1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture19 Advanced LateralDirectional Dynamics

11 266 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 1,02 MB

Nội dung

Advanced Problems of Lateral- Directional Dynamics 
 Robert Stengel, Aircraft Flight Dynamics
 MAE 331, 2012" •  Fourth-order dynamics" –  Steady-state response to control" –  Transfer functions" –  Frequency response" –  Root locus analysis of parameter variations " •  Residualization" •  Roll-spiral oscillation" Copyright 2012 by Robert Stengel. All rights reserved. For educational use only.! http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html ! Stability-Axis Lateral-Directional Equations" Δ  r(t) Δ  β (t) Δ  p(t) Δ  φ (t) $ % & & & & & ' ( ) ) ) ) ) = N r N β N p 0 −1 Y β V N 0 g V N L r L β L p 0 0 0 1 0 $ % & & & & & & & ' ( ) ) ) ) ) ) ) Δr(t) Δ β (t) Δp(t) Δ φ (t) $ % & & & & & ' ( ) ) ) ) ) + ~ 0 N δ R 0 0 0 Y δ SF V N L δ A ~ 0 0 0 0 0 $ % & & & & & & ' ( ) ) ) ) ) ) Δ δ A Δ δ R Δ δ SF $ % & & & ' ( ) ) ) Δx 1 Δx 2 Δx 3 Δx 4 " # $ $ $ $ $ % & ' ' ' ' ' = Δr Δ β Δp Δ φ " # $ $ $ $ $ % & ' ' ' ' ' = Yaw Rate Perturbation Sideslip Angle Perturbation Roll Rate Perturbation Roll Angle Perturbation " # $ $ $ $ $ % & ' ' ' ' ' Δu 1 Δu 2 " # $ $ % & ' ' = Δ δ A Δ δ R " # $ % & ' = Aileron Perturbation Rudder Perturbation " # $ $ % & ' ' •  With idealized aileron and rudder effects (i.e., N δ A = L δ R = 0) " Lateral-Directional Characteristic Equation" Δ LD (s) = s − λ S ( ) s − λ R ( ) s 2 + 2 ζω n s + ω n 2 ( ) DR •  Typically factors into real spiral and roll roots and an oscillatory pair of Dutch roll roots " Δ LD (s) = s 4 + L p + N r + Y β V N # $ % & ' ( s 3 + N β − L r N p + L p Y β V N + N r Y β V N + L p # $ % & ' ( * + , - . / s 2 + Y β V N L r N p − L p N r ( ) + L β N p − g V N ( ) * + , - . / s + g V N L β N r − L r N β ( ) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = 0 Business Jet Example of Lateral-Directional Characteristic Equation" Δ LD (s) = s − 0.00883 ( ) s + 1.2 ( ) s 2 + 2 0.08 ( ) 1.39 ( ) s + 1.39 2 # $ % & Slightly unstable Spiral! Stable Roll! Lightly damped Dutch roll! Dutch roll! Spiral! Dutch roll! Roll! Steady-State Response Δx S = −F −1 G Δu S Equilibrium Response of" 2 nd -Order Dutch Roll Model" Δr SS Δ β SS # $ % % & ' ( ( = − Y β V N −N β 1 N r # $ % % % & ' ( ( ( Y β V N N r + N β * + , - . / N δ R 0 # $ % % & ' ( ( Δ δ R SS Δr S = − Y β V N N δ R % & ' ( ) * Y β V N N r + N β % & ' ( ) * Δ δ R S Δ β S = − N δ R Y β V N N r + N β % & ' ( ) * Δ δ R S •  Equilibrium response to constant rudder" •  Steady yaw rate and sideslip angle are not zero" •  What is the corresponding ground track of the aircraft [y(t) vs. x(t)]?" Equilibrium Response of Roll-Spiral Model" Δp S = − L δ A L p Δ δ A S Δ φ (t) S = − L δ A L p Δ δ A S dt 0 t ∫ Δp SS Δ φ SS # $ % % & ' ( ( = − L p 0 1 0 # $ % % & ' ( ( −1 L δ A 0 # $ % % & ' ( ( Δ δ A SS L p 0 1 0 ! " # # $ % & & −1 = 0 0 −1 L p ! " # # $ % & & 0 but" •  Steady roll rate proportional to aileron" •  Roll angle, integral of roll rate, continually increases" •  Equilibrium state with constant aileron" Δp S = −L p −1 L δ A Δ δ A S taken alone" Equilibrium Response of 4 th -Order Model" •  Equilibrium state with constant aileron, rudder, and side-force panel deflection" Δr S Δ β S Δp S Δ φ S $ % & & & & & ' ( ) ) ) ) ) = − N r N β N p 0 −1 Y β V N 0 g V N L r L β L p 0 0 0 1 0 $ % & & & & & & & ' ( ) ) ) ) ) ) ) −1 ~ 0 N δ R 0 0 0 Y δ SF V N L δ A ~ 0 0 0 0 0 $ % & & & & & & ' ( ) ) ) ) ) ) Δ δ A S Δ δ R S Δ δ SF S $ % & & & ' ( ) ) ) Equilibrium Response of the 4 th -Order Lateral-Directional Model" Δy S = H x Δx S = −H x F −1 GΔu S •  With H x = Identity matrix " •  Observations" –  Steady-state roll rate is zero" –  Aileron and rudder commands produce steady-state yaw rate, sideslip angle, and roll angle" –  Side force command produces steady-state roll angle but has no effect on steady-state yaw rate or sideslip angle " Δr S Δ β S Δp S Δ φ S $ % & & & & & ' ( ) ) ) ) ) = g V N L δ A N β − g V N L β N δ R 0 g V N L δ A N r g V N L r N δ R 0 0 0 0 N β + N r Y β V N , - . / 0 1 L δ A − L β + L r Y β V N , - . / 0 1 N δ R L r N β − L β N r ( ) Y δ SF V N $ % & & & & & & & & & ' ( ) ) ) ) ) ) ) ) ) g V N L β N r − L r N β ( ) Δ δ A S Δ δ R S Δ δ SF S $ % & & & ' ( ) ) ) Stability and Transient Response 4 th -Order Initial-Condition Responses of Business Jet" •  Initial roll angle and rate have little effect on yaw rate and sideslip angle responses" •  Initial yaw rate and sideslip angle have large effect on roll rate and roll angle responses" Initial ! yaw rate! Initial ! sideslip angle! Initial ! roll rate! Initial ! roll angle! Effects of Variation in Primary Stability Derivatives N β Effect on 4 th -Order Roots! •  Group Δ(s) terms multiplied by N β to form numerator" •  Denominator formed from remaining terms of Δ(s)" Δ LD (s) = d(s) + N β n(s) = 0 kn(s) d(s) = −1 = N β s − z 1 ( ) s − z 2 ( ) s − λ 1 ( ) s − λ 2 ( ) s 2 + 2 ζω n s + ω n 2 ( ) N ! > 0" N ! < 0" •  Positive N Β " –  Increases Dutch roll natural frequency " –  Damping ratio decreases but remains stable" –  Spiral mode drawn toward origin" –  Roll mode unchanged" •  Negative N β destabilizes Dutch roll mode" Root Locus Gain = Directional Stability! Roll! Spiral! Dutch Roll! Dutch Roll! Zero! Zero! N r Effect on 4 th -Order Roots" Δ LD (s) = d(s) + N r n(s) = 0 kn(s) d(s) = −1 = N r s − z 1 ( ) s 2 + 2 µν n s + ν n 2 ( ) s − λ 1 ( ) s − λ 2 ( ) s 2 + 2 ζω n s + ω n 2 ( ) •  Negative N r " –  Increases Dutch roll damping " –  Draws spiral and roll modes together drawn toward origin" •  Positive N r destabilizes Dutch roll mode" N r < 0" N r > 0" Root Locus Gain = Yaw Damping! Roll! Spiral! Zero! Dutch Roll! Dutch Roll! Zero! Zero! L p Effect on 4 th -Order Roots" Δ LD (s) = d(s) + L p n(s) = 0 kn(s) d(s) = −1 = L p s s 2 + 2 µν n s + ν n 2 ( ) s − λ 1 ( ) s − λ 2 ( ) s 2 + 2 ζω n s + ω n 2 ( ) L p < 0" L p > 0" •  Negative L p " –  Decreases roll mode time constant" –  Draws spiral and roll modes together drawn toward origin" •  Positive L p destabilizes roll mode" •  L p has negligible effect on spiral mode" •  Normally negative ; however, can become positive at high angle of attack" Root Locus Gain = Roll Damping! Roll! Spiral!Zero! Dutch Roll & Zero! Dutch Roll & Zero! Coupling Stability Derivatives and Their Effects Dihedral Effect: Roll Acceleration Sensitivity to Sideslip Angle, L β ! L β ≈ C l β ρ V 2 2I xx $ % & ' ( ) Sb C l β ≈ C l β ( ) Wing + C l β ( ) Wing− Fuselage + C l β ( ) Vertical Tail •  Wing, wing-fuselage interference, and vertical tail are principal contributors" Typically < 0 for stability! Dihedral Effect: Roll Acceleration Sensitivity to Sideslip Angle, L β ! L β ≈ C l β ρ V 2 2I xx $ % & ' ( ) Sb •  Dihedral and sweep effect" C l β ( ) Wing = 1 + 2 λ 6 1 + λ ( ) ΓC L α wing + C L tan Λ 1 − M 2 cos 2 Λ ' ( ) * + , •  Tapered, trapezoidal, swept wing" Wing and Tail Location Effects on L β ! •  High/low wing effect" C l β ( ) Wing− Fuselage = 1.2 AR z Wing h + w ( ) b 2 C l β ( ) Vertical Tail ≈ z vt b C Y β ( ) Vertical Tail •  Vertical tail effect" L β Effect on 4 th -Order Roots! •  Negative L β " –  Stabilizes spiral and roll modes but " –  Destabilizes Dutch roll mode" •  Positive L β does the opposite" Root Locus Gain = Dihedral Effect! Δ LD (s) = d(s) + L β g V N − N p ( ) n(s) = 0 n(s) d(s) = −1 = L β g V N − N p ( ) s − z 1 ( ) s − λ S ( ) s − λ R ( ) s 2 + 2 ζω n DR s + ω n DR 2 ( ) L !!! < 0" L ! > 0" Bizjet Example! Δ LD (s) = s − 0.00883 ( ) s + 1.2 ( ) s 2 + 2 0.08 ( ) 1.39 ( ) s + 1.39 2 # $ % & Roll! Spiral!Zero! Dutch Roll! Dutch Roll! Stabilizing Lateral- Directional Motions" •  Provide sufficient L β (–) to stabilize the spiral mode" •  Provide sufficient N r (–) to damp the Dutch roll mode" How can L β and N r be adjusted  artificially  , i.e., by closed-loop control?! Original Root Locus! Increased |N r |! Solar Impulse! Fourth-Order Frequency Response Yaw Rate and Sideslip Angle Frequency Responses of Business Jet" 2 nd -Order Response to Rudder" •  Yawing response to aileron is not negligible" •  Yaw rate response is poorly characterized by the 2 nd -order model below the Dutch roll natural frequency " •  Sideslip angle response is adequately characterized by the 2 nd -order model" 4 th -Order Response to Aileron and Rudder" Δr j ω ( ) Δ δ A j ω ( ) Δ β j ω ( ) Δ δ A j ω ( ) Δr j ω ( ) Δ δ R j ω ( ) Δ β j ω ( ) Δ δ R j ω ( ) Δr j ω ( ) Δ δ R j ω ( ) Δ β j ω ( ) Δ δ R j ω ( ) Roll Rate and Roll Angle Frequency Responses of Business Jet" 2 nd -Order Response to Aileron" •  Roll response to rudder is not negligible" •  Roll rate response is marginally well characterized by the 2 nd -order model" •  Roll angle response is poorly characterized at low frequency by the 2 nd - order model" Δp j ω ( ) Δ δ R j ω ( ) Δ φ j ω ( ) Δ δ R j ω ( ) Δp j ω ( ) Δ δ A j ω ( ) Δ φ j ω ( ) Δ δ A j ω ( ) Δp j ω ( ) Δ δ A j ω ( ) Δ φ j ω ( ) Δ δ A j ω ( ) 4 th -Order Response to Aileron and Rudder" Frequency and Step Responses to Aileron Input" •  Roll rate response is relatively benign" •  Ratio of roll angle to sideslip response is important to the pilot" •  Yaw/sideslip sensitivity in the vicinity of the Dutch roll natural frequency" Δr j ω ( ) Δ δ A j ω ( ) Δ β j ω ( ) Δ δ A j ω ( ) Δp j ω ( ) Δ δ A j ω ( ) Δ φ j ω ( ) Δ δ A j ω ( ) Δv t ( ) Δy t ( ) Δr t ( ) Δp t ( ) Δ ψ t ( ) Δ φ t ( ) Frequency and Step Responses to Rudder Input" •  Lightly damped yaw/sideslip response would be hard to control precisely" •  Yaw response variability near and below the Dutch roll natural frequency" •  Significant roll rate response near the Dutch roll natural frequency" Δr j ω ( ) Δ δ R j ω ( ) Δ β j ω ( ) Δ δ R j ω ( ) Δp j ω ( ) Δ δ R j ω ( ) Δ φ j ω ( ) Δ δ R j ω ( ) Δv t ( ) Δy t ( ) Δr t ( ) Δp t ( ) Δ ψ t ( ) Δ φ t ( ) Order Reduction by Residualization Approximate Low- Order Response" •  Dynamic model order can be reduced when" –  One mode is stable and well-damped, and it and is faster than the other" –  The two modes are coupled" Δ  x fast Δ  x slow " # $ $ % & ' ' = F fast F slow fast F fast slow F slow " # $ $ % & ' ' Δx fast Δx slow " # $ $ % & ' ' + G fast G slow " # $ $ % & ' ' Δu Δ  x f = F f Δx f + F s f Δx s + G f Δu Δ  x s = F f s Δx f + F s Δx s + G s Δu or! Residualization Provides an Approximation for Low-Order Dynamics" •  Assume that fast mode reaches steady state on a time scale that is short compared to the slow mode" Δ  x f ≈ 0 ≈ F f Δx f + F s f Δx s + G f Δu Δ  x s = F f s Δx f + F s Δx s + G s Δu •  Algebraic solution for Δx fast " 0 ≈ F f Δx f + F s f Δx s + G f Δu F f Δx f = −F s f Δx s − G f Δu Δx f = −F f −1 F s f Δx s + G f Δu ( ) •  Substitute quasi-steady Δx fast in differential equation for Δx slow " Δ  x s = −F f s F f −1 F s f Δx s + G f Δu ( ) # $ % & + F s Δx s + G s Δu = F s − F f s F f −1 F s f # $ % & Δx s + G s − F f s F f −1−1 G f # $ % & Δu •  Residualized equation for Δx slow " Δ  x s = F ' s Δx s + G ' s Δu F ' s = F s − F f s F f −1 F s f " # $ % G ' s = G s − F f s F f −1 G f " # $ % where! Residualization" Residualized Roll-Spiral Mode" •  Assume that the Dutch roll mode is stable and faster than the roll mode" •  Calculate effect of the quasi-steady Dutch roll on the roll and spiral modes" Δ  x DR Δ  x RS " # $ $ % & ' ' ≈ 0 Δ  x RS " # $ $ % & ' ' = F DR F RS DR F DR RS F RS " # $ $ % & ' ' Δx DR Δx RS " # $ $ % & ' ' + G DR G RS " # $ $ % & ' ' Δ δ A Δ δ R " # $ % & ' " # $ $ % & ' ' Residualized Roll-Spiral Mode" •  Assume that the Dutch roll mode is stable and faster than the roll mode" •  Calculate effect of the quasi-steady Dutch roll on the roll and spiral modes" Δx DR = −F DR −1 F RS DR Δx RS + G DR Δ δ A Δ δ R $ % & ' ( ) * + , - , . / , 0 , Δ  x RS = F RS Δx RS − F DR RS F DR −1 F RS DR Δx RS + G DR Δ δ A Δ δ R $ % & ' ( ) * + , - , . / , 0 , + G RS Δ δ A Δ δ R $ % & ' ( ) = F' RS Δx RS + G ' RS Δ δ A Δ δ R $ % & ' ( ) Model of the Residualized Roll-Spiral Mode" •  2 nd -order approximation for roll and spiral modes" Δ  p Δ  φ # $ % % & ' ( ( = L p 0 1 0 # $ % % & ' ( ( Δp Δ φ # $ % % & ' ( ( − L r L β 0 0 # $ % % & ' ( ( N r N β −1 Y β V N # $ % % % % & ' ( ( ( ( −1 N p 0 0 g V N # $ % % % % & ' ( ( ( ( Δp Δ φ # $ % % & ' ( ( + N δ A N δ R 0 Y δ R V N # $ % % % & ' ( ( ( Δ δ A Δ δ R # $ % & ' ( , - . . / . . 0 1 . . 2 . . + L δ A L δ R 0 0 # $ % % & ' ( ( Δ δ A Δ δ R # $ % & ' ( Δ  p Δ  φ # $ % % & ' ( ( = L p − N p L r Y β V N + L β + , - . / 0 N β + N r Y β V N + , - . / 0 # $ % % % % & ' ( ( ( ( g V N L r N β − L β N r ( ) N β + N r Y β V N + , - . / 0 # $ % % % % & ' ( ( ( ( 1 0 # $ % % % % % % & ' ( ( ( ( ( ( Δp Δ φ # $ % % & ' ( ( + = f 11 f 12 1 0 # $ % % & ' ( ( Δp Δ φ # $ % % & ' ( ( + Roots of the Residualized Roll-Spiral Mode" sI − F ' RS = s 1 0 0 1 " # $ % & ' − f 11 f 12 1 0 " # $ $ % & ' ' = Δ RS res = s 2 − L p − N p L β + L r Y β / V N N β + N r Y β / V N * + , - . / " # $ $ % & ' ' s + g V N L β N r − L r N β N β + N r Y β / V N * + , - . / = s − λ S ( ) s − λ R ( ) or s 2 + 2 ζω n s + ω n 2 ( ) RS = 0 •  For the business jet model" Δ RS res = s 2 + 1.0894s − 0.0108 = 0 = s − 0.0098 ( ) s + 1.1 ( ) = s − λ S ( ) s − λ R ( ) •  Slightly unstable spiral mode" •  Similar to 4 th -order roll-spiral results" Δ LD (s) = s − 0.00883 ( ) s + 1.2 ( ) s 2 + 2 0.08 ( ) 1.39 ( ) s + 1.39 2 # $ % & Oscillatory Roll-Spiral Mode" Δ RS res = s − λ S ( ) s − λ R ( ) or s 2 + 2 ζω n s + ω n 2 ( ) RS •  The characteristic equation factors into real or complex roots" –  Real roots are roll mode and spiral mode when" L β N r > L r N β and N p L β + L r Y β / V N ( ) 2 g V N L β N r − L r N β ( ) # $ % & ' ( <1 L β N r < L r N β –  Complex roots produce roll-spiral oscillation or lateral phugoid mode when ! Roll-Spiral Oscillation of a Lifting Reentry Vehicle" Next Time: Flying Qualities Criteria  Reading Aircraft Stability and Control, Ch. 21 Virtual Textbook, Part 20 Supplemental Material Equilibrium Response of 4 th -Order Model" •  Equilibrium state with constant aileron and spiral wind perturbations" Δr SS Δ β SS Δp SS Δ φ SS $ % & & & & & ' ( ) ) ) ) ) = a b 0 c d 0 0 0 0 e f g $ % & & & & ' ( ) ) ) ) Δ δ A SS Δ δ R SS Δ δ SF SS $ % & & & ' ( ) ) ) •  Observations" –  Aileron command" –  Rudder command" –  Side-force panel command" –  Steady-state roll rate is zero" –  Steady-state roll angle is bounded ! Effects of Variation in Secondary Stability Derivatives . Advanced Problems of Lateral- Directional Dynamics 
 Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012" •  Fourth-order dynamics& quot; –  Steady-state. only.! http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html ! Stability-Axis Lateral-Directional Equations" Δ  r(t) Δ  β (t) Δ  p(t) Δ  φ (t) $ % & & & & & ' ( ) ) ) ) ) = N r N β N p 0 −1 Y β V N 0 g V N L r L β L p 0 0. Perturbation " # $ $ % & ' ' •  With idealized aileron and rudder effects (i.e., N δ A = L δ R = 0) " Lateral-Directional Characteristic Equation" Δ LD (s) = s − λ S ( ) s − λ R ( ) s 2 + 2 ζω n s

Ngày đăng: 04/07/2014, 19:29

TỪ KHÓA LIÊN QUAN