1. Trang chủ
  2. » Giáo án - Bài giảng

17 đề thi hk 2 Tham khảo

21 241 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 580,5 KB

Nội dung

Đề 1 Bài 1. Tìm các giới hạn sau: 1. 2 x 1 2 x x lim x 1 → − − − 2. 4 x lim 2x 3x 12 →−∞ − + 3. x 3 7x 1 lim x 3 + → − − 4. 2 x 3 x 1 2 lim 9 x → + − − Bài 2. 1. Xét tính liên tục của hàm số sau trên tập xác định của nó.  − + >  =  −  + ≤  2 x 5x 6 khi x 3 f(x) x 3 2x 1 khi x 3 2. Chứng minh rằng phương trình sau có ít nhất hai nghiệm : 3 2 2x 5x x 1 0− + + = . Bài 3 . 1. Tìm đạo hàm của các hàm số sau : a . 2 y x x 1= + b . 2 3 y (2x 5) = + 2 . Cho hàm số x 1 y x 1 − = + . a . Viết ptrình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = - 2. b . Viết pt tt của đồ thị hàm số biết tiếp tuyến song song với d : y = x 2 2 − . Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy , SA = a 2 . 1. Chứng minh rằng các mặt bên hình chóp là những tam giác vuông. 2. CMR (SAC) ⊥ (SBD) . Bài 5 . Tính 3 2 x 2 x 8 lim x 11x 18 →− + + + . Bài 6 . Cho 3 2 1 y x 2x 6x 8 3 = − − − . Giải bất phương trình / y 0≤ . Giáo viên : Phạm Đỗ Hải Đề2 Bài 1 : Tìm các giới hạn sau : 1 . →−∞ − − + + 2 1 3 lim 2 7 x x x x x 2 . →+∞ − − + 3 lim ( 2 5 1) x x x 3 . + → − − 5 2 11 lim 5 x x x 4. → + − + 3 2 0 1 1 lim x x x x . Bài 2 . 1 . Cho hàm số f(x) =  − ≠  −   + =  3 1 1 1 2 1 1 x khi x x m khi x Xác định m để hàm số liên tục trên R 2 . Chứng minh rằng phương trình : − − − = 2 5 (1 ) 3 1 0m x x luôn có nghiệm với mọi m. Bài 3 . 1 . Tìm đạo hàm của các hàm số : a . y = − + − 2 2 2 2 1 x x x b . y = +1 2tan x . 2 . Cho hàm số y = − + 4 2 3x x ( C ) . Viết phương trình tiếp tuyến của ( C ) . a . Tại điểm có tung độ bằng 3 . b . Vuông góc với d : x - 2y – 3 = 0 . Bài 4 . Cho tứ diện OABC có OA , OB , OC , đôi một vuông góc và OA= OB = OC = a , I là trung điểm BC . 1 . CMR : ( OAI ) ⊥ ( ABC ) . 2. CMR : BC ⊥ ( AOI ) . Bài 5 .Cho y = − 2 2x x . CMR + = 3 // . 1 0y y . Bài 6 . cho y = sin2x – 2cosx . Giải phương trình / y = 0 . Giáo viên : Phạm Đỗ Hải ĐỀ 3: Bài 1. Tính các giới hạn sau: 1. →−∞ − + − + 3 2 lim ( 1) x x x x 2. − →− + + 1 3 2 lim 1 x x x 3. → + − + − 2 2 2 lim 7 3 x x x 4. → − − − − + − 3 2 3 2 3 2 5 2 3 lim 4 13 4 3 x x x x x x x 5. lim − + 4 5 2 3.5 n n n n Bài 2. Cho hàm số : f(x) =  + −   −   + ≤   3 3 2 2 khi x >2 2 1 khi x 2 4 x x ax . Xác định a để hàm số liên tục tại điểm x = 2. Bài 3. Chứng minh rằng phương trình x 5 -3x 4 + 5x-2 = 0 có ít nhất ba nghiệm phân biệt trong khoảng (-2 ;5 ) Bài 4. Tìm đạo hàm các hàm số sau: 1. − = + + 2 5 3 1 x y x x 2. = + + + 2 ( 1) 1y x x x 3. = +1 2tany x 4. y = sin(sinx) Bài 5. Hình chóp S.ABC. ∆ABC vuông tại A, góc µ B = 60 0 , AB = a, hai mặt bên (SAB) và (SBC) vuông góc với đáy; SB = a. Hạ BH ⊥ SA (H ∈ SA); BK ⊥ SC (K ∈ SC). 1. CM: SB ⊥ (ABC) 2. CM: mp(BHK) ⊥ SC. 3. CM: ∆BHK vuông . 4. Tính cosin của góc tạo bởi SA và (BHK) Bài 6. Cho hàm số f(x) = − + + 2 3 2 1 x x x (1). Viết phương trình tiếp tuyến của đồ thị hàm số (1) biết tiếp tuyến đó song song với đường thẳng y = −5x −2 Giáo viên : Phạm Đỗ Hải Bài 7. Cho hàm số y = cos 2 2x. 1. Tính y”, y”’. 2. Tính giá trị của biểu thức: A= y’’’ +16y’ + 16y – 8. ĐỀ 4: Bài 1. Tính các giới hạn sau: 1. − + − →−∞ 3 2 lim ( 5 2 3)x x x 2. + →− + + 1 3 2 lim 1 x x x 3. → − + − 2 2 lim 7 3 x x x 4. → + − 3 0 ( 3) 27 lim x x x 5.   − +  ÷ +   3 4 1 lim 2.4 2 n n n n Bài 2. Cho hàm số:  − > =  −  ≤  1 1 ( ) 1 3 1 x khi x f x x ax khi x . Xác định a để hàm số liên tục tại điểm x = 1. Bài 3. CMR phương trình sau có it nhất một nghiệm âm: + + = 3 1000 0,1 0x x Bài 4. Tìm đạo hàm các hàm số sau: 1. − + = + 2 2 6 5 2 4 x x y x 2. − + = + 2 2 3 2 1 x x y x 3. + = − sin cos sin cos x x y x x 4. y = sin(cosx) Bài 5. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, ⊥ ( )SA ABCD và SA = 2a. 1. Chứng minh ⊥( ) ( )SAC SBD ; ⊥( ) ( )SCD SAD 2. Tính góc giữa SD và (ABCD); SB và (SAD) ; SB và (SAC); 3. Tính d(A, (SCD)); d(B,(SAC)) Bài 6. Viết PTTT của đồ thị hàm số = − + 3 2 3 2y x x . 1. Biết tiếp tuyến tại điểm M ( -1; -2) 2. Biết tiếp tuyến vuông góc với đt = − + 1 2 9 y x . Bài 7. Cho hàm số: + + = 2 2 2 2 x x y . Chứng minh rằng: 2y.y’’ – 1 =y’ 2 Giáo viên : Phạm Đỗ Hải ĐỀ 5: A. PHẦN CHUNG: Bài 1: Tìm a) − + − 3 3 2 2 3 lim 1 4 n n n b) → + − − 2 1 3 2 lim 1 x x x Bài 2: Xét tính liên tục của hàm số sau trên tập xác định của nó  + + ≠ −  = +    2 3 2 , khi x 2 ( ) 2 3 , khi x = -2 x x f x x Bài 3: : Tính đạo hàm a) = + −2sin cos tany x x x b) = +sin(3 1)y x c) = +cos(2 1)y x d) = +1 2tan4y x Bài 4: Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a có góc BAD = 60 0 và SA=SB = SD = a a) Chứng minh (SAC) vuông góc với (ABCD) b) Chứng minh tam giác SAC vuông c) Tính khoảng cách từ S đến (ABCD) B. PHẦN TỰ CHỌN: I. BAN CƠ BẢN: Câu 5:Cho hàm số y = f(x) = 2x 3 – 6x +1 (1) a) Tính −'( 5)f b) Viết phương trình tiếp tuyến của đồ thị hàm số (1) tại điểm M o (0; 1) c)Chứng minh phương trình f(x) = 0 có ít nhất một nghiệm nằm trong khoảng (-1; 1) II. BAN NÂNG CAO Câu 5:Cho = + − + sin3 cos3 ( ) cos 3(sin ) 3 3 x x f x x x . Giải phương trình ='( ) 0f x . Giáo viên : Phạm Đỗ Hải Câu 6:Cho hàm số = − + 3 ( ) 2 2 3f x x x (C) a) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song đường thẳng = +24 2008y x b) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc đường thẳng = − + 1 2008 4 y x ĐỀ 6: A. PHẦN CHUNG Câu 1: Tìm giới hạn a) − + − → 2 3 4 1 lim 1 1 x x x x b) − + →− 2 9 lim 3 3 x x x c) − → + − 2 lim 2 7 3 x x x d) + − →−∞ + 2 2 3 lim 2 1 x x x x e) + →− + + 1 3 2 lim 1 x x x f) − →− + + 1 3 2 lim 1 x x x Câu 2: Cho hàm số  − − ≠  = −    2 2 khi x 2 ( ) 2 m khi x = 2 x x f x x . a, Xét tính liên tục của hàm số khi m = 3 b, Với giá trị nào của m thì f(x) liên tục tại x = 2 ? c, Tìm m để hàm số liện tục trên tập xác định của nó? Câu 3: Chứng minh phương trình x 5 -3x 4 + 5x-2= 0 có ít nhất ba nghiệm phân biệt trong khoảng (-2 ;5 ) Câu 4: Tính đạo hàm a) = + − + 3 2 3 2 1 3 x y x x b) = − + 2 3 ( 1)( 2)y x x c) ( ) = + 10 3 6y x d) = + 2 2 1 ( 1) y x Giáo viên : Phạm Đỗ Hải e) = + 2 2y x x f)   + =  ÷ −   4 2 2 2 1 3 x y x B.PHẦN TỰ CHỌN: I. BAN CƠ BẢN Câu 5:Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng 2a. gọi O là tâm của đáy ABCD. a) CMR (SAC) ⊥(SBD), (SBD)⊥(ABCD). b) Tính khoảng cách từ điểm S đến mp(ABCD),từ điểm O đến mp(SBC). c) Dựng đường vuông góc chung và tính khoảng cách giữa hai đường thẳng chéo nhau BD và SD. II. BAN NÂNG CAO Câu 5: Cho tam giác ABC vuông cân tại A, AB=BC=a 2 , I là trung điểm cạnh AC, AM là đường cao tam giác SAB. Ix là đường thẳng vuông góc với mp (ABCtại I, trên Ix lấy S sao cho IS = a. a)Chứng minh AC SB, SB (AMC) b) Xác định góc giữa đường thẳng SB và mp(ABC) c) Xác định góc giữa đường thẳng SB và mp(AMC) Đề 7: I. PHẦN BẮT BUỘC: Câu 1 (1 điểm): Tính giới hạn sau: a) →+∞ + − 2 ( 5 ) lim x x x b) →− + − 2 3 3 9 lim x x x Câu 2 (1 điểm): Cho hàm số +  ≠   + + =   =   2 2 1 1 22 3 1 ( ) 1 2 x khi x x x f x A khi x Xét tính liên tục của hàm số tại x = 1 2 Câu 3 (1 điểm): CMR phương trình sau có ít nhất một nghiệm trên [0;1] Giáo viên : Phạm Đỗ Hải X 3 + 5x – 3 = 0 Câu 4 (1,5 điểm): Tính đạo hàm sau: a) y = (x + 1)(2x – 3) b) + 2 1 cos 2 x Câu5 (2,5 điểm) : Cho hình chóp S.ABCD, ABCD là hình thoi tâm O cạnh a, góc BAD=60 0 , đường cao SO = a a) Gọi K là hình chiếu của O lên BC. CMR : BC ⊥ (SOK) b) Tính góc của SK và mp(ABCD) c) Tính khoảng cách giữa AD và SB II. PHẦN TỰ CHỌN 1. BAN CƠ BẢN: Câu 6(1,5 điểm): Cho hàm số: y = 2x 3 - 7x + 1 a) viết phương trình tiếp tuyến của đồ thị tại điểm có hoành độ x = 2 b) viết phương trình tiếp tuyến của đồ thị có hệ số góc k = -1 Câu 7: (1,5 điểm): Cho hình chóp tam giác, dáy ABC đều, SA ⊥ (ABC), SA= a. M là điểm trên AB, góc ACM = ϕ , hạ SH ⊥ CM a) Tìm quỹ tích điểm H khi M di động trên AB b) Hạ AI ⊥ ⊥, .SC AK SH Tính SK và AH theo a và ϕ 2. BAN NÂNG CAO: Câu 8(1,5 điểm): Cho (p): y = 1 – x + 2 2 x , (C) : = − + − 2 3 1 2 6 x x y x a) CMR : (p) tiếp xúc với (C) b) viết phương trình tiếp tuyến chung của (p) và (C) tại tiếp điểm Câu 9(1,5 điểm): Cho hình lập phương ABCDA’B’C’D’ cạnh a. Lấy điểm M thuộc đoạn AD’, điểm N thuộc đoạn BD sao cho (0 < x < a 2 ). a) Tìm x để đoạn thẳng MN ngắn nhất b) Khi MN ngắn nhất, hãy chứng tỏ MN là đường vuông góc chung của AD’ và BD, đồng thời MN // A’C Giáo viên : Phạm Đỗ Hải Đề 8: Câu 1 (1 điểm): Tính giới hạn sau: a) →+∞ − + − + + 2 2 2 3 4 4 2 1 lim x x x x x b) → − + − 2 2 1 3 2 1 lim x x x x Câu 2 (1 điểm): Cho hàm số + ≤  =  − >  2 1 1 ( ) 4 1 x khi x f x ax khi x Định a để hàm số liên tục tại x = 1 Câu 3 (1 điểm): Cmr phương trình 2x 3 – 6x + 1 = 0 có 3 nghiệm trên [-2 ; 2] Câu 4 (1,5 điểm): Tính đạo hàm sau: a) + = + 3 5 2 1 x y x b) y = sinx cos3x a) Câu 5 ( 2,5điểm)) : Cho hình chóp S.ABCD, ABCD là hình vuông cạnh a, hai mặt bên (SAB) , (SBC) vuông góc với đáy, SB = a a) Gọi I là trung điểm SC. Cmr: (BID) ⊥ (SCD) b) CMR các mặt bên của hình chóp là các tam giác vuông c) Tính góc của mp(SAD) và mp(SCD) II. PHẦN TỰ CHỌN: 1. 1.BAN CƠ BẢN: Câu 6(1,5 điểm): Cho Hyperbol: y = 1 x . Viết phương trình tiếp tuyến của(H) a)Tại điểm có hoành độ x 0 = 1 b)Tiếp tuyến song song với đường thẳng y = − 1 4 x Câu 7 (1,5 điểm) : Cho lăng trụ tam giác ABCA’B’C’. Gọi I, J, K, là trọng tâm tam giác ABC, A’B’C’, ACC’. CMR: a) (IJK) // (BB’C’C) b)(A’JK) // (AIB’) 2. BAN NÂNG CAO: Giáo viên : Phạm Đỗ Hải Câu 8(1 điểm): Giải và biện luận phương trình f’(x) = 0, biết f(x) = sin2x + 2(1 – 2m)cosx – 2mx Câu 9 (2 điểm): Cho hình chóp S.ABCD, ABCD là hình thang vuông , AB = a, BC = a, góc ADC bằng 45 0 . Hai mặt bên SAB, SAD cùng vuông góc với đáy, SA = a 2 a) Tính góc giữa BC và mp(SAB) b) Tính góc giữa mp(SBC) và mp(ABCD) c)Tính khoảng cách giữa AD và SC A.Bắt buộc Bài 1: 1/Tính giới hạn: a/ → − + − 3 2 1 3 2 lim 1 x x x x b/ → + − − 2 2 5 3 lim 2 x x x 2/Cho f(x)=  − + >  −   + ≤  3 3 2 ; 1 1 2; 1 x x x x ax x .Tìm a để hàm số liên tục tại x=1 3/Cho y=f(x)=x 3 -3x 2 +2 a/Viết ptrình tiếp tuyến của đồ thị hàm số f(x) biết tiếp tuyến song song (d):y=-3x+2008 b/CMR ptrình f(x)=0 có 3 nghiệm phân biệt Bài 2:Cho hình chóp SABCD ,ABCD là hình vuông tâm O cạnh a;SA=SB=SC=SD= 5 2 a . Gọi I và J là trung điểm BC và AD 1/CMR: SO ⊥ (ABCD) 2/CMR: (SIJ) ⊥ (ABCD).Xác định góc giữa (SIJ) và (SBC) Giáo viên : Phạm Đỗ Hải [...]... f(x)=(3-x2)10.Tính f’’(x) Bài 4: Cho f(x)= 1 + tan 2 x + tan 2 x π 4 Tính f’’( ) với sai số tuyệt đối không vượt quá 0,01 ĐỀ 9: A Bắt buộc: Bài 1: 1/Tính giới hạn: a/ lim n 4 + 2n + 2 n2 + 1 b/ lim x 2 x3 − 8 x 2 c/ lim+ x →−1 3x + 2 x +1 2/ cho y=f(x)= x3 - 3x2 +2 Chứng minh rằng f(x)=0 có 3 nghiệm phân biệt 3/ Cho  x2 − x − 2 ;x ≠ 2  f(x)=  x − 2 5a − 3 x; x = 2  Bài 2: Cho y x2 − 1 Tìm... (SBC) Xác định thi t diện hình chóp với ( α ) d) Tính góc giữa ( α ) và (ABCD) ĐỀ 16: I/.phần chung( 7- điểm ) Bài 1 (2 ) Câu 1:Tìm a) 1 − x 5 + 7 x 3 − 11 L im 3 x →+∞ 3 5 x − x4 + 2 4 Giáo viên : Phạm Đỗ Hải x −1 − 2 x →5 x−5 x4 5 3 f (x) = + x − 2x + 1 2 3 b)lim hàm số : c) 4 − x2 x 2 2( x 2 − 5 x + 6) lim Câu 2: Cho Tính f ’(1) Bài 2 ( 3đ) Câu 1: Cho hàm số Hãy tìm a để Câu 2 Cho  x2 + x f (x) =... A đến (SBD) ĐỀ 13: Bài 1: Tính giới hạn: a)lim 2 x 2 + 3x − 5 x2 − 1 b)lim x3 + x + 1 x −1 Bài 2: Chứng minh phương trình x 3 − 2mx 2 − x + m = 0 có nghiệm với mọi m Bài 3: Tìm a để hàm số liên tục tại x=1  x3 − x2 + 2 x − 2  f (x) =  3x + a 3 x + a  khi x ≠ 1 khi x = 1 Bài 4: Tính đạo hàm của các hàm số: a) y = 2 3 1 + 3x + 1 − 2 + 4 x x x cos x x + x sin x 3 (C) y = x − 3 x 2 + 2 b) y = Bài... 20 08 Bài 5: cho f (x) = x 2 − 1 (n) f = ? x ĐỀ 10: I PHẦN BẮT BUỘC: CÂU 1: Tính các giới hạn sau x+3 ( x + 1)3 − 1 x2 + 5 − 3 : • lim • lim x →−3 x 2 + 2 x − 3 x→0 x → 2 x x +2 • lim CÀU 2: a) Cmr phương trình sau có ít nhất 2 nghiệm : 2 x 3 − 10 x − 7 = 0 b) Xét tính liên tục của hàm số x +3 , x ≠ −1  f (x) =  x − 1 2 , x = −1  trên tập xác định CÂU 3: a) Viết phương trình tiếp tuyến của đồ thi. .. và SA = a 3 Gọi (P) là mặt phẳng chứa AB và vuông góc (SCD) Thi t diên cắt bởi (P) và hình chóp là hình gì? Tính diện tích thi t diện đó ĐỀ 17 I Phân chung: ( 7đ) Bài 1: (2 ) a/ Tìm x2 − x − 2 x →−1 2 x + 2 lim 3n + 2 − 3.5n +1 4.5n + 5.3n +1 cos x + x y= sin x − x lim b/ Tính đạo hàm của hàm số: Bài 2: (2 ) Câu 1: Cho hàm số: y = x 3 + x 2 + x − 5 (C) Giáo viên : Phạm Đỗ Hải Viết phương trình tiếp... thẳng chéo nhau BD’ và B’C ĐỀ 12: Bài 1: Tính giới hạn: a)lim 3n +1 − 4 n 4 n −1 + 3 b)lim x+1 − 2 x2 − 9 Bài 2: Chứng minh phương trình x 3 − 3x + 1 = 0 có 3 nghiệm thuộc ( 2; 2 ) Bài 3: Chứng minh hàm số sau không có đạo hàm tại x = −3  x2 − 9  f (x) =  x + 3 1  khi x ≠ −3 khi x = − 3 Bài 4: Tính đạo hàm các hàm số sau: a) y = (2 x + 1) 2 x − x 2 Bài 5: Cho hàm số b) y = x 2 cos x x +1 y= có đồ... Tính khoảng cách giữa hai cạnh đối của tứ diện ĐỀ 11: I PHẦN BẮT BUỘC : CÂU 1: a)Tính • lim x →∞ 1 − 2x x 3 + 3x 2 − 9x − 2 • lim • lim ( x 2 − x + 3 + x ) 3 x 2 x →−∞ x + 2x − 3 x − x −6 2 b) Chứng minh phương trình x3 - 3x + 1 = 0 có 3 nghiệm phân biệt CÀU 2: a) Tính đạo hàm của các hàm số sau: 2  •y =  + 3x ÷ x  ( ) x −1 • y = x + sin x • y = x2 − 2 x x −1 b) Tính đạo hàm cấp hai của hàm số... 4 + x 3 − 3x 2 + x + 1 = 0 có 3 a 2  x2 + 3x + 2  f (x) =  x + 2 3  khi x ≠ 2 khi x = 2 Bài 4: Tính đạo hàm của các hàm số sau: a) y = sin x − x cos x + x b) y = (2 x − 3).cox(2x − 3) Bài 5: Viết phương trình tiếp tuyến của đồ thị hàm số: y= 2x2 + 2x + 1 x +1 c) Tại giao điểm của đồ thị và trục tung d) Biết tiếp tuyến song song với đường thẳng y = x + 20 09 Bài 6: Cho hình chóp S.ABCD, ABCD... 1 + x 2 • y = (2 − x 2 )cos x + 2 x sin x CÂU 4: Cho hình chóp S.ABCD có SA vuông góc (ABCD) và ABCD là hình thang vuông tại A,B AB=BC=a , · ADC = 450 , SA = a 2 a) Cmr các mặt bên là các tam giác vuông b) Tính góc giữa (SBC) và (ABCD) c) Tính khoảng cách giữa AD và SC II PHẦN TỰ CHỌN: 1.BAN CƠ BẢN: CÂU 1: Tính 1 1 − ) x −4 x 2 8 • Cho f ( x ) = Cmr f ' ( 2) = f ' (2) x • lim+ ( x 2 2 CÀU 2: Cho... lim ( 4 x 2 + x + 1 − 2 x ) x →+∞ Bài 2: Chứng minh rằng phương trình 2 x 3 − 10 x − 7 = 0 có ít nhất hai nghiệm Bài 3: Tìm m để hàm số sau liên tục tại x = 2  x2 − 1 khi x < −1  f (x) =  x + 1  mx + 2 khi x ≥ 1  Bài 4: Tính đạo hàm của các hàm số sau: 3x − 2 a) y = 2x + 5 b) y = ( x 2 − 3 x + 1).sin x Bài 5: Viết phương trình tiếp tuyến của đồ thị hàm số: a) Tại điểm có tung độ bằng 1 2 b) Biết . + 3 2 lim ( 1) x x x x 2. − →− + + 1 3 2 lim 1 x x x 3. → + − + − 2 2 2 lim 7 3 x x x 4. → − − − − + − 3 2 3 2 3 2 5 2 3 lim 4 13 4 3 x x x x x x x 5. lim − + 4 5 2 3.5 n n n n Bài 2. Cho. = + − + 3 2 3 2 1 3 x y x x b) = − + 2 3 ( 1)( 2) y x x c) ( ) = + 10 3 6y x d) = + 2 2 1 ( 1) y x Giáo viên : Phạm Đỗ Hải e) = + 2 2y x x f)   + =  ÷ −   4 2 2 2 1 3 x y x . → − − 3 2 8 lim 2 x x x c/ + →− + + 1 3 2 lim 1 x x x . 2/ cho y=f(x)= x 3 - 3x 2 +2. Chứng minh rằng f(x)=0 có 3 nghiệm phân biệt. 3/ Cho f(x)=  − − ≠  −   − =  2 2 ; 2 2 5 3 ; 2 x x x x a

Ngày đăng: 04/07/2014, 19:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w