Find the value of an annuity at 5 3 8%, given the following table: Rate Annuity Value... In an examination, the number of candidates who obtained marks between certain limits are as foll
Trang 1Sol The difference table for the given date is as follows:
3.6
21.1
To obtain first term, we use Newton’s forward interpolation formula,
Here, a = 3, h = 1, x = 1 ∴ u = –2
Hence we have
On putting the subsequent values, we get
f(1) = ( ) ( )2 ( 3) ( 2)( 3)( 4)
Similarly, to obtain tenth term, we use Newton’s backward interpolation formula So
a + nh = 9, h = 1, a + nh + uh = 10
= 73.9 + 21.1 + 4.5 + 0.5 = 100
Example 4 Find the value of an annuity at 5 3
8%, given the following table:
Rate
Annuity Value
Trang 2Sol Difference table,
9.4014 1
2
1
2
7.6892
−
−
−
−
x = 538= 438 ,a=6,n=12
y = ( ) ( 1.25)( 0.25) 2 ( 1.25)( 0.25)(0.75) 3
= 137.6483 ( 1.25)( 7.6892) ( 1.25)( 0.25)(0.6978)
2!
( 1.25)( 0.25)(0.75) ( 1.25)( 0.25)(0.75)(1.75)
= 147.2251 Approx
Example 5 In an examination, the number of candidates who obtained marks between certain limits are as follows:
Marks
No of candidates
Find no of candidates who obtained fewer than 70 marks.
Sol First, we form the difference table
Marks less than x No of candidates y ∇ ∇ ∇ ∇
−
−
−
−
62
17
Trang 3Here, we have h = 20, a = 99
∴ u = 70 99 1.45
20
− = − Now on applying ‘Newton’s backward difference formula, we get
f(70) = ( ) ( ) ( 1) 2 ( ) ( 1)( 2) 3 ( ) ( 1)( 2)( 3) 4 ( )
f a + ∇u f a + + ∇ f a + + + ∇ f a + + + + ∇ f a
= 235 + (–1.45)(17) + ( 1.45)( 0.45) ( 33) ( 1.45)( 0.45)(0.55) ( 18)
= 235 – 24.65 – 10.76625 – 1.076625
= 235 – 36.492875
= 198.507 { 198
∴ Total no of candidates who obtained fewer than 70 marks are 198
Example 6 The area A of a circle of diameter d is given for the following values:
d A
Find A for 105.
Sol First of all we form the difference table as follow:
−
648
766
100 7854
Here, h = 5, a = 100, x = 105
∴ u = 105 100 1
5
− = Now on applying Newton’s backward difference formula, we have
(105)
f = f a( )+ ∇u f a( )+u u(2!+1)∇2f a( )+u u( +1)(3!u+2)∇3f a( )+u u( +1)(u4!+2)(u+3)∇4f a( )
Trang 4= 7854 1 766 40 2 1 2 3 2 1 2 3 4 4
= 7854 + 766 + 46
= 8666
Which is the required area for the given diameter of circle
Example 7 The probability integral 1 t 2
2 0
2
P= π∫πe− dt has the following values:
x
P
0.682689 0.706282 0.728668 0.749856 0.769861 0.788700
Calculate P for x = 1.235
Sol First we form the difference table
−
−
−
−
−
( ) 1.00 0.682689
0.023593
0.018839 1.25 0.788700
Here, h = 0.05 a = 1.20
∴ u = 1.235 1.20 0.3
0.05
( )
f x = ( ) ( ) ( 1) 2 ( ) ( 1)( 2) 3 ( )
f a + ∇u f a + + ∇ f a + + + ∇ f a +
= 0.788700 ( 0.3)(0.018839) ( 0.3)(0.7)( 0.001166) ( 0.3)(0.7)(1.7)(0.000017)
( 0.3 (0.7)(1.7)(2.7)) ( 0.3)(0.7)(1.7)(2.7)(3.7)
Trang 5= 0.788700 – 0.0056517 + 0.0012243 – 0.0000010115 – 0.00000008032
= 0.7888225488 – 0.00566189532
= 0.78316065356
Example 8: Calculate the value of tan 48°15′ from the following table:
1.00000 1.03553 1.07237 1.11061 1.15037 1.19175
x
tan x
Sol Given that a + nh = 50
h = 1
a + nh + uh = 48°15′ = 48.25°
The difference table for given data is as follows:
°
°
°
−
°
°
3553
4138
a nh a nh a nh a nh
y+ + ∇u y + + + ∇ y+ + + + ∇ y + +
5
48.25
( 1.75)( 0.75)(0.25)(1.25) ( 1.75)( 0.75)(0.25)(1.25)(2.25)
5
48.25
10 y = 112040.2867
⇒ y48.25 = tan 48°15′ = 1.120402867
Trang 6PROBLEM SET 4.2
1 The population of a town is as follows:
Year Population in lakhs
Estimate the increase in population during the period 1955 to 1961
[Ans 621036.8 lakhs.]
2 From the following table find the value of tan 17°
tan 0 0.0699 0.1405 0.2126 0.2867 0.3640 0.4402
θ
θ
[Ans 0.3057]
3 From the given table find the value of log 5875
log 1.60206 1.65321 1.69897 1.74036 1.77815 1.81291
x
x
[Ans 3.7690058]
4 From the following table, find y when x = 1.84 and 2.4
5.474 6.050 6.686 7.389 8.166 9.025 9.974
x
x
e
[Ans 6.36, 11.02]
5 From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policy maturing at the age of 63:
( .) 114.84 96.16 83.32 74.48 68.48
Age Premium in Rs
[Ans 70.585152]
6 The values of annuities are given for the following ages Find the value of annuity at the age of 271
2.
Age
Annuity
16.195 15.919 15.630 15.326 15.006
[Ans 15.47996]
7 Show that Newton’s Gregory interpolation formula can be written in the form as
x
u =u + ∆ − ∆x u xa u +xab∆ u −xabc∆ u +
where a = 1 1( 1), = 1 1 ( +1), = 1 1( 1)
Trang 74.4 CENTRAL DIFFERENCE FORMULAE
As earlier we study formulae for leading terms and differences These formulae are fundamental and are applicable to nearly all cases of interpolation, but they do not converge as rapidly as central difference formulae The main advantage of central difference formulae is that they give more accurate result than other method of interpolation Their disadvantages lies in complicated calculations and tedious expression, which are rather difficult to remember These formulae are used for interpolation near the middle of a argument values In this category we use the following formulae:
4.4.1 Gauss Forward Difference Formula
We know Newton’s Gregory forward difference formula is given by
f a hu+ = ( ) ( ) ( 1) 2 ( ) ( 1)( 2) 3 ( )
f a + ∆u f a + − ∆ f a + − − ∆ f a
+ ( 1)( 2)( 3) 4 ( )
4!
f a
Substitute a = 0, h = 1 in (1), we get
f u( ) = (0) (0) ( 1) 2 (0) ( 1)( 2) 3 (0) ( 1)( 2)( 3) 4 (0)
f + ∆u f + − ∆ f + − − ∆ f + − − − ∆ f +
.(2) Now obtain the values of ∆2f(0),∆3f(0),∆4f(0)
To get these values,
3f( 1)
∆ − = ∆2f(0)− ∆2f( 1)−
⇒ ∆2f(0) = ∆3f( 1)− + ∆2f( 1)−
Also, ∆4f( 1)− = ∆3f(0)− ∆3f( 1)−
⇒ ∆3f(0) = ∆4f( 1)− + ∆3f( 1)−
5f( 1)
∆ − = ∆4f(0)− ∆4f( 1)−
⇒ ∆4f(0) = ∆5f( 1)− + ∆4f( 1)−
6f( 1)
∆ − = ∆5f(0)− ∆5f( 1)−
⇒ ∆5f(0) = ∆6f( 1)− + ∆5f( 1)− and so on
Substituting these values in equation (2)
( )
f u = (0) (0) ( 1) 3 ( 1) 2 ( 1) ( 1)( 2)[ 4 ( 1) 3 ( 1)]
f + ∆u f + − ∆ f − + ∆ f − + − − ∆ f − + ∆ f −
( )
f + ∆u f + − ∆ f − + − + − ∆ f −
6 ( 1)( 2)( 3)( 4)
( 1) 120
f
Trang 8( )
f u = f(0)+ ∆u f(0)+u u(2!−1)∆2f( 1)− +(u+1) (3!u u−1)∆3f( 1)− +(u+1) (u u4!−1)(u−2)∆4f( 1)−
5 ( 1) ( 1)( 2)( 3)
( 1)
5!
f
But ∆5f (–2) =∆4f (–1) – ∆4f (–2)
⇒ ∆4f (–1) =∆4f (–2) + ∆5f (–2)
and ∆6f (–2) =∆5f (–1) + ∆5f (–2)
⇒ ∆5f (–1) =∆5f (–2) + ∆6f (–2)
The equation (3) becomes
f u( ) = (0) (0) ( 1) 2 ( 1) ( 1) ( 1) 3 ( 1) ( 1) ( 1)( 2) 4 ( 2)
f + ∆u f + − ∆ f − + + − ∆ f − + + − − ∆ f −
( 1) ( 1)( 2) ( 1) ( 1)( 2)( 3)
+ ( 1) ( 1)( 2)( 3) 6 ( 2)
5!
f
+ − − − ∆ − ( )
f u
∴ = (0) (0) ( 1) 2 ( 1) ( 1) ( 1) 3 ( 1) ( 1) ( 1)( 2) 4 ( 2)
f + ∆u f + − ∆ f − + + − ∆ f − + + − − ∆ f −
( 2)( 1) ( 1)( 2) ( 1) ( 1)( 2)( 3)
This formula is known as Gauss forward difference formula
This formula is applicable when u lies between 0 and1
2
4.4.2 Gauss Backward Difference Formula
This formula is also solved by using Newton’s forward difference formula
Now, we know Newton’s formula for forward interpolation is
f a hu+ = f a + ∆u f a + − ∆ f a + − − ∆ f a + − − − ∆ f a +
(1)
Put a = 0, and h = 1, in equation (1), we get
f u = f + ∆u f + − ∆ f + − − ∆ f + − − − ∆ f +
(2)
(0) ( 1) ( 1) (0) ( 1) ( 1) (0) ( 1) ( 1) (0) ( 1) ( 1) and so on
∆ = ∆ − + ∆ −
On substituting these values in (2), we get
f u = f +u∆ − + ∆f f − + − ∆ f − + ∆ f − + − − ∆ f − + ∆ f −
( 1)( 2)( 3)
( 1) ( 1) 4!
Trang 9∴ 2 ( 1) ( 1) 3 ( 2)
f u = f + ∆ − + ∆u f u f − + − + − ∆ f − + −
+ ( 1)( 2) 4 ( 1) 1 ( 3)
f
= (0) ( 1) ( 1) 2 ( 1) ( 1) ( 1) 3 ( 1)
f + ∆ − +u f + u∆ f − + + − ∆ f −
+( 1) ( 1)( 2) 4 ( 1)
4!
u u u u
f
Again ∆3f( 1)− = ∆3f( 2)− + ∆4f( 2)−
4f( 1) 4f( 2) 5f( 2)
5f( 1) 5f( 2) 6f( 2)
∆ − = ∆ − + ∆ − and so on
Therefore, equation (3) becomes
f u = f + ∆ − +u f + ∆ f − + + − ∆ f − + ∆ f −
+( 1) ( 1)( 2) 4 ( 2) 5 ( 2) ( 1) ( 1)( 2)( 3) 5 ( 2) 6 ( 2)
f u = f + ∆ − +u f + ∆ f − + + − ∆ f − + + − + − ∆ f −
5 ( 1) ( 1)( 2) ( 3)
f
f u = f + ∆ − +u f + ∆ f − + + − ∆ f − + + + −
4 ( 2)( 1) ( 1)( 2) 5
5!
This is known as Gauss Backward difference formula and useful when u lies between
1
and 0
2
4.4.3 Stirling’s Formula
This is another central difference formula and useful when | | 1 1 1
u < or− < <u It gives best estimation when 1 1
4 u4
− < This formula is obtained by taken mean of Gauss forward and Gauss backward difference formula
Gauss forward formula for interpolating central difference is,
f u = f + ∆u f + − ∆ f − + + − ∆ f − + + − − ∆ f −
( 2)( 1) ( 1)( 2) 5 ( 2) ( 1) ( 1)( 2)( 3) 6 ( 2)
Gauss Backward difference is,
Trang 104 ( 2) ( 2)( 1) ( 1)( 2) 5 ( 2)
5!
Take mean of Equation (1) and (2)
f u f ∆ + ∆ − f − + +
4 ( 1) ( 2)
( 2)
f
∆ − + ∆ −
5 ( 2)( 1) ( 1)( 2)
( 2) 5!
f
2 2
2
This is called Stirling’s formula
4.4.4 Bessel’s Interpolation Formula
This is one of the another type of central difference formula and obtained by (1) shifting the origin
by 1 in Gauss backward difference and then (2) replacing u by (u – 1), (3) take mean of this
equation with Gauss forward formula
Gauss backward difference formula is,
( )
f u = f + ∆ − +u f + ∆ f − + + − ∆ f − + + + − ∆ f −
5 ( 2)( 1) ( 1)( 2)
( 2) 5!
f
Now shift the origin by one, we get
( )
f u = f + ∆u f + + ∆ f + + − ∆ f − + + + − ∆ f −
5 ( 2)( 1) ( 1)( 2)
( 1) 5!
f
On replacing u by (u – 1)
( )
f u = f + − ∆u f + − ∆ f + − − ∆ f − + + − − ∆ f −
5 ( 1)(( 1) ( 2)( 3)
( 1) 5!
f
Gauss forward difference formula is,
f u = f + ∆u f + − ∆ f − + + − ∆ f − + + − − ∆ f −
( 2)( 1) ( 1)( 2) ( 1) ( 1)( 2)( 3)