1. Trang chủ
  2. » Công Nghệ Thông Tin

A textbook of Computer Based Numerical and Statiscal Techniques part 38 potx

10 350 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 108,92 KB

Nội dung

356 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES () 4003 , khfxhyk =++ ()( ) 0.2 0 0.2 1 0.0198 =+ − 0.039208= ∴ () () 0 1234 1 0.2 2 2 6 yykkkk =+ +++ ()( )( ) =+ +− +− +−   1 1 0 2 0.02 2 0.0198 0.039208 6 1.0000 0.198013=− = 0.9801986 ≅ 0.9802 The exact value of y(0.2) is 0.9802. Example 3. Solve the equation () yxy ′ =+ with y 0 = 1 by Runge-Kutta rule from x = 0 to x = 0.4 with h = 0.1. Sol. Here () =+ = , , 0.1fxy x yh , given 0 1 y = when 0 0. x = We have, () 100 , khfxy = () 0.1 0 1 0.1 =+= 1 200 , 22 k h khfx y  =++   () 0.1 0.05 1.05 =+ 0.11= 2 300 , 22 k h khfx y  =++   () 0.1 0.05 1.055 =+ 0.1105= () 4003 , khfxhyk =++ () 0.1 0.1 1.1105 =+ 0.12105= () () 101234 0.1 1 22 6 x yy y k k kk = = =+ +++ () 1 1 0.1 0.22 0.2210 0.12105 6 =+ + + + 1.11034= Similarly for finding () 2 0.2 yyx == , we get () () 111 0.1 0.1 1.11034 0.121034 khfxy == +=   1 211 , 22 k h khfx y  =++   [] 0.1 0.15 1.11034 0.660517 0.13208 =++ = 2 311 , 22 k h khfx y  =++   [] 0.1 0.15 1.11034 0.06604 0.13208 =++ = NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION 357 () =++ 4113 , khfxhyk [] 0.1 0.20 1.11034 0.13263 0.14263 =++ = ∴ () () 211234 0.2 1 22 6 x yy y k k kk = = =+ +++ () 1 1.11034 0.121034 2 0.13208 0.13263 0.14429 1.2428 6 =+ + ++ =   Similarly, for finding () 3 0.3 yyx == , we get () () ==+=   122 0.1 0.2 1.2428 0.14428 khfxy 1 222 , 22 k h khfx y  =++   [] 0.1 0.25 132428 0.07214 0.15649 =++= 2 322 , 22 k h khfx y  =++   [] 0.1 0.25 1.2428 0.07824 0.15710 =++ = () 4223 , khfxhyk =++ [] 0.1 0.30 1.2428 0.15710 0.16999 =++ = ∴ () () 321234 0.3 1 22 6 x yy y k K Kk = = =+ +++ 0.13997= Similarly, for finding () 4 0.4 yyx == , we get () [] 1 0.1 0.3 1.3997 0.16997 k =+= ⇒ 1 0.16997 k = () [] 2 0.1 0.35 1.3997 0.08949 0.18347 k =++= ⇒ 2 0.18347 k = () [] =++= 3 0.1 0.35 1.3997 0.9170 0.18414 k ⇒ 3 0.18414 k = () [] 4 0.1 0.4 1.3997 0.18414 0.19838 k =++= ⇒ 1 0.19838 k = ∴ () 4 1 1.3997 0.16997 2 0.18347 0.18414 0.19838 6 y =+ + + +   4 1.5836 y = . Ans. Example 4. Given dy yx dx =− with y(0) = 2, find y(0.1) and y(0.2) correct to 4 decimal places. Sol. We have 00 0, 2, 0.1 xy h=== Then, we get () 100 , khfxy = () 0.1 2 0 0.2 =−= 358 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES 1 200 , 22 k h khfx y  =++   0.2 0.1 0.1 2 0 0.205 22   =+−+=     2 300 , 22 k h khfx y  =++   0.205 0.1 0.1 2 0 0.20525 22   =+−+=     () 4003 , khfxhyk =++ [] 0.1 2 0.20525 (0 0.1) 0.210525 =+ −+= Therefore, [] 0 1234 1 22 6 yy k k k k =+ + + + 2 0.2051708 2.2051708=+ = ⇒ () 0.1 2.2052y = Corect to 4 decimal places. For () 0.2y , we have 0 0.1, x = 0 2.2052 y = , we get () 100 , khfxy = () 0.1 2.2052 0.1 0.21052 =−= 1 200 , 22 k h khfx y  =++   0.21052 0.1 0.1 2.2052 0.1 0.216046 22   =+−+=     2 300 , 22 kh khfx y  =++   0.216046 0.1 0.1 2.2052 0.1 0.2163223 22   =+−+=     () 4003 , khfxhyk =++ () 0.1 2.2052 0.2163223 0.1 0.1 0.22215223 =+−+=   Hence, () [] 1234 1 0.2 2.2052 2 2 6 ykkkk = + +++ 2.2052 0.2162348=+ 2.4214= . Ans. Example 5. Solve 2 2 dy xy dx =− with y(0) = 1 and h = 0.2 on the interval [0.1] using Runge-Kutta fourth order method. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION 359 Sol. As per given, we have 0 0, x = 0 1 y = , 0.2h = () 100 , khfxy = ()()() 2 20.2 0 1 0 =− = 1 200 , 22 k h khfx y  =++   () () 2 0.2 20.2 1 0.4 2  =− =−   2 300 , 22 k h khfx y  =++   () () 2 0.2 2 0.2 0.98 0.38416 2  =− =−   () 4003 , khfxhyk =++ ()()( ) 2 22 0.2 0.2 0.961584 0.0739715 =− =− Hence, () [] 01234 1 0.2 2 2 6 yykkkk =+ +++ [] 1 1 0 0.08 0.076832 0.0739715 6 =+ − − − 0.9615328= Now, we have 11 0.2, 0.9615328, 0.2, xy h== = we get () 111 , khfxy = ()()( ) 2 2 0.2 0.2 0.9615328 0.0739636 =− =− 1 211 , 22 k h khfx y  =++   ()()( ) =− = 2 2 0.2 0.3 0.924551 0.1025754 2 311 , 22 k h khfx y  =++   = – 2(0.2)(0.3)(0.9102451) 2 = 0.0994255 k 4 = hf(x 1 + h, y 1 + k 3 ) ()()( ) 2 2 0.2 0.4 0.8621073 0.1189166 =− =− Thus, ()  =++++   11234 1 0.4 2 2 6 yykkkk [] 1 0.9615328 0.0739636 0.2051508 0.1988510 0.1189166 6 =+−−−− 0.8620525= 360 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Similarly, we can obtained () 0.6 0.7352784y = () 0.8 0.6097519y = () 1.0 0.500073y = . Ans. Example 6. Solve , dy yz x dx =+ =+; dz xz y dx Given that y(0) = 1, z(0) = –1 for y(0.1), z(0.1). Sol. Here, () 1 ,, f xyz yz x =+ =+ 2 (, ,) fxyz xzy 000 0.1, 0, 1, 1 hxyz====− ()() ==+=− 11000 000 , , 0.1 k hfxyz hyz x ()() 12000 000 ,, 0.1 l hfxyz hxz y ==+= 11 210 0 0 ,, 222 klh khfx y z  =+++   () 1 0.05, 0.95, 0.95 0.08525 hf =−=− 11 220 0 0 ,, 222 kl h lhfx y z  =+++   2 (0.05, 0.95, 0.95) 0.09025 hf=−=− 22 310 0 0 ,, 222 kl h khfx y z  =+++   () 1 0.05, 0.957375, 0.954875 0.0864173 hf =−=− 22 320 0 0 ,, 222 kl h lhfx y z  =+++   2 (0.05, 0.957375, 0.954875 0.0864173 hf=−=− k 4 = hf 1 (x 0 + h,y 0 + h 3 , z 0 + l 3 ) = –0.073048 l 4 = hf 2 (x 0 + h, y 0 + h 3 , z 0 + l 3 ) = + 0.0822679 () = +++=− 1234 1 2 2 0.0860637 6 kkkkk () 1234 1 2 2 0.0907823 6 lllll =+++= () 10 0.1 1 0.0860637 0.9139363 yy yk ==+=− = () ==+=−+ =− 10 0.1 1 0.0907823 0.9092176 zz zk NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION 361 7.7 MILNE’S PREDICTOR-CORRECTOR METHOD Predictor-Corrector Methods Predictor-Corrector formulae are easily derived but require the previous evaluation of y and () 1 , yfxy = at a certain number of evenly spaced pivotal point (discrete points of 1 x of x-axis) in the neighbourhood of 0 . x In general the Predictor-Corrector methods are the methods which require the values of y at 12 , , nn n xx x −− For computing the value of y at 1n x + . A Predictor formula is used to predict the value of 1n y + . Now we discuss Milne’s method which is known as Predictor-Corrector methods. Milne’s Method The method is a simple and eresonable accurate method of solving the ordinary first order differential equation numerically. To solve the differential equation () , dy yfxy dx ′ == by this method we first obtain the approximate value of 1n y + by Predictor formula and then improve the value of 1n y + by means of a corrector formula. Both these formulas can be derived from the Newton forward interpolation formula as follows: From Newton’s formula, we have () ( ) () () () () − =+= +∆+ ∆ × 2 000 0 1 12 uu fx fx uh fx ufx fx () 3 0 (1)(2) 123 uu u fx −− +∆+ ×× (1) where 0 , xx u h − = or 0 . xx uh=+ Putting () ′ = yfx and () 00 yfx ′ = in the above formula, we get () ()() ()()() 23 4 00 0 0 0 112123 12 123 1234 uu uu u uu u u yyuy y y y −−−−−− ′′ ′ ′ ′ ′ =+∆+ ∆ + ∆ + ∆ × ×× ××× (2) Intergrating (2) from 0 x to 0 4 xh+ i.e. from 0u = to 4u = , we get () ()() 04 0 4 23 00 0 0 0 112 26 h x x uu uu u ydx h y u y y y + −−− ′′′ ′ ′ =+∆+ ∆+ ∆ ∫∫ 4 0 (1)(2)(3) ] 24 uu u u ydu −−− ′ +∆ (3 hdu = dx) which gives 0 0 23 4 00 0 0 04 20 8 28 48 3390 xxh yyhhy y y y +  ′′ ′ ′ ′ − = +∆+∆ +∆+∆   [considering upto fourth differences only] Using 1,E∆= − we get () () () 23 4 40 0 0 0 0 0 20 8 14 48111 3345 yyhy E y E y E y y  ′′ ′ ′′ −= + − + − + − +∆   362 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES ⇒ [] 2 40 12 3 0 414 22 345 h yy yy y y ′′ ′ ′ −= −+ +∆ (3) This is known as Milne’s predictor formula. The corrector formula is obtained by integrating (2) from x 0 to x 0 + 2h i.e., from u = 0 to u = 2. ydx x xh 0 0 2 + z = hyuy uu ydu′+ ′+ ′+ F H G I K J z 00 2 0 0 2 1 2 ∆∆ – bg ⇒ y 2 – y 0 = hy y y y22 1 3 1 90 00 2 0 4 0 ′+ ′+ ′ ′ L N M O Q P ∆∆ ∆ – Using 1E∆= − , and simplifying we get [] 4 20 0 12 0 4 390 hh yy y yy y ′′′ ′ =+ + + −∆ (4) Expression (4) is called Milne’s corrector formula. The general forms of equations (3) and (4) are [] 13 21 4 22 3 nn nn n h yy yy y +− −− ′′ ′ =+ ++ (5) and [] 11 1 1 4 3 nn n nn h yy y yy +− − + ′′′ =+ ++ (6) i.e., [] 321 1 4 22 3 nnnn n h yy yy y −−− + ′′ ′ −= ++ (7) and [] 11 1 1 4 3 nn n nn h yy y yy +− − + ′′′ =+ ++ (8) In terms of f the Predictor formula is [] 321 1 4 22 3 nnnn n h yy ff f −−− + =+ −+ (9) and the corrector formula is [] 11 1 1 4 3 nn n nn h yy f ff +− − + =+ ++ (10) Example 7. Tabulate by Milne’s method the numerical solution of dy xy dx =+ with initial conditions x 0 = 0, y 0 = 1, from x = 0.20 to x = 0.30. Sol. Here yxy ′ =+ 1 , , , , yyyyyyyy ′′ ′ ′′′ ′′ ′′′′ ′′′ ′′′′′ ′′′′ =+ = = = Hence, 000 011 yxy ′ =+=+= 00 1112 yy ′′ ′ =+ +=+= 00 2 yy ′′′ ′′ == 00 2, 2 yy ′′′′ ′′′′′ == Now taking 0.05,h = we get 1 1.1026, y = 2 1.2104, y = 3 1.3237 y = NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION 363 Using Milne’s Predictor formula, we get () 40 12 3 4 22 3 h yy yy y ′′ ′ =+ −+ () [] 40.05 1 2.2052 1.2104 2.6474 1.2428 3 =+ − + = 44 4 0.2 1.2428 1.4428 yxy ′ =+= + = Using corrector formula, we get [] 42 2 34 4 3 h yy y yy ′′′ =+ + + () [] 0.05 1.1104 1.2104 5.2948 1.4428 3 =+ ++ 1.2428= which is the same as the predicted value. ∴ 40.20 1.2428 yy== and 4 1.4428 y ′ = and putting n = 4, h = 0.05, we get [] 51 23 4 4 22 3 h yy yy y ′′ ′ =+ −+ [] 4(0.05) 1.0526 2.4208 1.3237 2.8856 3 =+ −+ 1.3181= 555 0.25 1.3181 1.5681 yxy ′ =+= + = . Using Milne’s corrector formula, we get 5 53 3 4 4 3 h yy y yy  ′ ′′ =+ + +   () [] 0.05 1.1737 1.3237 5.7712 1.5681 3 =+ ++ 1.3181= which is the same as the predicted value. ∴ 50.25 1.3181 yy== and 5 1.5681 y ′ = Again putting 5n = , 0.05h = and using Milne’s predictor formula, we get [] 62 34 5 4 22 3 h yy yy y ′′ ′ =+ −+ () [] 40.05 1.1104 2.6474 1.4428 3.1362 3 == −+ 1.3997= 6 0.3 1.39972 1.6997 y ′ =+ = which is corrected by [] 64 4 56 4 3 h yy y yy ′′′ =+ + + () [] 0.05 1.2428 1.4428 6.2724 1.6997 1.3997 3 =+ ++ = 364 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES which is same as the predicted value. ∴ 60.30 1.3997 yy== and 6 1.6997 y ′ = The result can be put in the tabular form x 0.20 0.25 0.30 y 1.2428 1.3181 1.3997 y ′ 1.4428 1.5681 1.6997 Example 8. Compute y(2) if y(x) is the solution of () dy 1 =x+y dx 2 using Milne Predictor-corrector method. Given () () () () y 0 = 2, y 0.5 = 2.6336, y 1.0 = 3.595, y 1.5 = 4.968. Sol. Here, we have 00 0, 2 xy== () 0 1 02 1 2 f =+= 11 0.5, 2.636 xy=− = () 1 1 0.5 2.636 1.568 2 f =+ = 22 1, 3.595 xy== () 2 1 1 3.595 2.2975 2 f =+ = 33 1.5, 4.968 xy== () 3 1 1.5 4.968 3.234 2 f =+ = Using Predictor formula, we get y 4 = y 0 + 4 3 h (2f 1 – f 2 + 2f 3 ) = 2.0 + 405 3 × . (2 × 1.568 – 2.2975 + 2 × 3.234) 6.871= and () 444 1 2 6.871 4.4335 2 fxy =+= + = Using corrector formula, we get [] 42 2 34 4 3 h yy f ff =+ + + () 0.5 3.595 2.2975 4 3.234 4.4355 3 =+ +×+ 6.873166=≈ 6.8732 Thus, corrected () () 444 11 2.0 6.8732 4.4366 22 fxy =+= + = Again, using Corrector formula, we get () 42 2 34 4 3 h yy f ff =+ + + () 0.5 3.595 2.2975 4 3.234 4.4366 3 =+ +×+ 6.87335 6.8734=≈ NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION 365 Example 9. The differential equation dy dx = 1 + y 2 satisfies the following sets of values of x and y. x 0 0.2 0.4 0.6 y 0 0.2027 0.4228 0.6871 Sol. Firstly, we calculate the following f 0 =1 + y 0 2 = 1 f 1 =1 + y 1 2 = 1.0411 f 2 =1 + y 2 2 = 1.1787 f 3 =1 + y 3 2 = 1.4681 Using Predictor formula, we get () =+ −+ 40 12 3 4 22 3 h yy ff f () () 40.2 0 2 1.0411 1.1787 2 1.4681 3 × =+ − +   1.0239= ⇒ () =+ =+ = 2 2 44 1 1 1.0239 2.0480 fy Using Corrector formula, we have [] 42 2 34 4 3 h yy f ff =+ + + () 0.2 0.4228 1.1787 4 1.4681 2.0480 3 =+ +×+ 1.0294= ⇒ () 0.8 1.0294y = The corrected value of 2 44 1 2.0597 fy=+ = Now, to find () 1f we use predictor formula such that y 5 = y 1 + 4 3 h (2f 1 – f 3 + 2f 4 ) = 0.2027 + 402 3 × . [2(1.1787) – 1.4681 + 2(2.0597)] = 1.5384 and f 5 =1 + y 5 2 = 1 + (1.5384) 2 = 3.3667 Finally using corrector formula, we get [] 53 3 45 4 3 h yy f ff =+ + + () () 0.2 0.6841 1.4681 4 2.0597 3.3667 3 =+ + + 1.5556733 1.5557== . . 1.3997 3 =+ ++ = 364 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES which is same as the predicted value. ∴ 60.30 1.3997 yy== and 6 1.6997 y ′ = The result can be put in the tabular form x 0.20. differential equation () , dy yfxy dx ′ == by this method we first obtain the approximate value of 1n y + by Predictor formula and then improve the value of 1n y + by means of a corrector formula the previous evaluation of y and () 1 , yfxy = at a certain number of evenly spaced pivotal point (discrete points of 1 x of x-axis) in the neighbourhood of 0 . x In general the Predictor-Corrector

Ngày đăng: 04/07/2014, 15:20

TỪ KHÓA LIÊN QUAN