ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG PHỔ THÔNG NĂNG KHIẾU ĐỀ THI TUYỂN SINH LỚP 10 NĂM HỌC 2006-2007 MÔN TOÁN AB VÒNG 1 (Chung cho các lớp Toán, Tin, Lý Hóa, Sinh)[/span] Thời gian làm bài: 150 phút. Câu 1: (2 điểm) Cho phương trình: (1). a) Xác định m để phương trình (1) có một nghiệm bằng 3 và tìm các nghiệm còn lại của phương trình (1). b) Tìm tất cả các giá trị của m để phương trình (1) có nghiệm. Câu 2: (2 điểm) Giải phương trình thỏa thỏa . Câu 4: (3 điểm) Cho tứ giác nội tiếp đường tròn tâm O, có . a) Chứng minh tam giác cân. b) Gọi và lần lượt là trung điểm của và . Tính độ dài đoạn . c) Gọi và . Câu 5: (1 điểm) Để tặng thưởng cho các bạn học sinh đạt thành tích cao trong kỳ thi Olympic Toán dành cho học sinh lớp 9, ban tổ chức đã trao 30 phần thưởng cho các học sinh với tổng giải thưởng là 2.700.000 đồng, bao gồm: mỗi học sinh đạt giải nhất được thưởng 150.000 đồng; mỗi học sinh đạt giải nhì được thưởng 130.000 đồng; mỗi học sinh đạt giải ba được thưởng 100.000 đồng; mỗi học sinh đạt giải khuyến khích được thưởng 50.000 đồng. Biết rằng có 10 giải ba và ít nhất một giải nhì được trao, hỏi ban tổ chức đã trao bao nhiêu giải nhất, nhì và khuyến khích? -HẾT- Cán bộ coi thi không giải thích đề thi. . 2.700.000 đ ng, bao gồm: mỗi học sinh đ t giải nhất đ ợc thưởng 150.000 đ ng; mỗi học sinh đ t giải nhì đ ợc thưởng 130.000 đ ng; mỗi học sinh đ t giải ba đ ợc thưởng 100 .000 đ ng; mỗi học sinh đ t. 1: (2 điểm) Cho phương trình: (1 ). a) Xác đ nh m đ phương trình (1 ) có một nghiệm bằng 3 và tìm các nghiệm còn lại của phương trình (1 ). b) Tìm tất cả các giá trị của m đ phương trình (1 ). 2: (2 điểm) Giải phương trình thỏa thỏa . Câu 4: (3 điểm) Cho tứ giác nội tiếp đ ờng tròn tâm O, có . a) Chứng minh tam giác cân. b) Gọi và lần lượt là trung điểm của và . Tính đ dài đoạn