1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture10 Linearized Equations and Modes of Motion

15 345 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 1,65 MB

Nội dung

The Mystery Airplane: Convair XF-92A (1948) Linearized Equations 
 and Modes of Motion
 Robert Stengel, Aircraft Flight Dynamics
 MAE 331, 2012 " •  Linearization of nonlinear dynamic models" –  Nominal flight path" –  Perturbations about the nominal flight path" •  Modes of motion" –  Longitudinal" –  Lateral-directional" Copyright 2012 by Robert Stengel All rights reserved For educational use only ! http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html ! !  !  !  !  Precursor to F-102, F-106, B-58, and F2Y" M = 1.05 in a dive; under-powered, pre-area rule" Landed at θ = 45°, V = 67 mph (108 km/h)" Violent pitchup during high-speed turns, alleviated by wing fences" !  Poor high-speed and good low-speed handling qualities" Nominal and Actual Trajectories " •  Nominal (or reference) trajectory and control history" Nominal and Actual Flight Paths {x N (t), u N (t), w N (t)} x : dynamic state u : control input w : disturbance input for t in [t o ,t f ] •  Actual trajectory perturbed by" € –  Small initial condition variation, Δxo(to)" –  Small control variation, Δu(t)" {x(t), u(t), w(t)} for t in [to ,t f ] = {x N (t) + Δx(t), u N (t) + Δu(t), w N (t) + Δw(t)} Both Paths Satisfy the Dynamic Equations " •  Dynamic models for the actual and the nominal problems are the same" Approximate Neighboring Trajectory as a Linear Perturbation to the Nominal Trajectory "  x N (t) = f[x N (t), u N (t), w N (t),t]   x(t) = x N (t) + Δ (t) = f[x N (t) + Δx(t), u N (t) + Δu(t), w N (t) + Δw(t),t] x  x N (t) = f[x N (t), u N (t), w N (t)], x N ( t o ) given •   x(t) = f[x(t), u(t), w(t)], x ( t o ) given •  Differences in initial condition and forcing " Δx(t o ) = x(t o ) − x N (t o ) # Δu(t) = u(t) − u N (t) % $ % Δw(t) = w(t) − w N (t) & ' % ( in *t o ,t f , + % ) •    x x(t) = x N (t) + Δ (t) perturb rate of change and the state" ≈ f[x N (t), u N (t), w N (t),t] + # x(t) = x N (t) + Δ (t) '  x % %  ( in *t o ,t f , $ + x(t) − x N (t) + Δx(t) % % ) & Linearized Equation Approximates Perturbation Dynamics " •  Solve for the nominal and perturbation trajectories separately" Nominal Equation"  x N (t) = f[x N (t), u N (t), w N (t),t], x N ( t o ) given dim(x) = n × dim(u) = m × dim(w) = s × Perturbation Equation" $ ' $ ' $ ' &∂ f ) &∂ f ) &∂f ) Δw(t)) Δ (t) ≈ & x=x (t ) Δx(t)) + & x=x (t ) Δu(t)) + & x x=x ∂ x u=uN (t ) ∂ u u=uN (t ) ∂ w u=uN (t )) N (t & ) & ) & ) % w=wNN (t ) ( % w=wNN (t ) ( % ( w=w N (t )  F(t)Δx(t)+ G(t)Δu(t)+ L(t)Δw(t), Δx (t o ) given Approximate the new trajectory as the sum of the nominal path plus a linear perturbation" ∂f ∂f ∂f Δx(t) + Δu(t) + Δw(t) ∂x ∂u ∂w Jacobian Matrices Express Solution Sensitivity to Small Perturbations " •  Sensitivity to state perturbations: stability matrix, F, is square" " ∂f ∂ f1 $ 1∂x  ∂ xn $ ∂f F(t) = =$    x=x ∂ x u=uN (t )) $ (t N ∂f ∂ fn w=w N (t ) $ n∂x  ∂ xn # % ' ' dim(F) = n × n ' ' 'x=x (t ) &u=uN (t ) N w=w N (t ) dim(Δx) = n × dim(Δu) = m × dim(w) = s ì ã Sensitivity to control and disturbance perturbations is similar, but matrices, G and L, may not be square" G(t) = dim(G) = n × m ∂f x = x N (t ) ∂ u u= uN (t ) w = w N (t ) L(t) = ∂f ∂w dim(L) = n × s x = x N (t ) u= u N (t ) w = w N (t ) Numerical Integration: " MATLAB Ordinary Differential Equation * Solvers" How Is System Response Calculated?" •  –  Numerical integration ( time domain )" •  Adams-Bashforth-Moulton Algorithm" •  Numerical Differentiation Formula" •  •  Linear and nonlinear, time-varying and timeinvariant dynamic models" Explicit Runge-Kutta Algorithm" Modified Rosenbrock Method" •  Trapezoidal Rule" •  Trapezoidal Rule w/Back Differentiation" •  Linear, time-invariant (LTI) dynamic models" –  Numerical integration ( time domain )" –  State transition ( time domain )" –  Transfer functions ( frequency domain )" * http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/ode23.html.! Shampine, L F and M W Reichelt, "The MATLAB ODE Suite," SIAM Journal on Scientific Computing, Vol 18, 1997, pp 1-22.! MATLAB Simulation of Linear and Nonlinear Dynamic Systems " •  MATLAB Main Script" % Nonlinear and Linear Examples" clear" tspan = [0 10]; " xo = [0, 10];" [t1,x1 = ode23('NonLin',tspan,xo); " xo = [0, 1];" € [t2,x2] = ode23('NonLin',tspan,xo); " xo = [0, 10];" [t3,x3] = "ode23('Lin',tspan,xo);" xo = [0, 1];" [t4,x4] = ode23('Lin',tspan,xo);" " subplot(2,1,1)" plot(t1,x1(:,1),'k',t2,x2(:,1),'b',t3,x3(:,1),'r',t4,x4(:,1),'g')" ylabel('Position'), grid" subplot(2,1,2)" plot(t1,x1(:,2),'k',t2,x2(:,2),'b',t3,x3(:,2),'r',t4,x4(:,2),'g')" € xlabel('Time'), ylabel('Rate'), grid" •  Linear System" ˙ x1 (t) = x (t) ˙ x (t) = −10x1 (t) − x (t) function xdot = Lin(t,x)" % Linear Ordinary Differential Equation" % x(1) = Position" % x(2) = Rate" xdot = [x(2)" -10*x(1) - x(2)];" •  Nonlinear System" ˙ x1 (t) = x (t) ˙ x (t) = −10x1 (t) + 0.8x1 (t) − x (t) function xdot = NonLin(t,x)" % Nonlinear Ordinary Differential Equation" % x(1) = Position" % x(2) = Rate "" xdot = [x(2)" -10*x(1) + 0.8*x(1)^3 - x(2)];" Comparison of Damped Linear and Nonlinear Systems" Linear Spring"  x1 (t) = x2 (t)  x2 (t) = −10x1 (t) − x2 (t) Spring" Spring Force vs Displacement " Displacement" Rate of Change" Damper" Linear plus Stiffening Cubic Spring"  x1 (t) = x2 (t)  x2 (t) = −10x1 (t) −10x13 (t) − x2 (t) Linear plus Weakening Cubic Spring"  x1 (t) = x2 (t)  x2 (t) = −10x1 (t)+ 0.8x13 (t) − x2 (t) Linear and Stiffening Cubic Springs: Small and Large Initial Conditions " •  Linear and Weakening Cubic Springs: Small and Large Initial Conditions" Linear and nonlinear responses are indistinguishable with small initial condition" Stiffening Linear-Cubic Spring Example" !  Nonlinear, time-invariant (NTI) equation" Linear, Time-Varying (LTV) Approximation of Perturbation Dynamics  x1 (t) = f1 = x2 (t)  x2 (t) = f2 = −10x1 (t) − 10x13 (t) − x2 (t) !  Integrate equations to produce nominal path" ! x (0) $ # 1N &⇒ # x2 (0) & " N % ! f ∫# f N # " N tf $ & dt ⇒ & % ! x (t) $ # 1N & in !0,t $ " f% # x2 (t) & " N % !  Analytical evaluation of partial derivatives" ∂ f1 ∂ x1 = 0; ∂ f1 ∂ x2 = ∂ f1 ∂ f2 ∂ f2 ∂ x1 = −10 − 30x1N(t); ∂ x2 = −1 ∂ f2 ∂ u = 0; ∂ u = 0; ∂ f1 ∂ f2 ∂w = ∂w = Nominal (NTI) and Perturbation (LTV) Dynamic Equations " !  Nonlinear, time-invariant (NTI) nominal equation"  x N (t) = f[x N (t)], x N (0) given  x1N (t) = x2 N (t)  x2 N (t) = −10x1N (t) − 10x13N(t) − x2 N (t) Example" ! x (0) $ ! $ # 1N &=# & # x2 (0) & " % " N % !  Perturbations approximated by linear, time-varying (LTV) equation" Δ (t) = F(t)Δx(t), Δx(0) given x " Δ (t) % " x1 $ '=$ $ Δ2 (t) ' $ − (10 + 30x1N(t)) −1 # x & # Example" %" Δx (t) % '$ ' '$ Δx2 (t) ' & &# " Δx (0) % " % $ '=$ ' $ Δx2 (0) ' # & # & Comparison of Approximate and Exact Solutions" Initial Conditions x2 N (0) = Δx2 (0) = x2 N (t)+ Δx2 (t) = 10 x2 (t) = 10 x N (t) Δx(t) x N (t)+ Δx(t) x(t)  x N (t) Δ (t) x  x x N (t) + Δ (t)  x(t) Suppose Nominal Initial Condition is Zero " •  Nominal solution remains at equilibrium"  x N (t) = f[x N (t)], x N (0) = 0, x N (t) = in [ 0, ∞ ] •  Perturbation equation is linear and time-invariant (LTI)" " Δ (t) % " %" Δx1 (t) % x1 '$ $ '=$ ' x $ Δ2 (t) ' $ "−10 − 30 ( )% −1 '$ Δx2 (t) ' # & # & # & &# Separation of the Equations of Motion into Longitudinal and LateralDirectional Sets Grumman F9F" Rigid-Body Equations of Motion (Scalar Notation) " Reorder the State Vector " State Vector" •  •  Rate of change of Translational Velocity " Rate of change of Translational Position "  u = X / m − g sin θ + rv − qw  v = Y / m + g sin φ cosθ − ru + pw  w = Z / m + g cos φ cosθ + qu − pv  x I = ( cosθ cosψ ) u + ( − cos φ sin ψ + sin φ sin θ cosψ ) v + ( sin φ sin ψ + cos φ sin θ cosψ ) w  yI = ( cosθ sin ψ ) u + ( cos φ cosψ + sin φ sin θ sin ψ ) v + ( − sin φ cosψ + cos φ sin θ sin ψ ) w  zI = ( − sin θ ) u + ( sin φ cosθ ) v + ( cos φ cosθ ) w •  Rate of change of Angular Velocity (Ixy = Iyz = 0) " ( { ( ( ( ) }) ( ) ( ) }) ( )  # q = " M − ( I xx − I zz ) pr − I xz p − r $ ÷ I yy % ( { (  r = I xz L + I xx N − I xz I yy − I xx − I zz •  ) ) )r + "I # 2  p = I zz L + I xz N − I xz I yy − I xx − I zz p + " I xz + I zz I zz − I yy $ r q ÷ I xx I zz − I xz # % Rate of change of Angular Position" xz + I xx I xx − I yy $ p q ÷ I xx I zz − I xz %  φ = p + ( q sin φ + r cos φ ) tan θ  θ = q cos φ − r sin φ  ψ = ( q sin φ + r cos φ ) sec θ ! # # # # # # # # # # # # # # # # # # " x1 $ & ! x2 & # & # x3 & # x4 & # & # x5 & # x6 & # &=# x7 & # x8 & # & # x9 & # & # x10 & # x11 & # & # " x12 % & u v w x y z p q r φ θ ψ $ & & & & & & & & & & & & & & & & % ! # # # # # # # # # # # # # # # # # # " x1 $ & ! x2 & # & # x3 & # x4 & # & # x5 & # x6 & # &=# x7 & # x8 & # & # x9 & # & # x10 & # x11 & # & # " x12 & % u v w x y z p q r φ θ ψ $ & & & & & & & & & & & & & & & & % First six elements of the state are longitudinal variables " " Second six elements of the state are lateraldirectional variables " € •  Dynamics of position, velocity, angle, and angular rate in the vertical plane "   x I = ( cosθ cosψ ) u + ( − cos φ sin ψ + sin φ sin θ cosψ ) v + ( sin φ sin ψ + cos φ sin θ cosψ ) w = x3 = f3 ( )  & q = % M − ( I xx − I zz ) pr − I xz p − r ' ÷ I yy (  θ = q cos φ − r sin φ  x Lon (t) = f[x Lon (t), u Lon (t), w Lon (t)] ! # # # # # # $ # &=# & # % # # # # # # # " u w x z q θ v y p r φ ψ $ & & & & & & & & & & & & & & & & % •  Dynamics of position, velocity, angle, and angular rate out of the vertical plane "  = x1 = f1  = x = f2  zI = ( − sin θ ) u + ( sin φ cosθ ) v + ( cos φ cosθ ) w x1 $ & x2 & & x3 & x4 & & x5 & ! x x6 & Lon & =# x7 & # x Lat−Dir " x8 & & x9 & & x10 & x11 & & x12 & %new Lateral-Directional Equations of Motion" Longitudinal Equations of Motion"  u = X / m − g sin θ + rv − qw  w = Z / m + g cos φ cosθ + qu − pv ! # # # # # # # # # # # # # # # # # # "  = x4 = f4  = x = f5  = x = f6  = x7 = f7  v = Y / m + g sin φ cosθ − ru + pw  yI = ( cosθ sin ψ ) u + ( cos φ cosψ + sin φ sin θ sin ψ ) v + ( − sin φ cosψ + cos φ sin θ sin ψ ) w  = x = f8 (  r = (I L + I  = x = f9 { ( N − {I ( I ) )r + %I & ( (I ) }) ( ) ' p} q ) ÷ ( I ( 2  p = I zz L + I xz N − I xz I yy − I xx − I zz p + % I xz + I zz I zz − I yy ' r q ÷ I xx I zz − I xz & ( xz xx xz yy − I xx − I zz  φ = p + ( q sin φ + r cos φ ) tan θ xz + I xx xx − I yy I −I xx zz xz ) )  = x10 = f10  = x11 = f11  ψ = ( q sin φ + r cos φ ) sec θ  = x12 = f12  x LD (t) = f[x LD (t), u LD (t), w LD (t)] Sensitivity to Control Inputs " Sensitivity to Small Motions " •  (12 x 12) stability matrix for the entire system " " ∂f ∂ f1 $ ∂ x1 ∂ x2 $ ∂ f2 $ ∂ f2 ∂ x1 ∂ x2 F(t) = $ $ $ ∂ f12 $ ∂ f12 ∂ x1 ∂ x2 $ # •  % "   ∂u ∂u ∂ x12 ' $ ∂u ∂w ' $ ' $ ∂w   ∂w ∂ f2 ∂u ∂w ∂ x12 ' = $ ' $ ' $   ∂ψ ' $ ∂ψ ∂ f12 ∂u ∂w ∂ x12 ' # & ∂ f1  ∂ u ∂ψ  ∂ w ∂ψ  ∂ψ ∂ψ % ' ' ' ' ' ' ' & •  " $ $ $ u(t) = $ $ $ $ $ # Four (6 x 6) blocks distinguish longitudinal and lateral-directional effects " Effects of longitudinal perturbations on longitudinal motion" " FLon F = $ Lat−Dir $ FLon # Effects of longitudinal perturbations on lateral-directional motion" •  Effects of lateral-directional perturbations on longitudinal motion" Control input vector and perturbation " δ E(t) δT (t) δ F(t) δ A(t) δ R(t) δ SF(t) % ' ' ' ' ' ' ' ' & Throttle, % Flaps, deg or rad Ailerons, deg or rad Rudder, deg or rad Side Force Panels, deg or rad Δδ E(t) ΔδT (t) Δδ F(t) Δδ A(t) Δδ R(t) Δδ SF(t) & ( ( ( ( ( ( ( ( ' Four (6 x 3) blocks distinguish longitudinal and lateral-directional control effects " Effects of longitudinal controls on longitudinal motion" % Lon FLat−Dir ' FLat−Dir ' & # % % % Δu(t) = % % % % % $ Elevator, deg or rad " G Lon G = $ Lat−Dir $ G Lon # Effects of lateral-directional perturbations on lateral-directional motion" Effects of longitudinal controls on lateral-directional motion" Effects of lateral-directional controls on longitudinal motion" % Lon G Lat−Dir ' G Lat−Dir ' & Effects of lateral-directional controls on lateral-directional motion" Restrict the Nominal Flight Path to the Vertical Plane " •  Decoupling Approximation for Small Perturbations from Steady, Level Flight •  Nominal longitudinal equations reduce to" x Lat − DirN =  u N = X / m − g sin θ N − qN wN  wN = Z / m + g cosθ N + qN u N  x I N = ( cosθ N ) u N + ( sin θ N ) wN  zI N = ( − sin θ N ) u N + ( cosθ N ) wN  qN = M I yy  θ N = qN •  BUT, Lateraldirectional perturbations need not be zero" Nominal State Vector"  x Lat − DirN = Nominal lateraldirectional motions are zero" Δ Lat − DirN ≠ x Δx Lat − DirN ≠ ! # # # # # # # # # # # # # # # # # # " x1 $ & x2 & & x3 & x4 & & x5 & x6 & ! x Lon & =# x7 & # x Lat−Dir " x8 & & x9 & & x10 & x11 & & x12 % &N $ & & %N ! # # # # # # # =# # # # # # # # # " uN $ & wN & & xN & zN & & qN & θN & & & & & & & & & % Restrict the Nominal Flight Path to Steady, Level Flight " •  Specify nominal airspeed (VN) and altitude (hN = –zN) " •  Small Perturbation Effects are Uncoupled in Steady, Symmetric, Level Flight " Calculate conditions for trimmed (equilibrium) flight" –  See Flight Dynamics and FLIGHT program for a solution method " = X / m − g sin θ N − qN wN = Z / m + g cosθ N + qN u N " $ $ $ $ $ $ $ # VN = ( cosθ N ) u N + ( sin θ N ) wN = ( − sin θ N ) u N + ( cosθ N ) wN 0= M I yy = qN •  Assume the airplane is symmetric and its nominal path is steady, level flight" –  Small longitudinal and lateral-directional perturbations are approximately uncoupled from each other" –  (12 x 12) system is " Trimmed State Vector is constant " " uTrim % $ ' $ wTrim ' $ ' V (t − t ) =$ N ' $ zN ' $ ' $ θ 'Trim $ θ & Trim # u w x z q % ' ' ' ' ' ' ' ' & •  block diagonal" •  constant, i.e., linear, time-invariant (LTI)" •  decoupled into two separate (6 x 6) systems " " F Lon F =$ $ # 0 FLat−Dir % ' ' & Dynamic Equation" " L Lon L =$ $ # % ' ' & L Lat−Dir Δ Lat − Dir (t) = FLat − Dir Δx Lat − Dir (t) + G Lat − Dir Δu Lat − Dir (t) + L Lat − Dir Δw Lat − Dir (t) x State Vector" Δx Lon G Lat−Dir % ' ' & Dynamic Equation" Δ Lon (t) = FLon Δx Lon (t) + G Lon Δu Lon (t) + L Lon Δw Lon (t) x Δx1 % " Δu % ' ' $ Δx2 ' $ Δw ' ' Δx3 ' = $ Δx ' $ Δz ' Δx4 ' ' $ ' $ Δq ' Δx5 ' $ Δθ ' & # Δx6 ' & Lon (6 x 6) LTI Lateral-Directional Perturbation Model " (6 x 6) LTI Longitudinal" Perturbation Model " " $ $ $ =$ $ $ $ $ # " G Lon G =$ $ # State Vector" Control " Vector" Δu Lon # Δδ T & = % Δδ E ( ( % % Δδ F ( ' $ Disturbance" Vector" Δw Lon " Δuwind $ = $ Δwwind $ Δq wind # % ' ' ' & Δx Lat − Dir # % % % =% % % % % $ Δx1 & # Δv ( % Δx2 ( % Δy ( % Δp Δx3 ( =% Δx4 ( % Δr ( % Δφ Δx5 ( % Δψ ( Δx6 $ ' Lat − Dir % & ( ( ( ( ( ( ( ( ' Control " Vector" $ Δδ A ' Δu Lat − Dir = & Δδ R ) ) & ) & % Δδ SF ( Disturbance" Vector" " Δvwind $ Δw Lon = $ Δpwind $ Δr wind # % ' ' ' & Fourier Transform of a Scalar Variable" •  Transformation from time domain to frequency domain ! ∞ Frequency Domain Description of LTI System Dynamics F [ Δx(t)] = Δx( jω ) = ∫ Δx(t)e − jω t dt, ω = frequency, rad / s −∞ jω : Imaginary operator, rad/s Δx(t) : real variable Δx( jω ) : complex variable = a(ω )+ jb(ω ) = A(ω )e jϕ (ω ) A : amplitude ϕ : phase angle Fourier Transform of a Scalar Variable" Laplace Transform of a Scalar Variable" •  Δx(t) Laplace transformation from time domain to frequency domain ! ∞ L [ Δx(t)] = Δx(s) = ∫ Δx(t)e− st dt s = σ + jω = Laplace (complex) operator, rad/s Δx( jω ) = a(ω ) + jb(ω ) Δx(t) : real variable Δx(s) : complex variable = a(s)+ jb(s) = A(s)e jϕ (s ) Laplace Transformation is a Linear Operation" •  Sum of Laplace transforms! L [ Δx1 (t)+ Δx2 (t)] = L [ Δx1 (t)] + L [ Δx2 (t)] = Δx1 (s)+ Δx2 (s) Laplace Transforms of Vectors and Matrices" •  Laplace transform of a vector variable! " Δx1 (s) % ' $ L [ Δx(t)] = Δx(s) = $ Δx2 (s) ' $ ' & # •  Laplace transform of a matrix variable! •  Multiplication by a constant! ! a11 (s) a12 (s) # L [ A(t)] = A(s) = # a21 (s) a22 (s) # " L [ aΔx(t)] = aL [ Δx(t)] = aΔx(s) $ & & & % •  Laplace transform of a time-derivative! L [ Δ (t)] = sΔx(s) − Δx(0) x Laplace Transform of a Dynamic System" Laplace Transform of a Dynamic System" •  Rearrange Laplace transform of dynamic equation! •  System equation! Δ (t) = F Δx(t) + G Δu(t) + LΔw(t) x •  F to left, I.C to right! dim(Δx) = (n × 1) dim(Δu) = (m × 1) dim(Δw) = (s × 1) •  Laplace transform of system equation! sΔx(s) − Δx(0) = F Δx(s) + GΔ u(s) + LΔw(s) sΔx(s) − FΔ x(s) = Δx(0)+ GΔ u(s)+ LΔw(s) •  Combine terms! [ sI − F] Δx(s) = Δx(0)+ GΔ u(s)+ LΔw(s) •  Multiply both sides by inverse of (sI – F)! Δx(s) = [ sI − F] −1 [Δx(0)+ G Δu(s)+ LΔw(s)] Matrix Inverse Examples" Matrix Inverse" Forward" Inverse" y = Ax; x = A −1y −1 [A] Adj( A ) Adj( A ) = = A det A T = A = a; A = a dim(A) = (2 × 2) −1 dim(x) = dim(y) = (n × 1) dim(A) = (n × n) (n × n) (1 × 1) C ; C = matrix of cofactors det A dim(A) = (1 × 1) T Cofactors are signed minors of A" ijth minor of A is the determinant of A with the ith row and jth column removed" ! a11 a12 # A = # a21 a22 # a a32 " 31 a13 a23 a33 ! (a a − a a ) − (a a − a a ) (a a − a a ) $ 22 33 23 32 21 33 23 31 21 32 22 31 & # # − ( a12 a33 − a13a32 ) ( a11a33 − a13a31 ) − ( a11a32 − a12 a31 ) & & # $ # ( a12 a23 − a13a22 ) − ( a11a23 − a13a21 ) ( a11a22 − a12 a21 ) & & % " −1 &; A = a11a22 a33 + a12 a23a31 + a13a21a32 − a13a22 a31 − a12 a21a33 − a11a23a32 & % dim(A) = (3 ì 3) ã Numerator is a square matrix" •  Denominator is a scalar" ! a11 a12 A=# # a21 a22 " T ! a22 −a21 $ ! a22 −a12 $ & & # # −a21 a11 & $ # −a12 a11 & % =# % " " −1 &; A = a11a22 − a12 a21 a11a22 − a12 a21 & % ! (a a − a a ) − (a a − a a ) (a a − a a ) $ 22 33 23 32 12 33 13 32 12 23 13 22 & # # − ( a21a33 − a23a31 ) ( a11a33 − a13a31 ) − ( a11a23 − a13a21 ) & & # # ( a21a32 − a22 a31 ) − ( a11a32 − a12 a31 ) ( a11a22 − a12 a21 ) & % = " a11a22 a33 + a12 a23a31 + a13a21a32 − a13a22 a31 − a12 a21a33 − a11a23a32 Characteristic Polynomial of a LTI Dynamic System" −1 Δx(s) = [ sI − F ] [ Δx(0) + G Δu(s) + LΔw(s)] •  Inverse of characteristic matrix! Modes of Motion [ sI − F] −1 = Adj ( sI − F ) (n x n) sI − F •  Characteristic polynomial of the system " –  is a scalar" –  defines the system’s modes of motion! sI − F = det ( sI − F ) ≡ Δ(s) = s n + an −1s n −1 + + a1s + a0 Rigid-Body Motion of a Linear, Time-Invariant Aircraft Model " Eigenvalues (or Roots) of a Dynamic System" •  •  •  •  •  Characteristic equation of the system ! Δ(s) = s n + an −1s n −1 + + a1s + a0 = = ( s − λ1 ) ( s − λ2 ) ( ) ( s − λn ) = •  12th-order system of LTI equations" 12 eigenvalues of the stability matrix, F" 12 roots of the characteristic equation" Characteristic equation of the system ! Δ(s) = s12 + a11s11 + + a1s + a0 = where λi are the eigenvalues of F or the roots of the characteristic polynomial! = ( s − λ1 ) ( s − λ2 ) ( ) ( s − λ12 ) = •  Eigenvalues are real or complex numbers that can be plotted in the s plane! •  Real root! Up to 12 modes of motion! λi = σ i In steady, level flight, longitudinal and lateral-directional LTI models are uncoupled! •  Complex roots occur in conjugate pairs! s Plane! λi = σ i + jω i λ * = σ i − jω i i Δ(s) = $( s − λ1 )( s − λ6 )&long $( s − λ1 )( s − λ6 )&lat−dir = % ' % ' Positive real part represents instability" Complex Conjugate Roots Form a Single Oscillatory Mode of Motion " Longitudinal Modes of Motion in Steady, Level Flight " Phugoid Roots" Δ Lon (t) = FLon Δx Lon (t) + G Lon Δu Lon (t) + L Lon Δw Lon (t) x •  roots of the longitudinal characteristic equation! = %s − (σ phugoid & Δ Lon (s) = ( s − λ1 ) ( s − λ2 ) ( ) ( s − λ6 ) = ( )( )( )( = s − λrange s − λheight s − λ phugoid s − λ Real" Real" Complex" )( )( s − λ Complex" Δ Lon (s) = ( s − λran ) s − λhgt s + 2ζ Pω nP s + ω Range" Height" * phugoid phugoid phugoid phugoid * phugoid short period )( s − λ Complex" * short period ) Complex" Phugoid" )( s nP P − jω phugoid )' ( nP nP ω n : Natural frequency, rad/s ζ : Damping ratio, Short Period Roots" •  modes of motion (typical)! ( ) (s − λ ) + jω )'%s − (σ (& = ( s + 2ζ ω s + ω ) (s − λ + 2ζ SPω nSP s + ω Short Period" nSP )=0 (s − λ short period = %s − (σ short period + jω short period & ) (s − λ )'%s − (σ (& * short period ) short period = ( s + 2ζ SPω nSP s + ω nSP ) − jω short period )' ( Longitudinal Modes of Motion " Lateral-Directional Modes of Motion in Steady, Level Flight " •  Eigenvalues determine the damping and natural frequencies of the linear system s modes of motion" •  Longitudinal characteristic equation has eigenvalues" –  eigenvalues normally appear as complex pairs" –  Range and height modes usually inconsequential" λran : range mode ≈ λhgt : height mode ≈ (ζ (ζ SP P , ω nP ) : phugoid mode , ω nSP ) : short - period mode Δ Lat − Dir (t) = FLat − Dir Δx Lat − Dir (t) + G Lat − Dir Δu Lat − Dir (t) + L Lat − Dir Δw Lat − Dir (t) x •  Roots of the lateral-directional characteristic equation! Δ LD (s) = ( s − λ1 ) ( s − λ2 ) ( ) ( s − λ6 ) = ( )( )( ( ) )( = s − λcrossrange s − λheading s − λspiral ( s − λroll ) s − λ Dutch roll s − λ * roll Dutch ) •  modes of motion (typical)! ( ) Δ LD (s) = ( s − λcr ) ( s − λhead ) ( s − λS ) ( s − λ R ) s + 2ζ DRω nDR s + ω nDR = Crossrange" Lateral-Directional Modes of Motion " •  Lateral-directional characteristic equation has eigenvalues" –  eigenvalues normally appear as a complex pair" –  Crossrange and heading modes usually inconsequential" λcr : crossrange mode ≈ λhead : heading mode ≈ λS : spiral mode λ R : roll mode (ζ DR , ω nDR ) : Dutch roll mode Heading" Spiral" Roll" Dutch Roll" Next Time: Longitudinal Dynamics Reading Flight Dynamics, 452-464, 482-486 Virtual Textbook, Part 11 Sensitivity to Small Control and Disturbance Perturbations " F(t) = Supplemental Material ∂f ∂ u x = x N (t )) u= u N (t w = w N (t ) How Do We Calculate the Partial Derivatives? " ∂f ∂x x = x N (t ) u= u N (t ) w = w N (t ) G(t) = ∂f ∂ u x = x N (t )) u= u N (t L(t) = x = x N (t ) u= u N (t ) w = w N (t ) ; G(t) = ∂f ∂w w = w N (t ) x = x N (t ) u= u N (t ) w = w N (t ) •  Numerically" –  First differences in f(x,u,w)" •  Analytically" –  Symbolic evaluation of analytical models of F, G, and L" " ∂ f1 ∂ f1 $ ∂ u1 ∂ u2 $ ∂ f2 $ ∂ f2 ∂ u1 ∂ u2 =$ $ $ ∂ fn $ ∂ fn ∂ u1 ∂ u2 $ # ∂ f1 ∂ f2 ∂ um ∂ um ∂ fn ∂ um ∂f ∂ u x = x N (t )) u= u N (t ; L(t) = ∂f ∂w w = w N (t ) •  Control-effect matrix" G(t) = F(t) = ∂f ∂x x = x N (t ) u= u N (t ) w = w N (t ) •  Disturbance-effect matrix" % ' ' ' ' ' ' ' ' x = x N (t ) & u= uN (t ) L(t) = ∂f ∂w x = x N (t ) u= u N (t ) w = w N (t ) w = w N (t ) " ∂ f1 ∂ f1 $ ∂ w1 ∂ w2 $ ∂ f2 $ ∂ f2 ∂ w1 ∂ w2 =$ $ $ ∂ fn $ ∂ fn ∂ w1 ∂ w2 $ # % ∂ ws ' ' ∂ f2 ' ∂ ws ' ' ' ∂ fn ' ∂ ws ' x = x N (t ) & u= uN (t ) ∂ f1 w = w N (t ) Numerical Estimation of the Jacobian Matrices " # # ( x + Δx ) % % % % x2 % f1 % %  % % % xn $ % % % % # ( x + Δx ) % % % % x2 f2 % %  % F(t) ≈ % % % xn $ % % % % % # ( x + Δx ) % % % % x2 % fn %  % % % % xn $ % % $ & # ( x − Δx ) ( % ( % x2 − f1 % (  ( % ( % xn ' $ 2Δx1 & ( ( ( ( ( ' # x1 % % ( x + Δx2 ) f1 %  % % xn $ & # x1 ( % ( % ( x + Δx2 ) − f1 % (  ( % ( % xn ' $ 2Δx2 & ( ( ( ( ( ' & # ( x − Δx ) ( % ( % x2 − f2 % (  ( % ( % xn ' $ 2Δx1 & ( ( ( ( ( ' # x1 % % ( x + Δx2 ) f2 %  % % xn $ & # x1 ( % ( % ( x + Δx2 ) − f2 % (  ( % ( % xn ' $ 2Δx2 & ( ( ( ( ( '   & # ( x − Δx ) ( % ( % x2 ( − fn %  ( % ( % xn ' $ 2Δx1  & ( ( ( ( ( '   # x1 % x2 % f1 %  % % ( xn + Δxn ) $ & ( ( ( ( ( '    & # x1 ( % x2 ( % − f1 % (  ( % ( % ( xn + Δxn ) ' $ 2Δxn # x1 % x2 % fn %  % % ( x + Δxn ) $ n  & # x1 ( % x2 ( % ( − fn %  ( % ( % ( x + Δxn ) ' $ n 2Δxn & ( ( ( ( ( ' & ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (x=x N (t) 'u=uN (t) w=w N (t) Sensitivity to Disturbance Inputs" •  •  Rectangular (Euler) Integration" Disturbance input vector and perturbation " ! # # # w(t) = # # # # # " •  Integration Algorithms" uw (t) $ & ww (t) & qw (t) & & vw (t) & & pw (t) & rw (t) & % " $ $ $ Δw(t) = $ $ $ $ $ # Axial wind, m / s Normal wind, m / s Pitching wind shear, deg / s or rad / s Lateral wind, m / s Rolling wind shear, deg / s or rad / s Yawing wind shear, deg / s or rad / s Δuw (t) % ' Δww (t) ' Δqw (t) ' ' Δvw (t) ' ' Δpw (t) ' Δrw (t) ' & Four (6 x 3) blocks distinguish longitudinal and lateral-directional effects " Effects of longitudinal disturbances on longitudinal motion" " L Lon L = $ Lat−Dir $ L Lon # Effects of longitudinal disturbances on lateral-directional motion" x(t k ) = x(t k−1 ) + δx(t k−1,t k ) ≈ x(t k−1 ) + f [ x(t k−1 ),u(t k−1 ),w(t k−1 )] δt , δt = t k − t k−1 •  Trapezoidal (modified Euler) Integration (~MATLAB s ode23)" € x(t k ) ≈ x(t k−1 ) + where Effects of lateral-directional disturbances on longitudinal motion" LLon Lat−Dir L Lat−Dir % ' ' & Effects of lateral-directional disturbances on lateral-directional motion" [δx1 + δx ] δx1 = f [ x(t k−1 ),u(t k−1 ),w(t k−1 )] δt δx = f [ x(t k−1 ) + δx1,u(t k ),w(t k )] δt •  See MATLAB manual for descriptions of ode45 and ode15s" € ... Longitudinal Modes of Motion " Lateral-Directional Modes of Motion in Steady, Level Flight " •  Eigenvalues determine the damping and natural frequencies of the linear system s modes of motion" • ... (n × n) (1 × 1) C ; C = matrix of cofactors det A dim(A) = (1 × 1) T Cofactors are signed minors of A" ijth minor of A is the determinant of A with the ith row and jth column removed" ! a11 a12... polynomial of the system " –  is a scalar" –  defines the system’s modes of motion! sI − F = det ( sI − F ) ≡ Δ(s) = s n + an −1s n −1 + + a1s + a0 Rigid-Body Motion of a Linear, Time-Invariant Aircraft

Ngày đăng: 04/07/2014, 19:25

TỪ KHÓA LIÊN QUAN