Aircraft Flight Dynamics Robert F. Stengel Lecture18 Advanced Longitudinal Dynamics

16 247 0
Aircraft Flight Dynamics Robert F. Stengel Lecture18 Advanced Longitudinal Dynamics

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Advanced Problems of Longitudinal Dynamics 
 Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012 " •  Angle-of-attack-rate aero effects" •  Fourth-order dynamics" –  Steady-state response to control" –  Transfer functions" –  Frequency response" –  Root locus analysis of parameter variations" •  Numerical solution for trimmed flight condition" •  Nichols chart" •  Pilot-aircraft interactions" Copyright 2012 by Robert Stengel. All rights reserved. For educational use only.! http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html ! Distinction Between Angle-of- Attack Rate and Pitch Rate"  α = q  α ≠ 0 ≠ q; q = 0 !  With no vertical motion of the c.m., pitch rate and angle-of- attack rate are the same " !  With no pitching, vertical heaving (or plunging) motion of the c.m., produces angle-of-attack rate but no pitch rate" Vertical velocity distribution induced by pitch rate! Angle-of-Attack Rate Has Two Effects " !  Pressure variations at wing convect downstream, arriving at tail Δt sec later" !  Lag of the downwash" !  Delayed tail-lift/pitch- moment effect" !  Vertical force opposed by a mass of air (apparent mass) as well as airplane mass" !  Vertical acceleration produces added lift and moment " Flight Dynamics, pp. 204-206, 284-285" Δ  q = M q Δq + M α Δ α + M δ E Δ δ E + M  α Δ  α Δ  α = 1− L q V N % & ' ( ) * Δq − L α V N ( ) Δ α − L δ E V N ( ) Δ δ E − L  α V N ( ) Δ  α Δ  q − M  α Δ  α = M q Δq + M α Δ α + M δ E Δ δ E Δ  α + L  α V N ( ) Δ  α = 1− L q V N % & ' ( ) * Δq − L α V N ( ) Δ α − L δ E V N ( ) Δ δ E 1 −M  α 0 1+ L  α V N ( ) # $ % & ' ( # $ % % % & ' ( ( ( Δ  q Δ  α # $ % % & ' ( ( = M q M α 1− L q V N * + , - . / − L α V N ( ) # $ % % % & ' ( ( ( Δq Δ α # $ % % & ' ( ( + M δ E − L δ E V N ( ) # $ % % % & ' ( ( ( Δ δ E Angle-of-Attack-Rate Effects Principally Affect the Short-Period Mode" !  Lift and pitching moment proportional to angle-of-attack rate" !  Bring effects to left side" !  Vector-matrix form" 1 −M  α 0 1 + L  α V N ( ) # $ % & ' ( # $ % % % & ' ( ( ( −1 = 1 + L  α V N ( ) # $ % & ' ( M  α 0 1 # $ % % % & ' ( ( ( 1 + L  α V N ( ) # $ % & ' ( Δ  q Δ  α # $ % % & ' ( ( = 1 −M  α 0 1+ L  α V N ( ) # $ % & ' ( # $ % % % & ' ( ( ( −1 M q M α 1− L q V N * + , - . / − L α V N ( ) # $ % % % & ' ( ( ( Δq Δ α # $ % % & ' ( ( + M δ E − L δ E V N ( ) # $ % % % & ' ( ( ( Δ δ E 1 2 3 3 4 3 3 5 6 3 3 7 3 3 Angle-of-Attack-Rate Effects" !  Inverse of the apparent mass matrix" !  Pre-multiply both sides by inverse" Δ  q Δ  α # $ % % & ' ( ( = 1+ L  α V N ( ) # $ % & ' ( M  α 0 1 # $ % % % & ' ( ( ( 1+ L  α V N ( ) # $ % & ' ( M q M α 1− L q V N * + , - . / − L α V N # $ % % % & ' ( ( ( Δq Δ α # $ % % & ' ( ( + 0 1 2 2 3 2 2 4 5 2 2 6 2 2 Angle-of-Attack-Rate Effects" Δ  q Δ  α # $ % % & ' ( ( = 1 1+ L  α V N ( ) # $ % & ' ( 1+ L  α V N ( ) # $ % & ' ( M q + M  α 1− L q V N * + , - . / 0 1 2 3 4 5 1+ L  α V N ( ) # $ % & ' ( M α − M  α L α V N ( ) 0 1 2 3 4 5 1− L q V N * + , - . / − L α V N # $ % % % % % & ' ( ( ( ( ( Δq Δ α # $ % % & ' ( ( + 1+ L  α V N ( ) # $ % & ' ( M δ E − M  α L δ E V N ( ) − L δ E V N # $ % % % % & ' ( ( ( ( Δ δ E 0 1 7 7 7 7 7 2 7 7 7 7 7 3 4 7 7 7 7 7 5 7 7 7 7 7 !  Multiply matrices" !  Substitute" Simplification of Angle-of-Attack- Rate Effects" Δ  q Δ  α # $ % % & ' ( (  M q + M  α { } M α − M  α L α V N ( ) { } 1 − L α V N ( ) # $ % % % % % & ' ( ( ( ( ( Δq Δ α # $ % % & ' ( ( + M δ E − M  α L δ E V N ( ) − L δ E V N ( ) # $ % % % % & ' ( ( ( ( Δ δ E !  Typically" L q and L  α have small effects for large aircraft* M q and M  α are same order of magnitude and have more significant effects !  Neglecting" L q and L  α * but not for small aircraft, e.g., R/C models and micro-UAVs" 2 nd -Degree Characteristic Polynomial with" !  Short-period characteristic polynomial" !  Damping is increased" !  Natural frequency is unaffected" Δ s ( ) = s − M q + M  α ( ) $ % & ' − M α − M  α L α V N ( ) $ % ( & ' ) −1 s + L α V N ( ) $ % ( & ' ) = s − M q + M  α ( ) $ % & ' s + L α V N ( ) $ % ( & ' ) − M α − M  α L α V N ( ) $ % ( & ' ) Δ s ( ) = s 2 + L α V N ( ) − M q + M  α ( ) $ % & ' ( ) s + M α − M q L α V N ( ) $ % & ' ( ) * + , - . / = s 2 + 2 ζω n s + ω n 2 = 0 L q and L  α  0 = s 2 + L α V N ( ) − M q + M  α ( ) # $ % & ' ( s + M α − M q + M  α ( ) L α V N ( ) # $ % & ' ( + M  α L α V N ( ) ) * + , - . Linear, Time-Invariant Fourth-Order Longitudinal Model " (Neglecting angle-of-attack-rate aero) " Δ  V (t) Δ  γ (t) Δ  q(t) Δ  α (t) $ % & & & & & ' ( ) ) ) ) ) = −D V −g 0 −D α L V V N 0 0 L α V N M V 0 M q M α − L V V N 0 1 − L α V N $ % & & & & & & & ' ( ) ) ) ) ) ) ) ΔV(t) Δ γ (t) Δq(t) Δ α (t) $ % & & & & & ' ( ) ) ) ) ) + 0 T δ T 0 0 0 L δ F / V N M δ E 0 0 0 0 −L δ F / V N $ % & & & & & ' ( ) ) ) ) ) Δ δ E(t) Δ δ T (t) Δ δ F(t) $ % & & & ' ( ) ) ) •  Stability and control derivatives are defined at a trimmed (equilibrium) flight condition " Perturbations to the Trimmed Condition" •  Initial pitch rate [Δq(0)] = 0.1 rad/s" •  Elevator step input [Δ δ E(0)] = 1 deg" •  Small linear and nonlinear perturbations are virtually identical " Steady-State Response Steady-State Response of the 4 th -Order LTI Longitudinal Model" ΔV SS Δ γ SS Δq SS Δ α SS $ % & & & & & ' ( ) ) ) ) ) = − −D V −g 0 −D α L V V N 0 0 L α V N M V 0 M q M α − L V V N 0 1 − L α V N $ % & & & & & & & ' ( ) ) ) ) ) ) ) −1 0 T δ T 0 0 0 L δ F / V N M δ E 0 0 0 0 −L δ F / V N $ % & & & & & ' ( ) ) ) ) ) Δ δ E SS Δ δ T SS Δ δ F SS $ % & & & ' ( ) ) ) Δx SS = −F −1 G Δu SS •  How do we calculate the equilibrium response to control? " Δ  x(t ) = FΔx(t ) + GΔu(t ) •  For the longitudinal model " Algebraic Equation for Equilibrium Response " ΔV SS Δ γ SS Δq SS Δ α SS $ % & & & & & ' ( ) ) ) ) ) = −gM δ E L α V N $ % & ' ( ) 0 gM α L δ F / V N [ ] D V L α V N − D α L V V N ( ) M δ E $ % & ' ( ) M V L α V N − M α L V V N ( ) T δ T $ % & ' ( ) D α M V − D V M α ( ) L δ F / V N $ % ' ( 0 0 0 −gM δ E L V V N $ % & ' ( ) 0 L δ F / V N [ ] $ % & & & & & & & & ' ( ) ) ) ) ) ) ) ) g M V L α V N − M α L V V N ( ) Δ δ E SS Δ δ T SS Δ δ F SS $ % & & & ' ( ) ) ) ΔV SS Δ γ SS Δq SS Δ α SS $ % & & & & & ' ( ) ) ) ) ) = a 0 b c d e 0 0 0 f 0 g $ % & & & & ' ( ) ) ) ) Δ δ E SS Δ δ T SS Δ δ F SS $ % & & & ' ( ) ) ) •  Roles of stability and control derivatives identified" •  Result is a simple equation relating input and output " 4 th -Order Steady-State Response May Be Counterintuitive" ΔV SS = aΔ δ E SS + 0 ( ) Δ δ T SS + bΔ δ F SS Δ γ SS = cΔ δ E SS + dΔ δ T SS + eΔ δ F SS Δq SS = 0 ( ) ΔE SS + 0 ( ) Δ δ T SS + 0 ( ) Δ δ F SS Δ α SS = f Δ δ E SS + 0 ( ) Δ δ T SS + gΔ δ F SS •  Observations" –  Thrust command" –  Elevator and flap commands" –  Steady-state pitch rate is zero! –  4 th -order model neglects air density gradient effects ! Δ θ SS = Δ γ SS + Δ α SS = c + f ( ) Δ δ E SS + dΔ δ T SS + e + g ( ) Δ δ F SS •  Steady-state pitch angle " Effects of Stability Derivative Variations on 4 th -Order Longitudinal Modes Primary and Coupling Blocks of the Fourth-Order Longitudinal Model" F Lon = −D V −g 0 −D α L V V N 0 0 L α V N M V 0 M q M α − L V V N 0 1 − L α V N # $ % % % % % % % & ' ( ( ( ( ( ( ( = F Ph F SP Ph F Ph SP F SP # $ % % & ' ( ( •  Some stability derivatives appear only in primary blocks (D V , M q , M α )" –  Effects are well-described by 2 nd -order models" •  Some stability derivatives appear only in coupling blocks (M V , D α )" –  Effects are ignored by 2 nd -order models" •  Some stability derivatives appear in both (L V , L α )" –  Require 4 th -order modeling" ΔM α Effect on 4 th -Order Roots! Short Period! Short Period! Phugoid! Phugoid! Δ Lon (s)= s 4 + D V + L α V N − M q ( ) s 3 + g − D α ( ) L V V N + D V L α V N − M q ( ) − M q L α V N − M α o $ % & ' ( ) s 2 + M q D α − g ( ) L V V N − D V L α V N $ % & ' ( ) + D α M V − D V M α o { } s + g M V L α V N − M α o L V V N ( ) − ΔM α s 2 + D V s + g L V V N ( ) ≡ d(s)+ kn(s) •  Group all terms multiplied by M α to form numerator for ΔM α# ΔM α Effect on 4 th -Order Roots! •  Primary effect: The same as in the approximate short- period model" •  Numerator zeros" –  The same as the approximate phugoid mode characteristic polynomial" –  Effect of M α variation on phugoid mode is small # Short Period! Short Period! Phugoid! Phugoid! Direct Thrust Effect on Speed Stability, T V " •  In steady, level flight, nominal thrust balances nominal drag" ∂ T ∂ V = < 0, for propeller aircraft ≈ 0, for turbojet aircraft > 0, for ramjet aircraft # $ % & % ∂ T ∂ V − ∂ D ∂ V > 0 T N − D N = C T N 1 2 ρ V N 2 S − C D N 1 2 ρ V N 2 S = 0 •  Effect of velocity change" •  Small velocity perturbation grows if " •  Therefore" –  propeller is stabilizing for velocity change" –  turbojet has neutral effect" –  ramjet is destabilizing " Pitching Moment Due to Thrust, M V! •  Thrust line above or below center of mass induces a pitching moment" •  Aerodynamic and thrust pitching moments sensitive to velocity perturbation" •  Couples phugoid and short-period modes " Martin XB-51! McDonnell Douglas MD-11! Consolidated PBY! Fairchild-Republic A-10! •  Negative ∂M/∂V (Pitch-down effect) tends to increase velocity" •  Positive ∂M/∂V (Pitch-up effect) tends to decrease velocity" •  With propeller thrust line above the c.m., increased velocity decreases thrust, producing a pitch-up moment" •  Tilting the thrust line can have benefits" –  Up: Lake Amphibian, MD-11" –  Down : F6F, F8F, AD-1 " ∂ M thrust ∂ V ≈ ∂ T ∂ V × Moment Arm Douglas AD-1! Lake Amphibian! Grumman F8F! McDonnell Douglas ! MD-11! Pitching Moment Due to Thrust, M V! M V Effect on 4 th -Order Roots" •  Large positive value produces oscillatory phugoid instability" •  Large negative value produces real phugoid divergence" Δ Lon (s) = s 4 + D V + L α V N − M q ( ) s 3 + g −D α ( ) L V V N + D V L α V N − M q ( ) − M q L α V N − M α $ % & ' ( ) s 2 + M q D α − g ( ) L V V N − D V L α V N $ % & ' ( ) + D α M V − D V M α { } s gM α L V V N + M V D α s + g L α V N ( ) = 0 € D α = 0 Short Period! Phugoid! L α /V N and L V /V N Effects on Fourth-Order Roots! •  L V /V N : Damped natural frequency of the phugoid" •  Negligible effect on the short- period" •  L α /V N : Increased damping of the short-period" •  Small effect on the phugoid mode" Short Period! Phugoid! Pitch and Thrust Control Effects Longitudinal Model Transfer Function Matrix (H x = I, H u = 0)" H Lon (s) = n δ E V (s) n δ T V (s) n δ F V (s) n δ E γ (s) n δ T γ (s) n δ F γ (s) n δ E q (s) n δ T q (s) n δ F q (s) n δ E α (s) n δ T α (s) n δ F α (s) $ % & & & & & & ' ( ) ) ) ) ) ) s 2 + 2 ζ P ω n P s + ω n P 2 ( ) s 2 + 2 ζ SP ω n SP s + ω n SP 2 ( ) ΔV(s) Δ γ (s) Δq(s) Δ α (s) $ % & & & & & ' ( ) ) ) ) ) = H x A s ( ) G Δ δ E(s) Δ δ T (s) Δ δ F(s) $ % & & & ' ( ) ) ) = H Lon (s) Δ δ E(s) Δ δ T (s) Δ δ F(s) $ % & & & ' ( ) ) ) A Little More About Output Matrices" •  With H x = I and H u = 0! Δy = Δx = H x Δx; then H x = I 4 and Δy 1 Δy 2 Δy 3 Δy 4 " # $ $ $ $ $ % & ' ' ' ' ' = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 " # $ $ $ $ % & ' ' ' ' Δx 1 Δx 2 Δx 3 Δx 4 " # $ $ $ $ $ % & ' ' ' ' '  ΔV Δ γ Δq Δ α " # $ $ $ $ $ % & ' ' ' ' ' •  Only output is ΔV! Δy = ΔV = 1 0 0 0 " # $ % ΔV Δ γ Δq Δ α " # ( ( ( ( ( $ % ) ) ) ) ) •  ΔV and Δ α are measured" Δy = Δy 1 Δy 2 " # $ $ % & ' ' = ΔV Δ α " # $ % & ' = 1 0 0 0 0 0 0 1 " # $ % & ' ΔV Δ γ Δq Δ α " # $ $ $ $ $ % & ' ' ' ' ' A Little More About Output Matrices" •  Output (measurement) of body-axis velocity and pitch rate and angle" •  Transformation from [ΔV, Δ γ , Δq, Δ θ ] to [Δu, Δw, Δq, Δ α ]" Δu Δw Δq Δ θ # $ % % % % & ' ( ( ( ( = cos α N 0 0 −V N sin α N sin α N 0 0 V N cos α N 0 0 1 0 0 1 0 1 # $ % % % % % & ' ( ( ( ( ( ΔV Δ γ Δq Δ α # $ % % % % % & ' ( ( ( ( ( •  Separate measurement of state and control perturbations! Δy = Δx Δu " # $ % & ' = H x Δx + H u Δu Δy 1 Δy 2 Δy 3 Δy 4 Δy 5 Δy 6 " # $ $ $ $ $ $ $ $ % & ' ' ' ' ' ' ' ' = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 " # $ $ $ $ $ $ $ % & ' ' ' ' ' ' ' ΔV Δ γ Δq Δ α " # $ $ $ $ $ % & ' ' ' ' ' + 0 0 0 0 0 0 0 0 1 0 0 1 " # $ $ $ $ $ $ $ % & ' ' ' ' ' ' ' Δ δ E Δ δ T " # $ % & ' Elevator-to-Normal-Velocity Numerator" (L  E = 0)" H x Adj sI − F Lon ( ) G = sin α N 0 0 V N cos α N # $ % & n V V (s) n γ V (s) n q V (s) n α V (s) n V γ (s) n γ γ (s) n q γ (s) n α γ (s) n V q (s) n γ q (s) n q q (s) n α q (s) n V α (s) n γ α (s) n q α (s) n α α (s) # $ ( ( ( ( ( ( % & ) ) ) ) ) ) 0 0 M δ E 0 # $ ( ( ( ( % & ) ) ) ) = n δ E w (s) •  Transform though α N back to body axes " n δ E w (s) = sin α N 0 0 V N cos α N # $ % & n q V (s) n q γ (s) n q q (s) n q α (s) # $ ( ( ( ( ( ( % & ) ) ) ) ) ) M δ E = M δ E sin α N ( ) n q V (s)+ V N cos α N ( ) n q α (s) # $ % & •  Scalar transfer function numerator " Elevator-to-Normal-Velocity Transfer Function" Δw(s) Δ δ E(s) = n δ E w (s) Δ Lon (s) = M δ E s 2 + 2 ζω n s + ω n 2 ( ) Approx Ph s − z 3 ( ) s 2 + 2 ζω n s + ω n 2 ( ) Ph s 2 + 2 ζω n s + ω n 2 ( ) SP • Normal velocity transfer function is analogous to angle of attack transfer function (Δ α ≈ Δw/V N )" • z 3 often neglected due to high frequency ! Elevator-to-Normal- Velocity Frequency Response" Δw(s) Δ δ E(s) = n δ E w (s) Δ Lon (s) ≈ M δ E s 2 + 2 ζω n s + ω n 2 ( ) Approx Ph s − z 3 ( ) s 2 + 2 ζω n s + ω n 2 ( ) Ph s 2 + 2 ζω n s + ω n 2 ( ) SP 0 dB/dec! +40 dB/dec! 0 dB/dec! –40 dB/dec! –20 dB/dec! • (n – q) = 1" • Complex zero almost (but not quite) cancels phugoid response " Elevator-to-Pitch-Rate " Numerator and Transfer Function" H x Adj sI − F Lon ( ) G = 0 0 1 0 " # $ % n V V (s) n γ V (s) n q V (s) n α V (s) n V γ (s) n γ γ (s) n q γ (s) n α γ (s) n V q (s) n γ q (s) n q q (s) n α q (s) n V α (s) n V α (s) n V α (s) n V α (s) " # ( ( ( ( ( ( $ % ) ) ) ) ) ) 0 0 M δ E 0 " # ( ( ( ( $ % ) ) ) ) = n δ E q (s) Δq(s) Δ δ E( s) = n δ E q (s) Δ Lon (s) ≈ M δ E s s − z 1 ( ) s − z 2 ( ) s 2 + 2 ζω n s + ω n 2 ( ) Ph s 2 + 2 ζω n s + ω n 2 ( ) SP • Free s in numerator differentiates pitch angle transfer function " Elevator-to-Pitch- Rate Frequency Response" +20 dB/dec! +20 dB/dec! +40 dB/dec! 0 dB/dec! –20 dB/dec! Δq SS = 0 ( ) Δ δ E SS + 0 ( ) Δ δ T SS + 0 ( ) Δ δ F SS •  (n – q) = 1" •  Negligible low- frequency response, except at phugoid natural frequency" •  High-frequency response well predicted by 2 nd - order model " Δq(s) Δ δ E(s) = n δ E q (s) Δ Lon (s) ≈ M δ E s s − z 1 ( ) s − z 2 ( ) s 2 + 2 ζω n s + ω n 2 ( ) Ph s 2 + 2 ζω n s + ω n 2 ( ) SP Transfer Functions of Elevator Input to Angle Output*" Δ θ (s) Δ δ E(s) = n δ E θ (s) Δ Lon (s) ; n δ E θ (s) = M δ E s + 1 T θ 1 $ % & ' ( ) s + 1 T θ 2 $ % & ' ( ) Δ α (s) Δ δ E(s) = n δ E α (s) Δ Lon (s) ; n δ E α (s) = M δ E s 2 + 2 ζω n s + ω n 2 ( ) Approx Ph Δ γ (s) Δ δ E(s) = n δ E γ (s) Δ Lon (s) ; n δ E γ (s) = M δ E L α V N s + 1 T γ 1 % & ' ( ) * •  Elevator-to-Flight Path Angle transfer function " •  Elevator-to-Angle of Attack transfer function " •  Elevator-to-Pitch Angle transfer function " * Flying qualities notation for zero time constants" Frequency Response of Angles to Elevator Input" •  Pitch angle frequency response (Δ θ = Δ γ + Δ α )" –  Similar to flight path angle near phugoid natural frequency" –  Similar to angle of attack near short- period natural frequency" Δ γ SS = cΔ δ E SS Δ α SS = f Δ δ E SS Δ θ SS = c − f ( ) Δ δ E SS Transfer Functions of Thrust Input to Angle Output" Δ θ (s) Δ δ T (s) = n δ T θ (s) Δ Lon (s) ; n δ T θ (s) = T δ T s + 1 T θ T $ % & ' ( ) Δ α (s) Δ δ T (s) = n δ T α (s) Δ Lon (s) ; n δ T α (s) = T δ T s s + 1 T α T $ % & ' ( ) Δ γ (s) Δ δ T (s) = n δ T γ (s) Δ Lon (s) ; n δ T γ (s) = T δ T L V V N s 2 + 2 ζω n s + ω n 2 ( ) Approx SP •  Thrust-to-Flight Path Angle transfer function " •  Thrust-to-Angle of Attack transfer function " •  Thrust-to-Pitch Angle transfer function " Frequency Response of Angles to Thrust Input" •  Primarily effects flight path angle and low-frequency pitch angle" Gain and Phase Margins: The Nichols Chart Nichols Chart: 
 Gain vs. Phase Angle " •  Bode Plot" –  Two plots" –  Open-Loop Gain (dB) vs. log 10 ω " –  Open-Loop Phase Angle vs. log 10 ω# •  Nichols Chart" –  Single crossplot; input frequency not shown" –  Open-Loop Gain (dB) vs. Open- Loop Phase Angle" Gain and Phase Margins" •  Gain Margin " –  At the input frequency, ω , for which ϕ (j ω ) = –180°" –  Difference between 0 dB and transfer function magnitude, 20 log 10 AR(j ω )" •  Phase Margin " –  At the input frequency, ω , for which 20 log 10 AR(j ω ) = 0 dB " –  Difference between the phase angle ϕ (j ω ), and –180°" •  Axis intercepts on the Nichols Chart identify GM and PM" Examples of Gain and Phase Margins" •  Bode Plot # •  Nichols Chart" H blue ( j ω ) = 10 j ω + 10 ( ) " # $ % & ' 100 2 j ω ( ) 2 + 2 0.1 ( ) 100 ( ) j ω ( ) + 100 2 " # $ $ % & ' ' H green ( j ω ) = 10 2 j ω ( ) 2 + 2 0.1 ( ) 10 ( ) j ω ( ) + 10 2 " # $ $ % & ' ' 100 j ω + 100 ( ) " # $ % & ' [...]... Shortal-Maggin Longitudinal Stability Boundary for Swept Wings" •  Stable or unstable pitch break at the stall" •  Stability boundary is expressed as a function of " AR! –  Aspect ratio" –  Sweep angle of the quarter chord" –  Taper ratio" Λc/4! NACA TR-1339! Next Time: Fourth-Order LateralDirectional Dynamics Reading Flight Dynamics, 595-627 Virtual Textbook, Part 19 Supplemental Material Flight Conditions... Control " Effect of Pilot Dynamics on Pitch-Angle Control Task " •  Pilot introduces neuromuscular lag while closing the control loop" •  Example" –  Model the lag by a 1st-order time constant, TP, of 0.25 s" –  Pilot s gain, KP, is either 1 or 2" * p 421-425, Flight Dynamics" Pilot Transfer Function = Δu ( s ) 1 / TP 1 / 0.25 = KP = KP s +1 / 0.25 Δε ( s ) s +1 / TP Open-Loop Pilot -Aircraft Transfer Function... Supplemental Material Flight Conditions for Steady, Level Flight " •  Nonlinear longitudinal model" Trimmed Solution of the Equations of Motion 1  V = f1 = $T cos (α + i ) − D − mg sin γ & ' m% 1 γ = f2 = $T sin (α + i ) + L − mg cos γ & ' mV %  q = f3 = M / I yy 1   α = f4 = θ − γ = q − $T sin (α + i ) + L − mg cos γ & ' mV % •  Nonlinear longitudinal model in equilibrium" 1 $T cos (α + i ) − D... = K P # &# 2 2 2 2 " ( s + 1 / TP ) % # s + 2ζω n s + ω n Ph s + 2ζω n s + ω n # " ( ) ( Effect of Pilot Dynamics on Pitch-Angle Control Task" ) $ & & & SP & % •  Gain and phase margins become negative for pilot gain between 1 and 2" •  Then, pilot destabilizes the system (PIO)" Effect of Pilot Dynamics on Elevator/PitchAngle Control Root Locus " Configuration Effects •  Pilot transfer function changes... bowl, i.e., when " $ ∂J & % ∂δT ∂J ∂δ E ∂J ' )= 0 ∂θ ( •  Search to find the minimum value of J " J (δT , δ E,θ ) = a ( f12 ) + b ( f22 ) + c ( f32 ) Example of Search for Trimmed Condition (Fig 3.6-9, Flight Dynamics) " •  In MATLAB, use fminsearch [Nelder-Mead Downhill Simplex Method] to find trim settings" (δT *,δ E*,θ *) = fminsearch # J, (δT ,δ E,θ )% $ & Airspeed Frequency Response to Elevator and... f2 = $T sin (α + i ) + L − mg cos γ & ' mV % 0 = f3 = M / I yy 0 = f1 =  0 = f4 = θ − γ = q − 1 $T sin (α + i ) + L − mg cos γ & ' mV % Numerical Solution to Estimate the Trimmed Condition for Level Flight " •  Specify desired altitude and airspeed, hN and VN! •  Guess starting values for the trim parameters, δT0, δE0, and θ0# •  Calculate starting values of f1, f2, and f3" 1% &T (δT , δ E,θ ,h,V . Advanced Problems of Longitudinal Dynamics 
 Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012 " •  Angle-of-attack-rate aero effects" •  Fourth-order dynamics& quot; – . Lateral- Directional Dynamics  Reading Flight Dynamics, 595-627 Virtual Textbook, Part 19 Supplemental Material Trimmed Solution of the Equations of Motion Flight Conditions for Steady, Level Flight& quot; . dB" Pilot-Vehicle Interactions Pilot Inputs to Control" * p. 421-425, Flight Dynamics& quot; Effect of Pilot Dynamics on Pitch-Angle Control Task " Pilot Transfer Function = Δu s (

Ngày đăng: 04/07/2014, 19:29

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan