Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
1,28 MB
Nội dung
Transfer Functions and Frequency Response Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012" • Frequency domain view of initial condition response" • Response of dynamic systems to sinusoidal inputs" • Transfer functions" • Bode plots" Copyright 2012 by Robert Stengel. All rights reserved. For educational use only.! http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html ! Laplace Transform of Initial Condition Response Laplace Transform of a Dynamic System " Δ x(t ) = F Δx(t ) + G Δu(t) + LΔw(t ) • System equation! • Laplace transform of system equation! sΔx(s) − Δx(0) = F Δx(s ) + GΔ u(s) + LΔw(s) dim(Δx) = (n × 1) dim(Δu ) = (m × 1) dim(Δw) = (s ×1) Laplace Transform of a Dynamic System " • Rearrange Laplace transform of dynamic equation! sΔx(s) − FΔ x(s) = Δx(0) + GΔ u(s) + LΔw(s) sI − F [ ] Δx(s) = Δx(0) + GΔ u(s) + LΔw(s) Δx(s) = sI − F [ ] −1 Δx(0) + G Δu(s) + LΔw(s) [ ] Initial ! Condition! Control/Disturbance ! Input! 4 th -Order Initial Condition Response " • Longitudinal dynamic model (time domain)! Δx(s) = sI − F [ ] −1 Δx(0) Δ V (t) Δ γ (t) Δ q(t) Δ α (t) $ % & & & & & ' ( ) ) ) ) ) = −D V −g −D q −D α L V V N 0 L q V N L α V N M V 0 M q M α − L V V N 0 1 − L α V N $ % & & & & & & & ' ( ) ) ) ) ) ) ) ΔV(t) Δ γ (t) Δq(t) Δ α (t) $ % & & & & & ' ( ) ) ) ) ) , ΔV(0) Δ γ (0) Δq(0) Δ α (0) $ % & & & & & ' ( ) ) ) ) ) given • Longitudinal model (frequency domain)! ΔV(s) Δ γ (s) Δq(s) Δ α (s) $ % & & & & & ' ( ) ) ) ) ) = sI − F Lon [ ] −1 ΔV(0) Δ γ (0) Δq(0) Δ α (0) $ % & & & & & ' ( ) ) ) ) ) Elements of the Characteristic Matrix Inverse" sI − F Lon ≡ Δ Lon (s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 Adj sI − F Lon ( ) = n V V (s) n γ V (s) n q V (s) n α V (s) n V γ (s) n γ γ (s) n q γ (s) n α γ (s) n V q (s) n γ q (s) n q q (s) n α q (s) n V α (s) n V α (s) n V α (s) n V α (s) $ % & & & & & & ' ( ) ) ) ) ) ) sI − F Lon [ ] −1 = Adj sI − F Lon ( ) sI − F Lon = C T s ( ) Δ Lon (s) (4 × 4) 1×1 ( ) • Denominator is scalar! • Numerator is an (n x n) matrix of polynomials! (sI – F) –1 Distributes and Shapes the Effects of Initial Conditions" sI −F Lon [ ] −1 = n V V (s) n γ V (s) n q V (s) n α V (s) n V γ (s) n γ γ (s) n q γ (s) n α γ (s) n V q (s) n γ q (s) n q q (s) n α q (s) n V α (s) n V α (s) n V α (s) n V α (s) $ % & & & & & & ' ( ) ) ) ) ) ) s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 A Lon s ( ) (4 × 4) 1×1 ( ) • Denominator determines the modes of motion" • Numerator distributes each element of the initial condition to each element of the state! Δx(s) = Adj sI −F Lon ( ) sI − F Lon Δx(0) = A Lon s ( ) Δx(0) 4 ×1 ( ) Relationship of (sI – F) –1 to State Transition Matrix, (t,0)" • Initial condition response! Δx(s) = sI − F [ ] −1 Δx(0) = A s ( ) Δx(0) Δx(t ) = Φ t, 0 ( ) Δx(0) Time ! Domain! Frequency ! Domain! • Δx(s) is the Laplace transform of Δx(t)! Δx(s) = A s ( ) Δx(0) = L Δx(t ) [ ] = L Φ t,0 ( ) Δx(0) # $ % & = L Φ t,0 ( ) # $ % & Δx(0) Relationship of (sI – F) –1 to State Transition Matrix, (t,0)" sI − F [ ] −1 = A s ( ) = L Φ t, 0 ( ) # $ % & = Laplace transform of the state transition matrix • Therefore,! Initial Condition Response of a Single State Element " A s ( ) sI − F [ ] −1 • Typical (ij th ) element of A(s)! a ij (s) = k ij n ij (s) Δ(s) = k ij s q + b q−1 s q−1 + +b 1 s + b 0 ( ) s n + a n−1 s n−1 + + a 1 s + a 0 ( ) = k ij s − z 1 ( ) ij s − z 2 ( ) ij s − z q ( ) ij s − λ 1 ( ) s − λ 2 ( ) s − λ n ( ) Initial Condition Response of a Single State Element " p i (s) = k i1 s q 1 + +b 0 ( ) 1 Δx 1 (0)++ k in s q n + +b 0 ( ) n Δx n (0) k p i s q max + + b 0 ( ) • All terms have the same denominator polynomial" • Terms sum to produce a single numerator polynomial! Δx i (s) = a i1 s ( ) Δx 1 (0)+ a i2 s ( ) Δx 1 (0)++ a in s ( ) Δx n (0) p i s ( ) Δ s ( ) • Initial condition response of Δx i (s)! Real, scalar" Partial Fraction Expansion of the Initial Condition Response" • Scalar response can be expressed with n parts, each containing a single mode! Δx i (s) = p i s ( ) Δ s ( ) = d 1 s − λ 1 ( ) + d 2 s − λ 2 ( ) + d n s − λ n ( ) $ % & & ' ( ) ) i , i =1,n where, for each i, the (possibly complex) coefficients are d j = s − λ j ( ) p i s ( ) Δ s ( ) s= λ j , j = 1,n Partial Fraction Expansion of the Initial Condition Response" • Time response is the inverse Laplace transform! Δx i (t) = L −1 Δx i (s) [ ] = L −1 d 1 s − λ 1 ( ) + d 2 s − λ 2 ( ) + d n s − λ n ( ) $ % & ' ( ) i = d 1 e λ 1 t + d 2 e λ 2 t + + d n e λ n t ( ) i , i = 1, n Each element’s time response contains every mode of the system (although some coefficients may be zero)" Scalar and Matrix Transfer Functions Response to a Control Input" • Neglect initial condition" • State response to control" sΔx(s) = FΔx(s)+ GΔu(s)+ Δx(0), Δx(0) 0 Δx(s) = sI − F [ ] −1 G Δu(s) • Output response to control" Δy(s) = H x Δx(s)+H u Δu(s) = H x sI − F [ ] −1 GΔu(s)+ H u Δu(s) = H x sI − F [ ] −1 G + H u { } Δu(s) Transfer Function Matrix" • Frequency-domain effect of all inputs on all outputs" • Assume control effects do not appear directly in the output: H u = 0" • Transfer function matrix! H (s) = H x sI − F [ ] −1 G H x A s ( ) G r × n ( ) n × n ( ) n × m ( ) = r × m ( ) First-Order Transfer Function " y s ( ) u s ( ) = H (s) = h s − f [ ] −1 g = hg s − f ( ) (n = m = r = 1) • Scalar transfer function (= first-order lag)! x t ( ) = fx t ( ) + gu t ( ) y t ( ) = hx t ( ) • Scalar dynamic system! Second-Order Transfer Function " H(s) = H x A s ( ) G = h 11 h 12 h 21 h 22 ! " # # $ % & & adj s − f 11 ( ) − f 12 − f 21 s − f 22 ! " # # $ % & & det s − f 11 ( ) − f 12 − f 21 s − f 22 ( ) ( ) * * + , - - g 11 g 12 g 21 f 22 ! " # # $ % & & (n = m = r = 2) • Second-order transfer function matrix! r × n ( ) n × n ( ) n × m ( ) = r × m ( ) = 2 × 2 ( ) x t ( ) = x 1 t ( ) x 2 t ( ) ! " # # $ % & & = f 11 f 12 f 21 f 22 ! " # # $ % & & x 1 t ( ) x 2 t ( ) ! " # # $ % & & + g 11 g 12 g 21 f 22 ! " # # $ % & & u 1 t ( ) u 2 t ( ) ! " # # $ % & & y t ( ) = y 1 t ( ) y 2 t ( ) ! " # # $ % & & = h 11 h 12 h 21 h 22 ! " # # $ % & & x 1 t ( ) x 2 t ( ) ! " # # $ % & & • Second-order dynamic system! Longitudinal Transfer Function Matrix " • With H x = I, and assuming" – Elevator produces only a pitching moment" – Throttle affects only the rate of change of velocity" – Flaps produce only lift! H Lon (s) = H x Lon sI − F Lon [ ] −1 G Lon = H x Lon A Lon s ( ) G Lon = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 " # $ $ $ $ % & ' ' ' ' n V V (s) n γ V (s) n q V (s) n α V (s) n V γ (s) n γ γ (s) n q γ (s) n α γ (s) n V q (s) n γ q (s) n q q (s) n α q (s) n V α (s) n γ α (s) n q α (s) n α α (s) " # $ $ $ $ $ $ % & ' ' ' ' ' ' 0 T δ T 0 0 0 L δ F / V N M δ E 0 0 0 0 −L δ F / V N " # $ $ $ $ $ % & ' ' ' ' ' Δ Lon s ( ) Longitudinal Transfer Function Matrix " H Lon (s) = n δ E V (s) n δ T V (s) n δ F V (s) n δ E γ (s) n δ T γ (s) n δ F γ (s) n δ E q (s) n δ T q (s) n δ F q (s) n δ E α (s) n δ T α (s) n δ F α (s) $ % & & & & & & ' ( ) ) ) ) ) ) s 2 + 2 ζ P ω nP s + ω n P 2 ( ) s 2 + 2 ζ SP ω n SP s + ω n SP 2 ( ) • There are 4 outputs and 3 inputs! Douglas AD-1 Skyraider! Longitudinal Transfer Function Matrix " ΔV(s) Δ γ (s) Δq(s) Δ α (s) $ % & & & & & ' ( ) ) ) ) ) = H Lon (s) Δ δ E(s) Δ δ T (s) Δ δ F(s) $ % & & & ' ( ) ) ) • Input-output relationship! Scalar Transfer Function from Δu j to Δy i " H ij (s) = k ij n ij (s) Δ(s) = k ij s q + b q−1 s q−1 + + b 1 s + b 0 ( ) s n + a n−1 s n−1 + + a 1 s + a 0 ( ) # zeros = q! # poles = n" • Just one element of the matrix, H(s)" • Denominator polynomial contains n roots" • Each numerator term is a polynomial with q zeros, where q varies from term to term and ≤ n – 1 ! = k ij s − z 1 ( ) ij s − z 2 ( ) ij s − z q ( ) ij s − λ 1 ( ) s − λ 2 ( ) s − λ n ( ) Scalar Frequency Response Function" H ij (j ω ) = k ij j ω − z 1 ( ) ij j ω − z 2 ( ) ij j ω − z q ( ) ij j ω − λ 1 ( ) j ω − λ 2 ( ) j ω − λ n ( ) • Substitute: s = j ω ! • Frequency response is a complex function of input frequency, ω " – Real and imaginary parts, or" – ** Amplitude ratio and phase angle ** ! = a( ω )+ jb( ω ) → AR( ω ) e j φ ( ω ) Transfer Function Matrix for Short-Period Approximation " • Transfer Function Matrix (with H x = I, H u = 0)" H SP (s) = I 2 A SP s ( ) G SP = s − M q ( ) −M α − 1− L q V N # $ % & ' ( s + L α V N ( ) ) * + + + + , - . . . . -1 M δ E −L δ E V N ) * + + + , - . . . Δ x SP = Δ q Δ α # $ % % & ' ( ( ≈ M q M α 1 − L q V N + , - . / 0 − L α V N # $ % % % & ' ( ( ( Δq Δ α # $ % % & ' ( ( + M δ E −L δ E V N # $ % % % & ' ( ( ( Δ δ E • Dynamic Equation" Transfer Function Matrix for Short-Period Approximation " • Transfer Function Matrix (with H x = I, H u = 0)" H SP (s ) = A SP s ( ) G SP = s + L α V N ( ) M α 1− L q V N # $ % & ' ( s − M q ( ) ) * + + + + , - . . . . M δ E −L δ E V N ) * + + + , - . . . s − M q ( ) s + L α V N ( ) − M α 1− L q V N # $ % & ' ( Transfer Function Matrix for Short-Period Approximation " H SP (s) = M δ E s + L α V N ( ) − L δ E M α V N $ % & ' ( ) M δ E 1− L q V N * + , - . / − L δ E V N ( ) s − M q ( ) $ % & ' ( ) $ % & & & & & ' ( ) ) ) ) ) s 2 + −M q + L α V N ( ) s − M α 1− L q V N * + , - . / + M q L α V N $ % & ' ( ) = M δ E s + L α V N − L δ E M α V N M δ E ( ) $ % & ' ( ) − L δ E V N ( ) s + V N M δ E L δ E 1− L q V N * + , - . / − M q $ % & ' ( ) 0 1 2 3 4 5 6 3 $ % & & & & & ' ( ) ) ) ) ) Δ SP s ( ) Transfer Function Matrix for Short-Period Approximation " H SP (s) k q n δ E q (s) k α n δ E α (s) # $ % % & ' ( ( s 2 + 2 ζ SP ω n SP s + ω n SP 2 = Δq(s) Δ δ E(s) Δ α (s) Δ δ E(s) # $ % % % % % & ' ( ( ( ( ( dim = 2 x 1" Scalar Transfer Functions for Short- Period Approximation " Δq(s) Δ δ E(s) = M δ E s + L α V N − L δ E M α V N M δ E ( ) % & ' ( ) * s 2 + −M q + L α V N ( ) s − M α 1 − L q V N + , - . / 0 + M q L α V N % & ' ( ) * = k q s − z q ( ) s 2 + 2 ζ SP ω n SP s + ω n SP 2 Δq(s) Δ α (s) # $ % % & ' ( ( = Δq(s) Δ δ E(s) Δ α (s) Δ δ E(s) # $ % % % % & ' ( ( ( ( Δ δ E(s) Δ α (s) Δ δ E(s) = − L δ E V N ( ) s + V N M δ E L δ E 1 − L q V N % & ' ( ) * − M q + , - . / 0 1 2 3 4 3 5 6 3 7 3 s 2 + −M q + L α V N ( ) s − M α 1 − L q V N % & ' ( ) * + M q L α V N + , - . / 0 = k α s − z α ( ) s 2 + 2 ζ SP ω n SP s + ω n SP 2 • Pitch Rate Transfer Function" • Angle of Attack Transfer Function" Short-Period Frequency Response (s = j ) Expressed as Amplitude Ratio and Phase Angle" Pitch-rate frequency response" Angle-of-attack frequency response" Δq( j ω ) Δ δ E( j ω ) = k q j ω − z q ( ) − ω 2 + 2 ζ SP ω n SP j ω + ω n SP 2 = AR q ( ω ) e j φ q ( ω ) Δ α ( j ω ) Δ δ E( j ω ) = k α j ω − z α ( ) − ω 2 + 2 ζ SP ω n SP j ω + ω n SP 2 = AR α ( ω ) e j φ α ( ω ) Bode Plot (Frequency Response of a Scalar Transfer Function) Angle and Rate Response of a DC Motor over Wide Input- Frequency Range " ! Long-term response of a dynamic system to sinusoidal inputs over a range of frequencies" ! Determine experimentally or " ! from the Bode plot of the dynamic system! Very low damping! Moderate damping! High damping! Bode Plot Portrays Response to Sinusoidal Control Input" • Express amplitude ratio in decibels " € AR(dB) = 20log 10 AR original units ( ) [ ] 20 dB = factor of 10! € Δq( j ω ) Δ δ E( j ω ) = k q j ω − z q ( ) − ω 2 + 2 ζ SP ω n SP j ω + ω n SP 2 = AR q ( ω ) e j φ q ( ω ) • Plot AR(dB) vs. log 10 ( ω input )" • Plot phase angle, ϕ (deg) vs. log 10 ( ω input )" • Asymptotes form “skeleton” of response amplitude ratio" • Asymptotes change at poles and zeros" Products in original units are sums in decibels! # zeros = 1! # poles = 2" Constant Gain Bode Plot" € H( j ω ) = 1 € H( j ω ) = 10 € H( j ω ) = 100 y t ( ) = hu t ( ) Slope = 0dB / dec, Amplitude Ratio = constant Phase Angle = 0° Integrator Bode Plot" € H( j ω ) = 1 j ω € H( j ω ) = 10 j ω y t ( ) = h u t ( ) dt 0 t ∫ Slope = −20dB / dec Phase Angle = −90° Differentiator Bode Plot" H ( j ω ) = j ω € H( j ω ) =10 j ω y t ( ) = h du t ( ) dt Slope = +20dB / dec Phase Angle = +90° Sign Change" H ( j ω ) = − h j ω y t ( ) = −h u t ( ) dt 0 t ∫ H ( j ω ) = − j ω y t ( ) = −h du t ( ) dt Slope = −20dB / dec Phase Angle = +90° Slope = +20dB / dec Phase Angle = −90° Integral! Derivative! Multiple Integrators and Differentiators" H ( j ω ) = h j ω ( ) 2 y t ( ) = h d 2 u t ( ) dt 2 H ( j ω ) = h j ω ( ) 2 y t ( ) = h u t ( ) dt 2 0 t ∫ 0 t ∫ Slope = −40dB / dec Phase Angle = −180° Slope = +40dB / dec Phase Angle = +180° Double Integral! Double Derivative! Constant Gain, Integrator, and Differentiator Bode Plots Form the Asymptotes for More Complex Transfer Functions" +20 " dB/dec" +40 " dB/dec" 0 " dB/dec" +20 " dB/dec" –20 " dB/dec" Bode Plots of First-Order Lags" H red ( j ω ) = 10 j ω +10 ( ) H blue ( j ω ) = 100 j ω +10 ( ) H green ( j ω ) = 100 j ω +100 ( ) Bode Plot Asymptotes, Departures, and Phase Angles for First-Order Lags" • General shape of amplitude ratio governed by asymptotes" • Slope of asymptotes changes by multiples of ±20 dB/dec at poles or zeros" • Actual AR departs from asymptotes" • Phase angle of a real, negative pole" – When ω = 0, ϕ = 0°" – When ω = λ , ϕ =–45°" – When ω -> ∞, ϕ -> –90°" • AR asymptotes of a real pole" – When ω = 0, slope = 0 dB/ dec" – When ω ≥ λ , slope = –20 dB/ dec" [...]... http://www.mathworks.com/matlabcentral/fileexchange/10183-bode-plot-with-asymptotes" 2nd-Order Pitch Rate Frequency Response" bode.m" asymp.m" First- and Second-Order Departures from Amplitude Ratio Asymptotes " Frequency Response AR Departures in the Vicinity of Poles " • Difference between actual amplitude ratio (dB) and asymptote = departure (dB)" • Results for multiple roots are additive" • from McRuer, Ashkenas, and Graham, Aircraft Dynamics and Automatic Control, Princeton... opposite sign" First- and SecondOrder Phase Angles " Phase Angle Variations in the Vicinity of Poles" • Results for multiple roots are additive" • from McRuer, Ashkenas, and Graham, Aircraft Dynamics and Automatic Control, Princeton University Press, 1973" • LHP zero variations have opposite sign" • RHP zeros have same sign" Next Time: Control Devices and Systems Reading Flight Dynamics, 214-234 Virtual... jω ) + 2 ( 0.1) (100 ) ( jω ) + 100 2 & '$ ' $ #( # zeros = 0! # poles = 4" € • Resonant peaks and large phase shifts at each natural frequency" • Additive AR slope shifts at each natural frequency" Left-Half-Plane Transfer Function Zero " • Zeros are numerator singularities " H (jω ) = Right-Half-Plane Transfer Function Zero " k ( jω − z1 ) ( jω − z2 ) ( jω − λ1 )( jω − λ2 ) ( jω − λn ) H ( jω )... 4th-Order Transfer Function with 2nd-Order Zero " Second-Order Transfer Function Zero " H( jω ) = ( jω − z)( jω − z* ) = € [( jω ) 2 + 2(0.1)(100)( jω ) + 100 2 ] • Complex pair of zeros produces an amplitude ratio notch at its natural frequency " H( jω ) = € [( jω ) [( jω ) 2 2 + 2(0.1)(10)( jω ) + 10 2 2 + 2(0.05)(1)( jω ) + 1 ][( jω ) 2 ] + 2(0.1)(100)( jω ) + 100 2 ] Elevator-toNormal-Velocity Frequency. .. ( jω ) +10 2 2 H green ( jω ) = 10 3 ( jω ) + 2 (0.1) (10) ( jω ) +10 2 2 Effect of Damping Ratio ! Effects of Gain and Natural Frequency ! H blue ( jω ) = 10 2 ( jω ) + 2 (0.4 ) (10) ( jω ) +10 2 2 H red ( jω ) = 10 2 ( jω ) + 2 (0.707) (10) ( jω ) +10 2 2 Amplitude Ratio Asymptotes and Departures of Second-Order Bode Plots (No Zeros) " • AR asymptotes of a pair of complex poles " – When ω = 0,... 2 ] + 2(0.1)(100)( jω ) + 100 2 ] Elevator-toNormal-Velocity Frequency Response" ( ) 2 M δ E s 2 + 2ζω n s + ω n Approx Ph ( s − z3 ) Δw(s) n w (s) = δE ≈ 2 2 2 Δδ E(s) Δ Lon (s) s + 2ζω n s + ω n s 2 + 2ζω n s + ω n SP Ph ( ) ( ) 0 dB/dec! 0 dB/dec! +40 dB/dec! • (n – q) = 1" • Complex zero almost (but not quite) cancels phugoid response" –40 dB/dec! Phugoid" Short " Period" –20 dB/dec! ... Press, 1973" • LHP zero variations have opposite sign" • RHP zeros have same sign" Next Time: Control Devices and Systems Reading Flight Dynamics, 214-234 Virtual Textbook, Part 16 Bode Plots of 1st- and 2nd-Order Lags " Supplementary Material H red ( jω ) = H blue ( jω ) = 10 ( jω + 10) 100 2 ( jω ) 2 + 2(0.1)(100)( jω ) + 100 2 € Bode Plots of 3rd-Order Lags " & # 10 100 2 ( H blue ( jω ) = % . Transfer Functions and Frequency Response Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012" • Frequency domain view of initial condition response& quot; • Response of. Rate Transfer Function" • Angle of Attack Transfer Function" Short-Period Frequency Response (s = j ) Expressed as Amplitude Ratio and Phase Angle" Pitch-rate frequency response& quot; Angle-of-attack. e j φ α ( ω ) Bode Plot (Frequency Response of a Scalar Transfer Function) Angle and Rate Response of a DC Motor over Wide Input- Frequency Range " ! Long-term response of a dynamic