δv(t) & % Yv ( Δ (t) ( % Lv p =% Δ r(t) ( % N v . Linearized Lateral-Directional Equations of Motion 
 Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012" •  Spiral, Dutch roll, and roll. only.! http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html ! 6-Component " Lateral-Directional Equations of Motion" State Vector, 6 components! Nonlinear. Axis ! " # # # # # $ % & & & & & Eurofighter Typhoon! Lateral-Directional Equations of Motion Assuming Steady, Level Longitudinal Flight& quot; Nonlinear dynamic equations, assuming steady,

Ngày đăng: 04/07/2014, 19:26

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan