1. Trang chủ
  2. » Luận Văn - Báo Cáo

Điều khiển chuyển Động trên Đường cong cho xe Ô tô không người lái dựa trên bộ Điều khiển mặt trượt thích nghi nơ ron với Đạo hàm cấp phân số =

63 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Adaptive Tracking Control for Autonomous Vehicles With System Constraints
Tác giả Nguyen Nhu Toan
Người hướng dẫn Assoc. Prof. PhD Nguyen Tung Lam
Trường học Hanoi University of Science and Technology
Chuyên ngành Control Engineering and Automation
Thể loại master thesis
Năm xuất bản 2023
Thành phố Hanoi
Định dạng
Số trang 63
Dung lượng 2,22 MB

Cấu trúc

  • 3.1 Steering control formulation (17)
  • 3.2 Longitudinal and direct yaw control formulation (18)
  • 3.3 Preliminaries (20)
  • CHAPTER 4. METHOD 15 (23)
    • 4.1 Active front steering control (23)
    • 4.2 Longitudinal control and Direct yaw moment control (25)
    • 4.3 Stability analysis (26)
    • 4.4 Torque distribution (27)
    • 4.5 Trajectory generation (28)
  • CHAPTER 5. IMPLEMENTATION AND EVALUATION 23 (31)
    • 5.1 Simulation setting (31)
    • 5.2 Evaluation method (33)
    • 5.3 Results of scenario 1: Double lane change maneuver with constant (34)
    • 5.4 Results of scenario 2: Double lane change maneuver with varying (38)
    • 5.5 Results of scenario 3: On curved road (42)
    • 5.6 Discussion (45)

Nội dung

The integrated longitudinal-lateraland yaw rate dynamics of the vehicle are simultaneously considered to improve thetracking accuracy and system stability when navigating under critical

Steering control formulation

The AFS control system is engineered to accurately track the reference path by adjusting the steering angle, thereby reducing lateral deviation Lateral tracking error is defined as ey, representing the difference between the actual and desired paths over time.

Let(x 1y ,x 2y ) T = (e y ,e˙y) T , the following system can be obtained: ˙ x 1y =x 2y ˙ x 2y =F ky +G ky δ+D y (3.2) where

Fˆx f sinδ−C α non f v y +l f ψ˙ v x cosδ−C α non r vy−lrψ˙ v x cosψ

+vxψ˙ cosψ+v˙xsinψ−vyψ˙ sinψ−y¨ d

Dy =∆Fx f sinδcosψ+∆Fy fcosδcosψ+∆Fyrcosψ

Assuming that the two desired tracking references are given as x 1yd and x˙ 1yd , re- spectively The tracking error is defined as: z 1y =x 1y −x 1yd z 2y =x 2y −x˙ 1yd (3.3)

To improve lateral control performance, the steering controller is designed to keep the tracking error within specific bounds, ensuring that the lateral position \(x_{iy}(t)\) remains within the defined limits \(k_{nyi}(t) < x_{iy}(t) < k_{pyi}(t)\) for \(i = 1, 2\) This research focuses on a steering controller that directly manages the angles of the front steering wheels Additionally, to facilitate a smooth transition, the steering angle \(\delta(t)\) and its rate of change \(\dot{\delta}(t)\) are constrained to remain within established limits, ensuring optimal performance and safety during operation.

The original lateral dynamic model is enhanced by incorporating the second derivative of the steering angle, enabling the conversion of the input constraint into a state constraint problem This transformation is represented by the equations: \( \dot{x}_{1y} = x_{2y} \), \( \dot{x}_{2y} = F_k y + G_k y \delta + D_y \dot{\delta} = \omega_y \), and \( \dot{\omega}_y = U_y \).

Then, the control signalU y will be designed to stabilize this extended lateral sys- tem and guarantee the satisfaction of the constraints one y ,δ,δ˙.

In normal driving conditions, the forces Fx and Fy are constrained by the limitations of road surface adhesion and tire friction, leading to the assumption that the lateral force Dy is also bounded, specifically |Dy| ≤ λy < ∞, given that the steering angle δ remains relatively small.

Longitudinal and direct yaw control formulation

The longitudinal controller is responsible for generating the driving and braking force \( F_l \) to achieve the desired speed, while the DYC controller creates a yaw moment \( M_z \) for vehicle stabilization By defining the state vector \( x_s = [v_x, \dot{\psi}]^T \) and the tracking reference \( x_{sd} = [v_{xd}, \dot{\psi}_d]^T \), we can derive the equation \( \dot{x}_s = F_k s + G_k s T_s + D_s \) as shown in (3.5).

Fks= [F kx Fk γ] T ,Gks= [G kx Gk γ] T ,Ds= [D x D γ ] T ,

∆Fy f l +∆Fy f r cosδ−lr ∆Fy rl +∆Fy rr

In addition, for safety reasons, it is important to ensure that x s is constrained byx s ∈Ω s1 x s (t)∈R 2 |k ns1 (t)

Ngày đăng: 07/12/2024, 15:42

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN