CHƯƠNG 16: CÁC CHIẾN LƯỢC THIẾT KẾ THUẬT TOÁN pdf

34 528 2
CHƯƠNG 16: CÁC CHIẾN LƯỢC THIẾT KẾ THUẬT TOÁN pdf

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

CHƯƠNG 16 CÁC CHIẾN LƯỢC THIẾT KẾ THUẬT TOÁN Với một vấn đề đặt ra, làm thế nào chúng ta có thể đưa ra thuật toán giải quyết nó? Trong chương này, chúng ta sẽ trình bày các chiến lược thiết kế thuật toán, còn được gọi là các kỹ thuật thiết kế thuật toán. Mỗi chiến lược này có thể áp dụng để giải quyết một phạm vi khá rộng các bài toán. Mỗi chiến lượccác tính chất riêng và chỉ thích hợp cho một số dạng bài toán nào đó. Chúng ta sẽ lần lượt trình bày các chiến lược sau: chia-để-trị (divide-and-conquer), quy hoạch động (dynamic programming), quay lui (backtracking) và tham ăn (greedy method). Trong mỗi chiến lược chúng ta sẽ trình bày ý tưởng chung của phương pháp và sau đó đưa ra một số ví dụ minh họa. Cần nhấn mạnh rằng, ta không thể áp dụng máy móc một chiến lược cho một vấn đề, mà ta phải phân tích kỹ vấn đề. Cấu trúc của vấn đề, các đặc điểm của vấn đề sẽ quyết định chiến lược có khả năng áp dụng. 16.1 CHIA - ĐỂ - TRỊ 16.1.1 Phương pháp chung Chiến lược thiết kế thuật toán được sử dụng rộng rãi nhất là chiến lược chia-để-trị. Ý tưởng chung của kỹ thuật này là như sau: Chia vấn đề cần giải thành một số vấn đề con cùng dạng với vấn đề đã cho, chỉ khác là cỡ của chúng nhỏ hơn. Mỗi vấn đề con được giải quyết độc lập. Sau đó, ta kết hợp nghiệm của các vấn đề con để nhận được nghiệm của vấn đề đã cho. Nếu vấn đề con là đủ nhỏ có thể dễ dàng tính được nghiệm, thì ta giải quyết nó, nếu không vấn đề con được giải quyết bằng cách áp dụng đệ quy thủ tục trên (tức là lại tiếp tục chia nó thành các vấn đề con nhỏ hơn,…). Do đó, các 153 thuật toán được thiết kế bằng chiến lược chia-để-trị sẽ là các thuật toán đệ quy. Sau đây là lược đồ của kỹ thuật chia-để-trị: DivideConquer (A,x) // tìm nghiệm x của bài toán A. { if (A đủ nhỏ) Solve (A); else { Chia bài toán A thành các bài toán con A 1 , A 2 ,…, A m ; for (i = 1; i <= m ; i ++) DivideConquer (A i , x i ); Kết hợp các nghiệm x i của các bài toán con A i (i=1, …, m) để nhận được nghiệm x của bài toán A; } } “Chia một bài toán thành các bài toán con” cần được hiểu là ta thực hiện các phép biến đổi, các tính toán cần thiết để đưa việc giải quyết bài toán đã cho về việc giải quyết các bài toán con cỡ nhỏ hơn. Thuật toán tìm kiếm nhị phân (xem mục 4.4.2) là thuật toán được thiết kế dựa trên chiến lược chia-để-trị. Cho mảng A cỡ n được sắp xếp theo thứ tự tăng dần: A[0] ≤ … ≤ A[n-1]. Với x cho trước, ta cần tìm xem x có chứa trong mảng A hay không, tức là có hay không chỉ số 0 ≤ i ≤ n-1 sao cho A[i] = x. Kỹ thuật chia-để-trị gợi ý ta chia mảng A[0…n-1] thành 2 mảng con cỡ n/2 là A[0…k-1] và A[k+1…n-1], trong đó k là chỉ số đứng giữa mảng. So sánh x với A[k]. Nếu x = A[k] thì mảng A chứa x và i = k. Nếu không, do tính được sắp của mảng A, nếu x < A[k] ta tìm x trong mảng A[0…k-1], còn nếu x > A[k] ta tìm x trong mảng A[k+1…n-1]. Thuật toán Tháp Hà Nội (xem mục 15.5), thuật toán sắp xếp nhanh (QuickSort) và thuật toán sắp xếp hoà nhập (MergeSort) sẽ được trình bày 154 trong chương sau cũng là các thuật toán được thiết kế bởi kỹ thuật chia-để- trị. Sau đây chúng ta đưa ra một ví dụ đơn giản minh hoạ cho kỹ thuật chia- để-trị. 16.1.2 Tìm max và min Cho mảng A cỡ n, chúng ta cần tìm giá trị lớn nhât (max) và nhỏ nhất (min) của mảng này. Bài toán đơn giản này có thể giải quyết bằng các thuật toán khác nhau. Một thuật toán rất tự nhiên và đơn giản là như nhau. Đầu tiên ta lấy max, min là giá trị đầu tiên A[0] của mảng. Sau đó so sánh max, min với từng giá trị A[i], 1 ≤ i ≤ n-1, và cập nhật max, min một cách thích ứng. Thuật toán này được mô tả bởi hàm sau: SiMaxMin (A, max, min) { max = min = A[0]; for ( i = 1 ; i < n , i ++) if (A[i] > max) max = A[i]; else if (A[i] < min) min = A[i]; } Thời gian thực hiện thuật toán này được quyết định bởi số phép so sánh x với các thành phần A[i]. Số lần lặp trong lệnh lặp for là n-1. Trong trường hợp xấu nhất (mảng A được sắp theo thứ tự giảm dần), mỗi lần lặp ta cần thực hiện 2 phép so sánh. Như vậy, trong trường hợp xấu nhất, ta cần thực hiện 2(n-1) phép so sánh, tức là thời gian chạy của thuật toán là O(n). Bây giờ ta áp dụng kỹ thuật chia-để-trị để đưa ra một thuật toán khác. Ta chia mảng A[0 n-1] thành các mảng con A[0 k] và A[k+1 n-1] với k = [n/2]. Nếu tìm được max, min của các mảng con A[0 k] và A[k+1 n-1], ta dễ dàng xác định được max, min trên mảng A[0 n-1]. Để tìm max, min trên 155 mảng con ta tiếp tục chia đôi chúng. Quá trình sẽ dừng lại khi ta nhận được mảng con chỉ có một hoặc hai phần tử. Trong các trường hợp này ta xác định được dễ dàng max, min. Do đó, ta có thể đưa ra thuật toán sau: MaxMin (i, j, max, min) // Biến max, min ghi lại giá trị lớn nhất, nhỏ nhất trong mảng A[i j] { if (i = = j) max = min = A[i]; else if (i = = j-1) if (A[i] < A[j]) { max = A[j]; min = A[i]; } else { max = A[i]; min = A[j]; } else { mid = (i+j) / 2; MaxMin (i, mid, max1, min1); MaxMin (mid + 1, j, max2, min2); if (max 1< max2) max = max2; else max = max1; if (min1 < min2) min = min1; else min = min2; } } Bây giờ ta đánh giá thời gian chạy của thuật toán này. Gọi T(n) là số phép so sánh cần thực hiện. Không khó khăn thấy rằng, T(n) được xác định bởi quan hệ đệ quy sau. T(1) = 0 T(2) = 1 156 T(n) = 2T(n/2) + 2 với n > 2 Áp dụng phương pháp thế lặp, ta tính được T(n) như sau: T(n) = 2 T(n/2) + 2 = 2 2 T(n/2 2 ) + 2 2 + 2 = 2 3 T(n/2 3 ) + 2 3 + 2 2 + 2 ……… = 2 k T(n/2 k ) + 2 k + 2 k-1 +… + 2 Với k là số nguyên dương sao cho 2 k ≤ n < 2 k+1 , ta có T(n) = 2 k T(1) + 2 k+1 – 2 = 2 k+1 – 2 ≤ 2(n-1) Như vậy, T(n) = O(n). 16.2 THUẬT TOÁN ĐỆ QUY Khi thiết kế thuật toán giải quyết một vấn đề bằng kỹ thuật chia-để-trị thì thuật toán thu được là thuật toán đệ quy. Thuật toán đệ quy được biểu diễn trong các ngôn ngữ lập trình bậc cao (chẳng hạn Pascal, C/C++) bởi các hàm đệ quy: đó là các hàm chứa các lời gọi hàm đến chính nó. Trong mục này chúng ta sẽ nêu lên các đặc điểm của thuật toán đệ quy và phân tích hiệu quả (về không gian và thời gian) của thuật toán đệ quy. Đệ quy là một kỹ thuật đặc biệt quan trọng để giải quyết vấn đề. Có những vấn đề rất phức tạp, nhưng chúng ta có thể đưa ra thuật toán đệ quy rất đơn giản, sáng sủa và dễ hiểu. Cần phải hiểu rõ các đặc điểm của thuật toán đệ quy để có thể đưa ra các thuật toán đệ quy đúng đắn. Giải thuật đệ quy cho một vấn đề cần phải thoả mãn các đòi hỏi sau: 1. Chứa lời giải cho các trường hợp đơn giản nhất của vấn đề. Các trường hợp này được gọi là các trường hợp cơ sở hay các trường hợp dừng. 2. Chứa các lời gọi đệ quy giải quyết các vấn đề con với cỡ nhỏ hơn. 3. Các lời gọi đệ quy sinh ra các lời gọi đệ quy khác và về tiềm năng các lời gọi đệ quy phải dẫn tới các trường hợp cơ sở. 157 Tính chất 3 là đặc biệt quan trọng, nếu không thoả mãn, hàm đệ quy sẽ chạy mãi không dừng. Ta xét hàm đệ quy tính giai thừa: int Fact(int n) { if (n = 0) return 1; else return n * Fact(n-1); // gọi đệ quy. } Trong hàm đệ quy trên, trường hợp cơ sở là n = 0. Để tính Fact(n) cần thực hiện lời gọi Fact(n-1), lời gọi này lại dẫn đến lời gọi F(n-2),…, và cuối cùng dẫn tới lời gọi F(0), tức là dẫn tới trường hợp cơ sở. Đệ quy và phép lặp. Đối với một vấn đề, có thể có hai cách giải: giải thuật đệ quy và giải thuật dùng phép lặp. Giải thuật đệ quy được mô tả bởi hàm đệ quy, còn giải thuật dùng phép lặp được mô tả bởi hàm chứa các lệnh lặp, để phân biệt với hàm đệ quy ta sẽ gọi là hàm lặp. Chẳng hạn, để tính giai thừa, ngoài hàm đệ quy ta có thể sử dụng hàm lặp sau: int Fact(int n) { if (n = = 0) return 1; else { int F= 1; for (int i = 1; i <= n ; i + +) F = F * i; return F; } } Ưu điểm nổi bật của đệ quy so với phép lặp là đệ quy cho phép ta đưa ra giải thuật rất đơn giản, dễ hiểu ngay cả đối với những vấn đề phức tạp. 158 Trong khi đó, nếu không sử dụng đệ quy mà dùng phép lặp thì thuật toán thu được thường là phức tạp hơn, khó hiểu hơn. Ta có thể thấy điều đó trong ví dụ tính giai thừa, hoặc các thuật toán tìm kiếm, xem, loại trên cây tìm kiếm nhị phân (xem mục 8.4). Tuy nhiên, trong nhiều trường hợp, các thuật toán lặp lại hiệu quả hơn thuật toán đệ quy. Bây giờ chúng ta phân tích các nhân tố có thể làm cho thuật toán đệ quy kém hiệu quả. Trước hết, ta cần biết cơ chế máy tính thực hiện một lời gọi hàm. Khi gặp một lời gọi hàm, máy tính tạo ra một bản ghi hoạt động (activation record) ở ngăn xếp thời gian chạy (run-time stack) trong bộ nhớ của máy tính. Bản ghi hoạt động chứa vùng nhớ cấp cho các tham biến và các biến địa phương của hàm. Ngoài ra, nó còn chứa các thông tin để máy tính trở lại tiếp tục hiện chương trình đúng vị trí sau khi nó đã thực hiện xong lời gọi hàm. Khi hoàn thành thực hiện lời gọi hàm thì bản ghi họat động sẽ bị loại bỏ khỏi ngăn xếp thời gian chạy. Khi thực hiện một hàm đệ quy, một dãy các lời gọi hàm được sinh ra. Hậu quả là một dãy bản ghi hoạt động được tạo ra trong ngăn xếp thời gian chạy. Cần chú ý rằng, một lời gọi hàm chỉ được thực hiện xong khi mà các lời gọi hàm mà nó sinh ra đã được thực hiện xong và do đó rất nhiều bản ghi hoạt động đồng thời tồn tại trong ngăn xếp thời gian chạy, chỉ khi một lời gọi hàm được thực hiện xong thì bản ghi hoạt động cấp cho nó mới được loại ngăn xếp thời gian chạy. Chẳng hạn, xét hàm đệ quy tính giai thừa, nếu thực hiện lời gọi hàm Fact(5) sẽ dẫn đến phải thực hiện các lời họi hàm Fact(4), Fact(3), Fact(2), Fact(1), Fact(0). Chỉ khi Fact(4) đã được tính thì Fact(5) mới được tính, … Do đó trong ngăn xếp thời gian chạy sẽ chứa các bản ghi hoạt động như sau: 159 Bàn ghi hoạt động cho Fact(5) Bàn ghi hoạt động cho Fact(4) Bàn ghi hoạt động cho Fact(3) Bàn ghi hoạt động cho Fact(2) Bàn ghi hoạt động cho Fact(1) Bàn ghi hoạt động cho Fact(0) Trong đó, bản ghi hoạt động cấp cho lời gọi hàm Fact(0) ở đỉnh ngăn xếp thời gian chạy. Khi thực hiện xong Fact(0) thì bản ghi hoạt động cấp cho nó bị loại, rồi bản ghi hoạt động cho Fact(1) bị loại,… Vì vậy, việc thực hiện hàm đệ quy có thể đòi hỏi rất nhiều không gian nhớ trong ngăn xếp thời gian chạy, thậm chí có thể vượt quá khả năng của ngăn xếp thời gian chạy trong bộ nhớ của máy tính. Một nhân tố khác làm cho các thuật toán đệ quy kém hiệu quả là các lời gọi đệ quy có thể dẫn đến phải tính nghiệm của cùng một bài toán con rất nhiều lần. Số Fibonacci thứ n, ký hiệu là F(n), được xác định đệ quy như sau: F(1) = 1 F(2) = 1 F(n) = F(n-1) + F(n-2) với n>2 Do đó, ta có thể tính F(n) bởi hàm đệ quy sau. int Fibo(int n) { if ((n = = 1) // (n = = 2)) return 1; else return Fibo (n-1) + Fibo(n-2); } Để tính F(7), các lời gọi trong hàm đệ quy Fibo dẫn ta đến phải tính các F(k) vói k<7, như được biểu diễn bởi cây trong hình dưới đây; chẳng hạn để tính F(7) cần tính F(6) và F(5), để tính F(6) cần tính F(5) và F(4), … 160 F(2) F(7) F(6) F(5) F(5) F(4) F(4) F(3) F(4) F(3) F(3) F(2) F(3) F(2) F(2) F(1) F(3) F(2) F(2) F(1) F(1) F(2) F(1) F(2) F(1) Từ hình vẽ trên ta thấy rằng, để tính được F(7) ta phải tính F(5) 2 lần, tính F(4) 3 lần, tính F(3) 5 lần, tính F(2) 8 lần và tính F(1) 5 lần. Chính sự kiện để tính F(n) ta phải tính các F(k), với k<n, rất nhiều lần đã làm cho hàm đệ quy Fibo kém hiệu quả. Có thể đánh giá thời gian chạy của nó là O(φ n ), trong đó = (1 + 5 )/2. Chúng ta có thể đưa ra thuật toán lặp để tính dãy số Fibonacci. Ý tưởng của thuật toán là ta tính lần lượt các F(1), F(2), F(3), …, F(n -2), F(n- 1), F(n) và sử dụng hai biến để lưu lại hai giá trị vừa tính. Hàm lặp tính dãy số Fibonacci như sau: int Fibo1(int n) { if ((n= = 1)//(n= = 2) return 1; else { int previous = 1; int current = 1; for (int k = 3 ; k <= n ; k ++) { current + = previous; previous = current – previous; } return current; } } Dễ dàng thấy rằng, thời gian chạy của hàm lặp Fibo1 là O(n). Để tính F(50) thuật toán lặp Fibo1 cần 1 micro giây, thuật toán đệ quy Fibo đòi hỏi 20 ngày, còn để tính F(100) thuật toán lặp cần 1,5 micro giây, trong khi thuật toán đệ quy cần 10 9 năm! Tuy nhiên, có rất nhiều thuật toán đệ quy cũng hiệu quả như thuật toán lặp, chẳng hạn các thuật toán đệ quy tìm, xem, loại trên cây tìm kiếm nhị phân (xem mục 8.4). Các thuật toán đệ quy: sắp xếp nhanh (QuickSort) 161 và sắp xếp hoà nhập (MergeSort) mà chúng ta sẽ nghiên cứu trong chương 17 cũng là các thuật toán rất hiệu quả. Trong mục 6.6 chúng ta đã nghiên cứu kỹ thuật sử dụng ngăn xếp để chuyển thuật toán đệ quy thành thuật toán lặp. Nói chung, chỉ nên sử dụng thuật toán đệ quy khi mà không có thuật toán lặp hiệu quả hơn. 16.3 QUY HOẠCH ĐỘNG 16.3.1 Phương pháp chung Kỹ thuật quy hoạch động giống kỹ thuật chia-để-trị ở chỗ cả hai đều giải quyết vấn đề bằng cách chia vấn đề thành các vấn đề con. Nhưng chia- để-trị là kỹ thuật top-down, nó tính nghiệm của các vấn đề con từ lớn tới nhỏ, nghiệm của các vấn đề con được tính độc lập bằng đệ quy. Đối lập, quy hoạch động là kỹ thuật bottom-up, tính nghiệm của các bài toán từ nhỏ đến lớn và ghi lại các kết quả đã tính được. Khi tính nghiệm của bài toán lớn thông qua nghiệm của các bài toán con, ta chỉ việc sử dụng các kết quả đã được ghi lại. Điều đó giúp ta tránh được phải tính nhiều lần nghiệm của cùng một bài toán con. Thuật toán được thiết kế bằng kỹ thuật quy hoạch động sẽ là thuật toán lặp, trong khi thuật toán được thiết kế bằng kỹ thuật chia-để-trị là thuật toán đệ quy. Để thuận tiện cho việc sử dụng lại nghiệm của các bài toán con, chúng ta lưu lại các nghiệm đã tính vào một bảng (thông thưòng là mảng 1 chiều hoặc 2 chiều). Tóm lại, để giải một bài toán bằng quy hoạch động, chúng ta cần thực hiện các bước sau: • Đưa ra cách tính nghiệm của các bài toán con đơn giản nhất. • Tìm ra các công thức (hoặc các quy tắc) xây dựng nghiệm của bài toán thông qua nghiệm của các bài toán con. • Thiết kế bảng để lưu nghiệm của các bài toán con. 162 [...]... RandInt(i,j), trong đó i, j là các số nguyên và 0 . lược thiết kế thuật toán, còn được gọi là các kỹ thuật thiết kế thuật toán. Mỗi chiến lược này có thể áp dụng để giải quyết một phạm vi khá rộng các bài toán. Mỗi chiến lược có các tính chất. CHƯƠNG 16 CÁC CHIẾN LƯỢC THIẾT KẾ THUẬT TOÁN Với một vấn đề đặt ra, làm thế nào chúng ta có thể đưa ra thuật toán giải quyết nó? Trong chương này, chúng ta sẽ trình bày các chiến lược thiết. O(n). 16.2 THUẬT TOÁN ĐỆ QUY Khi thiết kế thuật toán giải quyết một vấn đề bằng kỹ thuật chia-để-trị thì thuật toán thu được là thuật toán đệ quy. Thuật toán đệ quy được biểu diễn trong các ngôn

Ngày đăng: 01/07/2014, 21:20

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan