1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ TOÁN ĐẲNG CẤP ĐH-CĐ SỐ 17

2 198 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 50 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC NĂM 2010 SỐ 17 A.Phần chung cho tất cả thí sinh: Câu I.(2đ) Cho hàm số 3 2 3 4y x x= − + 1.Khảo sát và vẽ đồ thị (C) của hàm số. 2.Gọi d là đường thẳng đi qua A(3;4) và có hệ số góc m. Tìm m để d cắt (C) tại ba điểm phân biệt A,M,N sao ch hai tiếp tuyến tại M,N vuông góc với nhau. Câu II.(2đ) 1.Giải hệ ( ) ( ) ( ) 2 1 4 2 1 2 x y x y y x x y y  + + + =   + + − =   2.Giải phương trình: 3 3 sin .sin 3 . 3 1 8 tan . tan 6 3 x x cos x cos x x x π π + = −     − +  ÷  ÷     Câu III.(1đ) Tính ( ) 1 2 0 ln 1 .I x x x dx = + + ∫ Câu IV.Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a.Hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC.Một mặt phẳng (P) chứa BC và vuông góc với AA’ cắt lăng trụ theo một thiết diện có diện tích bằng 2 3 8 a .Tính thể tích lăng trụ ABC.A’B’C’. B.Phần riêng cho các thí sinh: PHẦN I: Câu VIa:(2đ) 1.Trong mặt phẳng Oxy cho parabol (P): 2 2y x x= − và elip (E): 2 2 1 9 x y+ = .CMR (P) cắt (E) tại bốn điểm phân biệt cùng nằm trên một đường tròn.Viết phương trình đường tròn đó. 2.Trong không gian Oxyz cho mặt cầu (S): 2 2 2 2 4 6 11 0x y z x y z+ + − + − − = và mp(P): 2x+2y-z+17=0.Viết phương trình mp(Q) song song với mp(P) và cắt mặt cầu (S) theo giao tuyến là đường tròn có chu vi bằng 6 π . Câu VIIa:(1đ)Tìm hệ số của số hạng chứa x 2 trong khai triển nhị thức niwtơn của 4 1 2 n x x   +  ÷   ,biết rằng n là số nguyên dương thảo mản: 2 3 1 0 1 2 2 2 2 6560 2 2 3 1 1 n n n n n n C C C C n n + + + + + = + + . PHẦN II: Câu VIb.(2đ) 1.Trong mặt phẳng Oxy cho hai đường thẳng d 1 : x+y+5=0,d 2 : x+2y-7=0 và tam giác ABC có A(2;3),trọng tâm là điểm G(2;0),điểm B thuộc d 1 và C thuộc d 2 .Viết phương trình đường tròn ngoại tiếp tam giác ABC. 1 2.Trong không gian Oxyz cho tam giác ABC với A(1;2;5),B(1;4;3),C(5;2;1) và mp(P): x-y-z-3=0.Gọi M là điểm trên (P).Tìm giá trị nhỏ nhất của 2 2 2 MA MB MC+ + . Câu VIIb.(1đ) Giải hệ: ( ) 2 1 1 x y x y x y e e x e x y − + +  + = +  = − +  2 . ĐỀ THI THỬ ĐẠI HỌC NĂM 2010 SỐ 17 A.Phần chung cho tất cả thí sinh: Câu I.(2đ) Cho hàm số 3 2 3 4y x x= − + 1.Khảo sát và vẽ đồ thị (C) của hàm số. 2.Gọi d là đường thẳng. = và mp(P): 2x+2y-z +17= 0.Viết phương trình mp(Q) song song với mp(P) và cắt mặt cầu (S) theo giao tuyến là đường tròn có chu vi bằng 6 π . Câu VIIa:(1đ)Tìm hệ số của số hạng chứa x 2 trong. III.(1đ) Tính ( ) 1 2 0 ln 1 .I x x x dx = + + ∫ Câu IV.Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a.Hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC.Một

Ngày đăng: 01/07/2014, 19:00

w