1. Trang chủ
  2. » Giáo án - Bài giảng

Đề-ĐA Thi thu ĐH Khối A Hậu Lộc 4 Thanh Hóa -2009-2010

5 298 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 224,5 KB

Nội dung

TRNG THPT HU LC 4 *** THI TH I HC LN 1 NM HC 2009 2010 Mụn thi :TON - Khi A (Thi gian lm bi 180 phỳt, khụng k thi gian giao ) phần chung cho tất cả thí sinh:(7,0 điểm) Câu I (2 điểm) 1. Khảo sát và vẽ đồ thị hàm số 2 ( 1) ( 2)y x x= + 2. Đờng thẳng qua M (2; 0) và có hệ số góc k . Tìm k để cắt đồ thị hàm số 3 3 2y x x= tại 4 điểm phân biệt Câu II ( 2 điểm) 1. Giải phơng trình : 2 2 9 3 3 1 1 log ( 5 6) log log 3 2 2 x x x x + = + 2.Giải phơng trình tìm nghiệm (0;2 )x : 4sin cos 2 3(sin cos ) 3 0x x x x + + = Câu III: (1 điểm) Tìm họ nguyên hàm của hàm số: 2 3 ( ) ( 1) x x f x x + = + e x Câu IV: (1 điểm) Cho tứ diện SABC có đáy là tam giác ABC cân, AB = AC = a. Mặt phẳng (SBC) vuông góc với (ABC) và SA = SB = a Chứng minh tam giác SBC vuông. Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp SABC theo a và x, biết SC = x Câu V:(1 điểm) Cho 3 số dơng a,b,c thoả mãn: ab + bc + ca = abc. Chứng minh: 1 1 1 1 ( 1) ( 1) ( 1) 2a a b b c c + + Phần riêng: (3,0 điểm) Thí sinh chỉ đợc chọn một trong hai phần A.Theo chơng trình Chuẩn Câu VI.a (2 điểm) 1.Cho đờng tròn (C) có phơng trình: x 2 +y 2 -4x -6y -12 = 0. Tìm toạ độ điểm M (d) sao cho MI = 2R với I là tâm và R là bán kính đờng tròn (C). Biết (d) có phơng trình: 2x y +3 = 0. 2.Cho ABC có 3 đỉnh A, B, C đều thuộc đồ thị hàm số 1 y x = (C). Chứng minh trực tâm H của ABC cũng thuộc đồ thị (C) Câu VII.a (1 điểm): Cho đa thức P(x) = (19x-18) 2010 . Khai triển đợc: P(x) = a 0 + a 1 x +a 2 x 2 + + a 2010 x 2010 . Tính tổng S = a 0 + a 1 + a 2 + + a 2010 B.Theo chơng trình Nâng cao Câu VI.b:( 2 điểm) Cho đờng tròn (C): x 2 + y 2 + 2x 6y - 6 = 0 và đờng thẳng (d):x y +2 =0. a)Tìm điểm M thuộc đờng thẳng (d) sao cho từ M kẻ đợc hai tiếp tuyến đến đờng tròn (C) vuông góc với nhau. b)Viết phơng trình đờng thẳng d và cắt đờng tròn (C) tại P; Q sao cho : PQ = 6. Câu VII.b:(1 điểm) Tìm hệ số của x 15 trong khai triển sau: 10 3 2 1 (2 )x x + đáp án đề thi thử đại học năm học 2009-2010. Môn: toán Khối :A (Lần 1) Câu Nội dung Điểm I(2điểm) 1(1.25 điểm). Hàm số 3 3 2y x x= .Tập xác định: R . Giới hạn 3 ( 3 2) lim x x x + = + ; 3 ( 3 2) lim x x x = . Sự biến thiên: , 2 , 3 3 0 1; 1y x y x x= = = = . y , >0 1 1 x x < > và y , <0 1 1x < < Hàm số đồng biến trên mỗi khoảng ( ; 1);(1; ) + , hàm số nghịch biến trên khoảng(-1; 1 ). Điểm cực đại (-1; 0 ); điểm cực tiểu ( 1; -4) Bảng biến thiên x -1 1 + y , + 0 - 0 + y 0 + -4 Điểm uốn: y =6x. Điểm uốn I(0; -2) . Vẽ đồ thị: (học sinh tự vẽ) 0.5 0.5 0.5 2.(0.75 điểm) Đờng thẳng (d) dạng y = k ( x-2 ) luôn qua điểm M (2; 0) thuộc đồ thị.Dựa vào đồ thị (C) vẽ đồ thị hàm số 3 3 2y x x= (C 1 ) Xét (d 1 ) qua M(2;0) và I( 0; -2) phơng trình: y = x -2 ( với k = 1) Xét (d 2 ) qua M(2; 0) và tiếp xúc (C 1 ) phơng trình: y = (6 93 )(x-2) với k = 6 93 Để (d) cắt (C 1 ) tại 4 điểm khi 1< k < 6 93 0.25 0.25 0.25 II (2điểm) 1.(1 điểm)Đk: > 3 2 1 x x x 3log 2 1 log)3)(2(log 333 + = x x xx 2 3)1( )3)(2( = xx xx 2 1 2 = x x Xét x > 2 , 3x vô nghiệm Xét 1< x < 2 nghiệm là 3 5 =x 2.(1 điểm) pt = = = 2 3 sin 2 3 cos 0)3sin2)(3cos2( x x xx 6 11 ; 6 ; 3 2 ; 3 )2;0( ==== xxxxx 0.25 0.25 0.25 0.25 0.5 0.5 III (1điểm) Phân tích hàm số f(x) ' 2 ( ) ( ) 1 1 (1 ) x x x e e e f x x x x = = + + + 2 3 ( ) 1 (1 ) x x x x e e dx x x + = + + +C 0.5 0.5 IV (1điểm) Gọi I là trung điểm của BC.Có AI vuông góc BC.Mà (SBC) ( )ABC nên ( )AI SBC .Lại có á=AB=AC=a nên I là tâm đờng tròn ngoại tiếp SBC .Vậy SBC vuông tại S. Trong (ABC) dựng trung trực AB cắt AI tại tâm O mặt cầu ngoại tiếp chóp Bán kính R= 2 1 2 AB AI = 2 2 2 3 a a x 0.5 0.5 V (1điểm) Có 1 1 1 1 a b c + + = .Xét 2 2 1 1 1 1 1 1 ( 1) (1 ) ( ) a a a a a b c = = + Đặt 1 1 1 , , 1, ; ;x y z x y z x y z a b c = = = + + = dơng, thì 2 2 2 1 1 1 ; ; ( 1) ( 1) ( 1) x y z a a y z b b x z c c x y = = = + + + .áp dụng côsi: 2 2 2 4 4 4 x y z x y z y x z y x z z x y z x y + + + + + + + + + 2 2 2 1 2 2 x y z x y z y z x z x y + + + + = + + + Dấu = khi a=b=c=3 0.25 0.25 0.25 0.25 S A B C I VI.a (2điểm) 1. M(t; 3 + 2t): IM = 10 với I( 2; 3) 4 24 5 t t = = . Có hai điểm M: M(-4; -5) và 24 63 ( ; ) 5 5 M 2. Gọi 1 1 1 ( ; ); ( ; ); ( ; )A a B b C c a b c và trực tâm H (x; y).Đk: a,b, c phân biệt và khác 0 Đk: 1 1 1 ( )( ) ( )( ) 0 . 0 1 1 1 . 0 ( )( ) ( )( ) 0 1 1 1 x a c b y AH BC a c b BH AC x b c a y b c a y x a x bc abc abc y y abc y b ac abc + = = = + = = = = = uuuuruuur uuur uuur Vậy H đồ thị hàm số 1 y x = 0.5 0.5 0.25 0.25 0.5 Câu VII.a Ta có (19x-18) 2010 =(18-19x) 2010 . Các hệ số a i = (-1) i C i 2010 18 2010-i 19 i x i nên tổng các hệ số đợc tính: S= C 0 2010 18 2010 C 1 2010 18 2009 .19 +C 2 2010 18 2008 19 2 + + (-1) i C i 2010 18 2010-i 19 i + +C 2010 2010 19 2010 = (18-19) 2010 =1 0.25 0.25 0.5 Câu VI.b 1. Giả sử hai tiếp tuyến MA,MB vuông góc nhau tại M tứ giác MAOB là hình vuông nên 2 4 2OM R= = .Gọi M( t; 2 +t) với OM= 4 2 15 15 t t = = .Vậy có hai điểm : ( 15; 15 2); ( 15; 15 2)M M+ + 2. Đờng thẳng d có phơng trình dạng: x+y +c=0. Theo gt khoảng cách từ O đến bằng 2 2 4 3 7 = . Từ đó c = 2 + 14 hoặc c = 2 - 14 . Vậy có phơng trình: x+y +2 + 14 =0; x+ y + 2 - 14 =0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 Câu VII.b Xét khai triển: 10 3 2 1 (2 )x x + = C 0 10 + C 1 10 x 3 (2-x 2 ) + + C i 10 x 3i (2-x 2 ) i . + +C 10 10 x 30 (2-x 2 ) 10 Số hạng tổng quát có dạng: C i 10 x 3i 2 0 ( ( 1) 2 ) i k k i k k i k C x = Số hạng chứa x 15 khi đó 3i+2k = 15 với 0 10;0 3 5i k i i . Với i=3 thì k = 3 Với i =4 thì k = 3 2 (loại) Với i = 5 thì k = 0. Vậy hệ số của số hạng chứa x 15 là: -C 3 10 C 3 3 +C 5 10 C 0 10 = C 5 10 -C 3 10 d A B M O Q P . )A a B b C c a b c và trực tâm H (x; y).Đk: a, b, c phân biệt và khác 0 Đk: 1 1 1 ( )( ) ( )( ) 0 . 0 1 1 1 . 0 ( )( ) ( )( ) 0 1 1 1 x a c b y AH BC a c b BH AC x b c a y b c a y x a x bc abc abc y y. 0. 2.Cho ABC có 3 đỉnh A, B, C đều thu c đồ thị hàm số 1 y x = (C). Chứng minh trực tâm H c a ABC cũng thu c đồ thị (C) Câu VII .a (1 điểm): Cho a thức P(x) = (19x-18) 2010 . Khai triển đợc: . (19x-18) 2010 . Khai triển đợc: P(x) = a 0 + a 1 x +a 2 x 2 + + a 2010 x 2010 . Tính tổng S = a 0 + a 1 + a 2 + + a 2010 B.Theo chơng trình Nâng cao Câu VI.b:( 2 điểm) Cho đờng tròn (C):

Ngày đăng: 04/07/2014, 06:00

TỪ KHÓA LIÊN QUAN

w