1. Trang chủ
  2. » Giáo án - Bài giảng

giáo án ôn tht tnthpt

19 179 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 777,5 KB

Nội dung

 C¸c ph¬ng ph¸p t×m nguyªn hµm I. Mơc tiªu. -Gióp häc sinh hƯ thèng ho¸ toµn bé c¸c kiÕn thøc vỊ nguyªn hµm cđa mét hµm sè. -VËn dơng b¶ng nguyªn hµm t×m ®ỵc nguyªn hµm cđa mét hµm sè. -Sư dơng thµnh th¹o ph¬ng ph¸p t×m nguyªn hµm b»ng c¸ch ®ỉi biÕn sè vµ ph¬ng ph¸p tõng phÇn. II. Néi dung. Hoa     !" 1.TÌM NGUYÊN HÀM CỦA MỘT HÀM SỐ: a.Kiến thức cần nắm vững : Các đònh nghóa nguyên hàm và họ nguyên hàm, các tính chất của nguyên hàm. Bảng nguyên hàm thường dùng. Bảng nguyên hàm của một số hàm số thường gặp : NGUYÊN HÀM CÁC HÀM SỐ SƠ CẤP THƯỜNG GẶP NGUYÊN HÀM CÁC HÀM SỐ HP : ( ) u u x = 1 2 2 1, . 2, , 1. 1 3, ln , 0. 4, . 5, , 0 1. ln 6, cos . sin 7, sin . cos 8, tan cos 9, cot sin x x x x dx x C x x dx C dx x C x x e dx e C a a dx C a a x dx x C x dx x C dx x C x dx x C x α α α α + = + = + ≠ − + = + ≠ = + = + < ≠ = + = − + = + = − + ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ( ) 1 2 2 1, . 2, , 1. 1 3, ln , 0. 4, . 5, , 0 1. ln 6, cos . sin 7, sin . cos 8, tan cos 9, cot sin u u u u du u C u u du C du u C u u x u e du e C a a du C a a u du u C u du u C du u C u du u C u α α α α + = + = + ≠ − + = + = ≠ = + = + < ≠ = + = − + = + = − + ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ b.Tìm nguyên hàm của một hàm số bằng đònh nghóa và tính chất. 1 Phương pháp giải: Thường đưa nguyên hàm đã cho về nguyên hàm của tổng và hiệu sau đó vận dụng bảng nguyên hàm thường dùng ⇒ kết quả. Ví du 1 : Tìm nguyên hàm các hàm số sau: a) f(x) = x 3 – 3x + x 1 b) f(x) = x 2 + x 3 c) f(x) = (5x + 3) 5 d) f(x) = sin 4 x cosx Giải a) = = − + = − + + ∫ ∫ ∫ ∫ ∫ 4 3 3 2 1 1 x 3 ( ) (x - 3x + ) x 3 ln x x 4 2 f x dx dx dx xdx dx x x C b) = = + = + + ∫ ∫ ∫ ∫ x x 2 3 ( ) (2 + 3 ) 2 3 ln2 ln3 x x x x f x dx dx dx dx C c) + + = = = + ∫ ∫ ∫ 6 5 5 (5 3) (5 3) ( ) (5x+ 3) (5x+ 3) 5 30 d x x f x dx dx C d) = = = + ∫ ∫ ∫ 5 4 4 sin ( ) sin x cosx sin x (sin ) 5 x f x dx dx d x C Ví du 2 ï: Tìm một nguyên hàm F(x) của hàm số f(x)=1+ sin3x biết F( 6 π )= 0. Giải Ta có F(x)= x – 1 3 cos3x + C. Do F( 6 π ) = 0 ⇔ 6 π - 1 3 cos 2 π + C = 0 ⇔ C = - 6 π . Vậy nguyên hàm cần tìm là: F(x)= x – 1 3 cos3x - 6 π . VÝ dơ 3: T×m nguyªn hµm c¸c hµm sè. 2 2 1 ) 2 2 3 5 ) 2 1 x a dx x x x b dx x − + − + − ∫ ∫ 2 2 1 ) 3 2 3 2 ) 4 4 c dx x x x d dx x x − + − + + ∫ ∫ c. T×m nguyªn hµm b»ng c¸ch ®ỉi biÕn sè: Ph¬ng ph¸p gi¶i: ®Ỉt t=u(x) VÝ dơ 4. T×m nguyªn hµm c¸c hµm sè 2 3 1 ) 3 1 3 ) 2 1 a dx x b dx x + − ∫ ∫ 3 2 1` ) 1 3 1 ) 1 2 x c dx x x d dx x − − + + + ∫ ∫ d. T×m nguyªn hµm b»ng ph¬ng ph¸p tõng phÇn: Ph¬ng ph¸p gi¶i: Sư dơng c«ng thøc: = − ∫ ∫ . . .u dv u v v du VÝ dơ 5. T×m nguyªn hµm c¸c hµm sè ) 2 .cos ) ( 1)sin 2 a x xdx b x xdx+ ∫ ∫ 2 ) (2 1) ln ) x c x e dx x d dx x + ∫ ∫ Cu #$  Bài tập đề nghò: 1. T×m nguyªn hµm c¸c hµm sè sau ®©y. 3 2 2 2 2 . (2 3 5) . . . 2 3 . sin . . ( 5) . . 2 2 1 x x x a x x dx b dx x x c dx d e e dx e dx x − + + + − ∫ ∫ ∫ ∫ ∫ 2. Tìm một nguyên hàm F(x) của hàm số f(x)=sin 2 x.cosx, biết giá trò của nguyên hàm bằng − 3 8 khi x= π 3 3. Tìm một nguyên hàm F(x) của hàm số f(x) = e 1-2x , biết F( = 1 ) 0 2 4. Tìm một nguyên hàm F(x) của hàm số f(x) = 3 2 2 2 3 3 1 2 1 x x x x x + + − + + , biết F( 1 1) 3 = %&' C¸c ph¬ng ph¸p tÝch ph©n-§ỉi biÕn sè I. Mơc tiªu. 3 -Gióp häc sinh tÝnh ®ỵc tÝch ph©n cđa mét sè hµm ®¬n gi¶n. -Sư dơng thµnh th¹o ph¬ng ph¸p tÝnh tÝch ph©n b»ng c¸ch ®ỉi biÕn sè . II. Néi dung. Hoa     !" 1/Các kiến thức cần nắm vững : Bảng nguyên hàm thường dùng. Đònh nghóa tích phân, các tính chất của tích phân. Phương pháp tính tích ph©n b»ng ph¬ng ph¸p ®ỉi biÕn sè. 2/Một số dạng toán thường gặp: Dạng 1: Tính tích phân bằng đònh nghóa và tính chất. Phương pháp giải: Thường đưa tích phân đã cho về tích phân của tổng và hiệu sau đó vận dụng bảng nguyên hàm thường dùng ⇒ kết quả. Ví dụ : Tìm tích phân các hàm số sau: a/ 3 3 1 ( 1)x dx − + ∫ b/ 4 4 2 4 ( 3sin ) cos x dx x π π − − ∫ c/ 2 2 1x dx − − ∫ Giải a/ 3 3 1 ( 1)x dx − + ∫ = 3 3 3 4 3 1 1 1 81 1 1 ( ) ( 3) ( 1) 24 4 4 4 x x dx dx x − − − + = + = + − − = ∫ ∫ b/ π π π π π π π π − − − − − = − = + = ∫ ∫ ∫ 4 4 4 4 4 4 2 2 4 4 4 1 ( 3sin ) 4 3 sin (4tan 3cos ) cos cos x dx dx xdx x x x x = π π π π + − − + − (4 tan 3cos ) [4 tan( ) 3cos( )] 4 4 4 4 =8 c/ 2 2 1x dx − − ∫ = 1 2 1x dx − − ∫ + 2 1 1x dx− ∫ = 1 2 (1 )x dx − − ∫ + 2 1 ( 1)x dx− ∫ =(x- 2 2 1 2 2 1 ) ( ) 2 2 x x x − + − =5 Dạng 2: Tính tích phân bằng phương pháp đổi biến dạng 1: Phương pháp giải: b1: Đặt x = u(t) (điều kiện cho t để x chạy từ a đến b) ⇒ dx = u (t). dt ′ b2: Đổi cận: x = a ⇒ u(t) = a ⇒ t = α x = b ⇒ u(t) = b ⇒ t = β ( chọn α , β thoả đk đặt ở trên) 4 b3: Viết b a f(x)dx ∫ về tích phân mới theo biến mới, cận mới rồi tính tích phân . Ví dụ: Tính : 1 2 0 1 x dx− ∫ §Ỉt x = sint ⇒ dx = cost.dt. Víi x ∈ [0;1] ta cã t ∈ [0; ] 2 π §ỉi cËn: x = 0 ⇒ t = 0 ; x= 1 ⇒ t = 2 π VËy 1 2 0 1 x dx− ∫ = 2 2 2 2 0 0 0 1 1 s 2 cos t.dt (1 cos2t).dt= ( ) 2 2 2 in t t π π π = + + ∫ ∫ = 4 π Chú ý: Khi gặp tích phân mà biểu thức dưới dấu tích phân có dạng :  2 2 a x− thì đặt x= a sint t ∈ [ ; ] 2 2 π π −  2 2 a x+ thì đặt x= a tgt t ∈ ( ; ) 2 2 π π −  2 2 x a− thì đặt x= sin a t t ∈ [ ; ] 2 2 π π − \ { } 0 Dạng 2: Tính tích phân f[ (x)] '(x)dx b a ϕ ϕ ∫ bằng phương pháp đổi biến. Phương pháp giải: b1: Đặt t = ϕ (x) ⇒ dt = '( ). dxx ϕ b2: Đổi cận: x = a ⇒ t = ϕ (a) ; x = b ⇒ t = ϕ (b) b3: Viết tích phân đã cho theo biến mới, cận mới rồi tính tích phân tìm được . Ví dụ : Tính tích phân sau : a/ 1 2 0 2 1 1 x I dx x x + = + + ∫ b/ 1 2 0 3. .J x x dx= + ∫ Giải: a/ Đặt t = x 2 + x +1 ⇒ dt = (2x+1) dx 5 Đổi cận: x = 0 ⇒ t =1 ; x = 1 ⇒ t = 3. Vậy I= 3 3 1 1 ln ln3 dt t t = = ∫ b/ Đặt t= 2 3x + ⇒ t 2 = x 2 + 3 ⇒ tdt = x dx Đổi cận: x = 0 ⇒ t = 3 ; x = 1 ⇒ t = 2 . Vậy J = 2 2 3 2 3 3 1 (8 3 3) 3 3 t t dt = = − ∫ Cu #$  Bài tập đề nghò: Bµi 1. TÝnh các tích phân sau: 1/I= π + ∫ 2 0 (3 cos2 ).x dx 2/J= + ∫ 1 0 ( 2) x e dx 3/K= + ∫ 1 2 0 (6 4 )x x dx Bµi 2. Tính các tích phân sau: 1/ π ∫ 2 sin 0 .cos . x e x dx 2/ + ∫ 1 0 1 x x e dx e 3/ + ∫ 1 1 ln e x dx x 4/ + ∫ 1 2 5 0 ( 3)x x dx ()* C¸c ph¬ng ph¸p tÝnh tÝch ph©n-Tõng phÇn I. Mơc tiªu. -Gióp häc sinh tÝnh ®ỵc tÝch ph©n cđa mét sè hµm ph©n thøc h÷u tØ. -Sư dơng thµnh th¹o ph¬ng ph¸p tÝnh tÝch ph©n b»ng ph¬ng ph¸p tõng phÇn . II. Néi dung. Hoa     !" 6 1/ Tính tích phân bằng phương pháp tùng phần: Công thức từng phần : . . . b b b a a a u dv u v v du= − ∫ ∫ Phương pháp giải: B1: Đặt một biểu thức nào đó dưới dấu tích phân bằng u tính du. phần còn lại là dv tìm v. B2: Khai triển tích phân đã cho theo công thức từng phần. B3: Tích phân b a vdu ∫ suy ra kết quả. Chú ý: a) Khi tính tính tích phân từng phần đặt u, v sao cho b a vdu ∫ dễ tính hơn ∫ b a udv nếu khó hơn phải tìm cách đặt khác. b) Khi gặp tích phân dạng : ( ). ( ). b a P x Q x dx ∫ - Nếu P(x) là một đa thức ,Q(x) là một trong các hàm số e ax+b , cos(ax+b) , sin(ax+b) thì ta đặt u = P(x) ; dv= Q(x).dx Nếu bậc của P(x) là 2,3,4 thì ta tính tích phân từng phần 2,3,4 lần theo cách đặt trên. - Nếu P(x) là một đa thức ,Q(x) là hàm số ln(ax+b) thì ta đặt u = Q(x) ; dv = P(x).dx Ví dụ 1: Tính các tích phân sau: a/ I= 2 0 .cos .x x dx π ∫ b/J= 1 .ln . e x x dx ∫ Giải a/ Đặt : cos . sin u x du dx dv x dx v x = =   ⇒   = =   (chú ý: v là một nguyên hàm của cosx ) Vậy I=x cosx 2 0 π - 2 0 sin .x dx π ∫ = cosx 2 0 π = -1 7 b/ Đặt : 2 1 . ln . 2 du dx u x x dv x dx x v  =  =   ⇒   =   =   Vậy J= lnx. 2 2 x 1 e - 2 2 2 2 2 1 1 1 1 1 1 1 . 2 2 2 2 4 4 e e e x e e e dx xdx x x + = − = − = ∫ ∫ 2/ Tính tích phân của một số hàm hữu tỉ thường gặp: a) Dạng bậc của tử lớn hơn hay bằng bậc của mẫu: Phương pháp giải: Ta chia tử cho mẫu tách thành tổng của một phần nguyên và một phần phân số rồi tính. Ví dụ: Tính các tích phân sau: a/ 2 2 2 1 1 1 2 1 1 1 (1 ) [ ln 2 1] 1 ln3 2 1 2 1 2 2 x dx dx x x x x = + = + - = + - - ò ò = 1 ln3 2 . b/ 0 0 3 3 2 2 0 1 1 1 3 1 5 23 ( 4 ) [ 4 ln 1] ln2 1 1 3 2 6 x x x x dx x x dx x x x x - - - + + = + + + = + + + - = - - - ò ò b) Dạng bậc1 trên bậc 2: Phương pháp giải: Tách thành tổng các tích phân rồi tính. *Trường hợp mẫu số có 2 nghiệm phân biệt: Ví dụ: Tính các tích phân : ( ) 2 2 1 5 1 6 x dx x x - - - ò Giải Đặt ( ) 2 5 1 6 x x x - - - = 5 5 ( 3) ( 2) ( 2)( 3) 2 3 ( 2)( 3) x A B A x B x x x x x x x - - + + = + = + - + - + - ⇒ A(x-3)+B(x+2)=5x-5 cho x=-2 ⇒ A=3. cho x=3 ⇒ B=2. Vậy ta có: ( ) 2 2 1 5 1 6 x dx x x - - - ò = 2 2 1 1 3 2 16 ( ) (3ln 2 2ln 3 ) ln 2 3 27 dx x x x x + = + + - = + - ò * Trường hợp mẫu số có nghiệm kép: Ví dụ: Tính các tích phân : 1 2 0 (2 1) 4 4 x dx x x + - + ò 8 Giải CI: 1 1 1 1 2 2 2 2 2 2 0 0 0 0 (2 1) 2 4 5 ( 4 4) 1 ( ) 5 4 4 4 4 4 4 4 4 ( 2) x dx x d x x dx dx x x x x x x x x x + - - + = + = + - + - + - + - + - ò ò ò ò =(ln 2 5 4 4 ) 2 x x x − + − − 1 0 5 ln4 2 = − CII: Đặt 2 2 2 2 2 1 2 1 ( 2) ( 2) 2 1 4 4 ( 2) 2 ( 2) ( 2) x x A B A x B A x B x x x x x x x + + - + = = + = Û - + = + - + - - - - ⇔ Ax -2A+B= 0 ⇔ 2 2 2 1 5 A A A B B = =   ⇔   − + = =   Vậy 1 1 2 2 0 0 2 1 2 5 [ ] 4 4 2 ( 2) x dx dx x x x x + = + - + - - ò ò = 1 0 5 (2ln x-2 - ) x-2 = 5 ln4 2 − *Trường hợp mẫu số vô nghiệm: Ví dụ: Tính các tích phân :I= 0 2 1 (2 3) 2 4 x dx x x - - + + ò Giải : 0 0 1 2 2 2 2 1 1 0 2 2 5 ( 2 4) I 5J 2 4 ( 1) 3 2 4 x d x x dx dx x x x x x - - + + + = - = - + + + + + + ò ò ò Ta có 1 2 2 0 ( 2 4) 2 4 d x x x x + + + + ò = 0 2 1 4 ln/x +2x+4/ ln4 ln3 ln 3 − = − = Tính J= 0 2 1 5 ( 1) 3 dx x - + + ò Đặt x+1= 3tgt (t ∈ ; 2 2 π π −       ) ⇒ dx= 2 3(1 )tg t dt+ . Khi x= -1 thì t = 0 ; khi x=0 thì t= 6 π ⇒ J= 2 6 6 2 0 0 3(1 ) 3 3 1 (3 3 ) 3 3 6 tg t dt dt tg t π π π + = = − + ∫ ∫ . Vậy I= ln 4 5( 3 − 3 3 6 π − ) 3/ Tính tích phân hàm vô tỉ:  Dạng1: + ∫ ( , ) b n a R x ax b dx Đặt t= n ax b+ 9  Dạng 2: + + ∫ ( , ) b n a ax b R x dx cx d Đặt t= n ax b cx d + + Ví dụ: Tính tích phân I = 1 3 0 1 xdx− ∫ Giải Đặt t = 3 1 x− ⇔ t 3 = 1-x ⇔ x= 1-t 3 ⇒ dx= -3t 2 dt. Đổi cận: x=0 ⇒ t=1; x=1 ⇒ t=0. Vậy I= 1 0 1 4 2 3 1 0 0 3 .( 3 ) 3 3 4 4 t t t dt t dt− = = = ∫ ∫ 4/ Tính tích phân của một số hàm lượng giác thường gặp  Dạng: sin .cos , sin .sin , cos .cosax bxdx ax bxdx ax bxdx β β β α α α ∫ ∫ ∫ Phương pháp giải: Dùng công thức biến đổi tích thành tổng để tách thành tổng hoặc hiệu các tích phân rồi giải.  Dạng: sin ; cos n n xdx xdx β β α α ∫ ∫ Phương pháp giải: Nếu n chẵn dùng công thức hạ bậc, n lẻ dùng công thức đổi biến. Ví dụ : 2 1 2 2 2 2 sin sin sin (1 cos ) sin Đặt t =cosx 1 cos2 cos (cos ) 2 n n n n n n xdx x xdx x xdx x xdx x dx dx β β β α α α β β β α α α + = = − +   = =     ∫ ∫ ∫ ∫ ∫ ∫  Dạng: (sin ).cos R x xdx β α ∫ Đặc biệt: 2 2 1 sin .cos n k x xdx β α + ∫ Phương pháp giải: Đặt t =sinx 10 [...]... toán1: Diện tích hình phẳng giới hạn bởi 1 đường cong và 3 đường thẳng Công thức: Cho hàm số y=f(x) liên tục trên đoạn [a;b] khi đó diện tích hình phẳng giới hạn bởi đường b cong (C) :y=f(x) và các đường thẳng x= a; x=b; y= 0 là : S = ∫ f ( x ) dx a 12 b) Dạng toán2: Diện tích hình phẳng giới hạn bởi 2 đường cong và 2 đường thẳng Công thức: Cho hàm số y=f(x) có đồ thò (C) và y=g(x) có đồ thò (C’) liên . pháp giải: Dùng công thức biến đổi tích thành tổng để tách thành tổng hoặc hiệu các tích phân rồi giải.  Dạng: sin ; cos n n xdx xdx β β α α ∫ ∫ Phương pháp giải: Nếu n chẵn dùng công thức hạ bậc,. dấu tích phân bằng u tính du. phần còn lại là dv tìm v. B2: Khai triển tích phân đã cho theo công thức từng phần. B3: Tích phân b a vdu ∫ suy ra kết quả. Chú ý: a) Khi tính tính tích phân.    !" 6 1/ Tính tích phân bằng phương pháp tùng phần: Công thức từng phần : . . . b b b a a a u dv u v v du= − ∫ ∫ Phương pháp giải: B1: Đặt một biểu

Ngày đăng: 01/07/2014, 21:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w