TẠP CHÍ KHOAHỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 1(36).2010 28 NGHIÊNCỨUCẢITHIỆNTÍNHNĂNGCỦAVẬTLIỆUCOMPOSITESỢI ĐAY/ NHỰAPOLYPROPYLENEBẰNGPHƯƠNGPHÁPBIẾNTÍNHNHỰANỀN INVESTIGATION ON IMPROVING THE PERFORMANCES OF JUTE/POLYPROPYLENE COMPOSITE BY MATRIX MODIFICATION Đoàn Thị Thu Loan Trường Đại học Bách khoa, Đại học Đà Nẵng TÓM TẮT Các polymer gia cường sợi tự nhiên có những tính chất cơ học và độ kháng nước khác nhau phụ thuộc vào bản chất bề mặt tiếp xúc giữa nhựa và sợi. Trong nghiêncứu này, ảnh hưởng của các tác nhân tương hợp copolymer ghép củapolypropylene với anhydride maleic (MAHgPP) đến tính chất củacompositenềnnhựapolypropylene gia cường sợiđay được khảo sát. Kết quả cho thấy khi thêm 2% khối lượng Exxelor (Ex) vào nhựanềnpolypropylene thì độ bền kết dính tại bề mặt tiếp xúc cảithiện đáng kể do vậy làm tăng độ bền kéo trượt, độ bền kéo, độ bền va đập và độ kháng nước, tuy nhiên không ảnh hưởng đến module kéo của mẫu composite. Sự thay đổi độ bền kết dính tại bề mặt tiếp xúc và hình thái bề mặt phá hủy được đánh giá bằng cách sử dụng compositesợi đơn qua các phươngpháp phân tích hiện đại gồm thử độ bền kéo trượt compositesợi đơn và kính hiển vi lực nguyên tử (AFM). ABSTRACT Natural fibre reinforced polymer matrices can exhibit very di ff erent mechanical performances and water resistance depending on interphase properties between fibre and matrix polymers. In this study, investigations of the effects of compatibilisers based on maleic anhydride grafted polypropylene copolymers (MAHgPP) on the properties of jute fibre reinforced polypropylene composites have been considered. The addition of 2 wt% Exxelor (Ex) compatibilisers to polypropylene matrix (PP) can significantly improve the adhesion strength with jute fibre and in turn the mechanical properties, including interfacial adhesion strength of jute/PP micro-composite; tensil strength and impact strength of jute/PP macro-composite; and water resistance of jute/PP macro-composite samples. However, strength module of macro-composite samples is not changed by using 2 wt% Ex. The changes of interfacial adhesion strength and fracture surfaces were characterized using jute single fibre model composites (micro-composite). The modern investigated methods, including single fibre pull out test and atomic force microscopy (AFM) were used to investigate interfaces and topography, respectively. 1. Đặt vấn đề Sợi tự nhiên đã được dùng làm composite cách đây 3000 năm ở Ai Cập cổ đại. Vậtliệucomposite nhân tạo đầu tiên này được làm bằng cách trộn rơm và đất sét để làm nhà. Tuy nhiên sự quan tâm nghiêncứu và s ử dụng sợi tự nhiên gia cường cho vậtliệucomposite chỉ mới vài thập kỷ qua. Những loại sợi tự nhiên quan trọng được dùng trong gia cường composite gồm có sợi lanh, đay, gai, tre, dứa, gỗ… Với những ưu điểm như TẠP CHÍ KHOAHỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 1(36).2010 29 khối lượng riêng bé, tínhnăng cơ lý riêng cao, ít gây tác dụng mài mòn thiết bị gia công, rẻ, thân thiện với môi trường và nguồn nguyên liệu dồi dào, các sản phẩm compositesợi tự nhiên đã được ứng dụng trong nhiều lĩnh vực như: xây dựng, giao thông vận tải, nội thất gia dụng, vật dụng hằng ngày, đồ chơi trẻ em… Trong số những sợi tự nhiên, đay là loại sợi vỏ vốn dồi dào ở Việt Nam cũng như Ấn Độ, Banladest. Tuy nhiên, với một số nhược điểm như độ hút nước củasợi tương đối cao và độ tương hợp với nhựanền kém phân cực tương đối thấp dẫn đến bề mặt tiếp xúc giữa nhựanền và sợi kém bền và do vậy tínhnăng cơ lý củacomposite chưa cao đã làm cho sự ứng dụng sản phẩm compositesợiđay nói riêng và compositesợi tự nhiên nói chung bị hạn chế. Việc nghiêncứucảithiệntính chất củavậtliệucompositesợi tự nhiên đã và đang được tiến hành phổ biến ở các nước trên thế giới [1, 2, 3, 4, 5, 6, 7, 8]. Ở nước ta lĩnh vực nghiêncứu này còn rất hạn chế. Một số nghiêncứu xử lý bề mặt sợi tự nhiên nhằm nângcaotínhnăng cơ lý củacompositesợi tre đã được thực hiện bởi một số nhóm nghiêncứu tuy nhiên chỉ dừng ở mức độ vĩ mô [9, 10, 11]. Đặc biệt khí hậu nhiệt đới ở Viêt Nam rất thuận lợi cho sự phát triển của cây đay, nên nguồn sợiđay ở nước ta rất dồi dào, tuy nhiên, vẫn chư a được khai thác sử dụng triệt để. Việc nghiêncứu sử dụng sợiđay cũng như các loại sợi tự nhiên khác trong gia cường vậtliệucomposite ở nước ta chỉ ở giai đoạn bắt đầu. Những ứng dụng củavậtliệucompositesợi tự nhiên trong đời sống cũng như trong công nghiệp còn rất hạn chế. Do vậy việc nghiên cứu chế tạo và ứng dụng vậtliệucompositesợiđay là rất cần thiết. Để cảithiệntínhnăngcủavậtliệucompositesợiđaynềnnhựa polypropylene, nghiêncứu này thực hiện phươngphápbiếntínhnhựanềnbằng cách sử dụng tác nhân tương hợp MAHgPP. Với những phươngpháp phân tích hiện đại kết hợp những phươngpháp cơ bản, nghiêncứu này nhằm không chỉ khảo sát vậtliệu ở mức độ vĩ mô mà còn thực hiện những nghiêncứu cấu trúc micro và nano. 2. Tổng quan Vậtliệucomposite hay còn gọi là vậtliệu kết hợp được hình thành từ hai hay nhiều vậtliệu khác nhau, có tínhnăng hơn hẳn các vậtliệu thành phần khi sử dụng riêng lẻ. Mỗi vậtliệucomposite gồm một hay nhiều pha gián đoạn (vật liệu gia cường) được phân bố trong một pha liên tục (vật liệu nền). Vậtliệu gia cường có thể là sợi tổng hợp hoặc sợi tự nhiên (lanh, đay, gai, thùa, xơ dừa ) gia cường cho các vậtliệunền khác nhau. Trong đó, nềnnhựa được sử dụng rất phổ biến. Trong nghiêncứu này, sợiđay được dùng làm vậtliệu gia cường cho nhựanền polypropylene. Sợi đay: có độ cứng và độ bền kéo cao. Vùng kết tinh (65-73%) có mức độ trật tự cao làm cho dung môi hoặc các tác chất khó thâm nhập. Thành phần hóa học chính củasợiđay gồm: cellulose, hemicellulose và lignin. Nhựapolypropylene (PP): có tínhnăng cơ lý cao, tỉ trọng thấp và không phân cực. Mức độ kết tinhcủa PP khoảng 60-70%, không hòa tan trong bất kỳ dung môi nào ở nhiệt độ phòng, chỉ trương và hòa tan trong vài dung môi đặc biệt ở nhiệt độ trên 100 o C [12]. TẠP CHÍ KHOAHỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 1(36).2010 30 3. Thực nghiệm 3.1. Nguyên liệu và hóa chất Sợiđay mua trên thị trường ở Việt Nam, có các thông số cơ bản sau: Độ bền kéo 4.31 cN/dtex, độ xoắn 300 vòng xoắn/m, độ mảnh 480 tex. Loại nhựapolypropylene có tên thương mại là HD 120M (PP) được cung cấp bởi Borealis A/S, CHLB Đức. Ba loại MAHgPP tác nhân tương hợp , gồm Exxelor PO 1020 (Ex), Polybond 3200 (Po) và TPPP 8012 (Tp) được cung cấp bởi công ty Exxon Mobil Corp., Mỹ. Một vài thông số của PP và MAHgPP được trình bày trong Bảng 1. Bảng 1. Một số thông số của các chất tương hợp MAHgPP. Tính chất PP MAHgPP Ex Po Tp Khối lượng riêng ở 23 o C (g/cm 3 0.908 ) 0.9 0.91 - Tốc độ dòng chảy (g/10 phút) (190 o 8 C/1,2 kg) 125 110 80 Hàm lượng anhydride maleic 0 0.5-1 1 1 Nhiệt độ nóng chảy ( o 180 C) 160 160-170 - 3.2. Các phươngpháp gia công Mẫu macro-composite được gia công qua hai giai đoạn: tạo compound bằngphươngpháp ép đùn và tạo mẫu bằngphươngpháp đúc tiêm. Ép đùn tạo hạt compound : Nềnnhựa PP được biếntính ở giai đoạn tạo compound sử dụng thiết bị ép đùn hai trục (Co-rotating twin-screw extruder ZSK 30). Chế độ nhiệt tại các vùng như ở Hình 1. Ép phun tạo mẫu composite: Các hạt compound sau khi được sấy 4 giờ ở 100 o C được dùng để tạo mẫu bằng thiết bị ép phun. Mẫu macro-composite hình “dog-bone” được tạo nên theo tiêu chuẩn DIN 53455. Chiều dài sợi trung bình khoảng 244 µm. Hình 1. Chế độ nhiệt sử dụng ở máy ép đùn. PP + MAHgPP Sợiđay 165°C Chân không 185°C 193°C Đầu tạo hình 180°C TẠP CHÍ KHOAHỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 1(36).2010 31 3.3. Khảo sát tính chất của mẫu composite Thử kéo trượt compositesợi đơn: Mẫu micro-composite được tạo bằng cách cho sợi đơn cắm thẳng đứng vào chén nhỏ đựng polypropylene nóng chảy ở 160 o Thử độ bền cơ học: Mẫu macro-composite hình dog-bone với kích thước 160 × 10 × 4 mm được dùng để thử độ bền kéo theo tiêu chuẩn ISO 527-2 và hình chữ nhật kích thước h × (20*h) × 15 mm được dùng để thử độ bền uốn theo tiêu chuẩn ISO178 trên thiết bị Universal testing machine Zwick 1456 tại Đức. Mẫu macro-composite kích thước 100 × 10 × 4 mm được dùng để thử độ bền va đập trên thiết bị PSW 4 testing machine tại Đức theo tiêu chuẩn ISO179/1eU. C với độ sâu 50-500 µm sử dụng thiết bị Embeding tại Viện NghiêncứuVậtliệu polymer Dresden (IPF), Đức. Sau khi làm nguội , mẫu được đặt trong bình hút ẩm trong 2 ngày rồi tiến hành đo kéo độ bền kéo trượt. Mỗi phép đo được thực hiện 15-20 mẫu để lấy giá trị trung bình. Khảo sát ảnh hưởng của nước đến mẫu composite: Mẫu có kích thước như tiêu chuẩn đo độ bền kéo được dùng để ngâm trong nước ở các nhiệt độ 25 o C và 70 o C trong 7 ngày. Sau thời gian ngâm mẫu được lấy ra dùng khăn giấy sạch lau khô và xác định khối lượng (bằng cân phân tích sai số 10 -4 Khảo sát bằng kính hiển vi điện tử quét (SEM) và kính hiển vi lực nguyên tử (AFM): Bề mặt sợi sau khi phá hủy kéo trượt từ micro-composite và phá hủy kéo từ macro-composite được dùng để khảo sát hình thái bề mặt ở mức độ nano (AFM) trên thiết bị D 3100 và ở mức độ vi mô (SEM) trên thiết bị LEO 435 VP, viện nghiêncứuvậtliệu polymer Dresden, CHLB Đức. g) để ghi lại sự thay đổi khối lượng và đo độ bền kéo. 4. Kết quả và thảo luận 4.1. Độ bền kéo trượt của micro-composite: Để tăng độ tương thích củanềnnhựa PP không phân cực với sợiđay phân cực, ba loại chất tương hợp MAHgPP được dùng để khảo sát gồm Exxelor PO 1020 (Ex), Polybond 3200 (Po) và TPPP 8012 (Tp). Ảnh hưởng của loại và lượng chất tương hợp (MAHgPP content) đến độ bền kéo trượt (Apparent interfacial shear strength) của các mẫu micro-composite được trình bày trong đồ thị Hình 2. Từ đồ thị ta thấy, khi sử dụng chất tương hợp MAHgPP để biếntínhnhựanền PP độ bền kéo trượt của mẫu micro-composite được cải thiện. Khi tăng hàm lượng chất tương hợp MAHgPP độ bền kéo trượt của mẫu micro-composite tăng. Đối với hai chất tương hợp Ex và Po thì sự cảithiện không tăng đáng kể khi sử dụng hàm lượng trên 2% khối lượng. Trong các chất tương hợp, Ex cảithiện lớn nhất đến độ bền kéo trượt của mẫu sợi đay/nhựa PP micro-composite và tối ưu với hàm lượng 2%. Độ bền kéo trượt tăng khoảng 92% khi sử dụng 2% Ex so với mẫu không chứa Ex. Chứng tỏ độ kết dính tại bề mặt tiếp xúc củanhựanền và sợi tăng lên. Ex với hàm lượng 2% được xem là điều kiện biếntínhnền tối ưu trong hệ compositesợiđaynềnnhựa polypropylene. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 1(36).2010 32 0 1 2 3 4 5 6 7 10 12 14 16 18 20 22 MAHgPP content (weight %) Ex Po TP Apparent interfacial shear strength (MPa) Hình 2. Ảnh hưởng của MAHgPP đến độ bền kéo trượt của các mẫu micro-composite. 4.2. Khảo sát AFM của bề mặt sợi sau khi đo độ bền kéo trượt Hình 3 cho thấy của bề mặt sợiđay sau khi đo độ bền kéo trượt sử dụng kính hiển vi lực nguyên tử AFM. Bề mặt sợicủa mẫu micro-composite có 2% Ex cho thấy có mặt PP nhiều hơn so với mẫu không chứa Ex. Có thể giải thích là do nềnnhựa PP không phân cực thấm ướt kém lên bề mặt sợiđay phân cực trong quá trình gia công mẫu, nên PP chỉ tiếp xúc ở những bề mặt phẳng, không thấm vào những vị trí lõm sâu ở bề mặt sợi. Sau khi kéo mẫu micro-composite, bề mặt sợi lộ ra những những vị trí lõm sâu do không có nhựa bám dính và chỉ một vài chỗ còn nhựa bám dính. Tuy nhiên, khi sử dụng 2% Ex thì sự tương thích giữa nềnnhựa và bề mặt sợi tốt hơn, nhựa thấm tốt hơn vào những vị trí lõm sâu trên bề mặt, liên kết hydro và liên kết cộng hóa trị có thể hình thành ở bề mặt tiếp xúc, trong quá trình kéo trượt mẫu Micro -composite, sự phá hủy kết dính nội xảy ra chủ yếu ở trong nền PP, do vậy bề mặt sợi sau khi kéo dường như có phủ nhiều PP hơn. (a) (b) Hình 3. Ảnh AFM của bề mặt sợi sau khi đo độ bền kéo trượt mẫu microcomposite, (a) 0% Ex và (b) 2% Ex. 4.3. Độ bền cơ học Hình 4 cho thấy ảnh hưởng của chất tương hợp Ex và hàm lượng sợi (fibre content) đến độ bền cơ học tĩnh, gồm kéo (tensile strength) và va đập (impact strength) TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 1(36).2010 33 của mẫu macro-composite. Sự sử dụng Ex với hàm lượng 2% đã làm tăng đáng kể độ bền kéo và độ bền va đập so với mẫu không có Ex. Riêng module kéo có tăng nhưng không đáng kể khi sử dụng Ex. Đối với mẫu không biến tính, khi tăng hàm lượng sợi thì độ bền kéo giảm. Khuynh hướng thay đổi độ bền kéo hoàn toàn khác hẳn khi tăng hàm lượng sợi đối với mẫu có chứa Ex, độ bền tăng khi hàm lượng sợi tăng. Tuy nhiên khi hàm lượng sợicao quá thì độ bền lại giảm (mẫu có hàm lượng sợi 41% thể tích). 0 10 20 30 40 50 0 10 20 30 40 0 1 2 3 4 5 6 Module keo (MPa) Tensile strength (MPa) Do ben keo, 0% Ex Do ben keo, 2% Ex Module keo, 0% Ex Module keo, 2% Ex Fibre content (volume %) (a) 0 10 20 30 40 0 10 20 30 40 Impact strength (KJ/m 2 ) Fibre content (volume %) 0 % Ex 2% Ex (b) Hình 4. Ảnh hưởng của chất tương hợp Ex và hàm lượng sợi đến độ bền và module kéo (a); độ bền va đập (b) của mẫu macro-composite sợi đay/nhựa PP. Sự sử dụng sợiđay gia cường cho nềnnhựa PP đã làm tăng đáng kể module kéo nhưng làm giảm độ bền va đập củanhựa PP. Hàm lượng sợi càng tăng thì độ bền va đập càng giảm Hình 4b và module kéo càng tăng (Hình 4a) do tác dụng tăng độ cứn g của sợi. Tuy nhiên, ở hàm lượng sợicao thì module kéo có khuynh hướng giảm do lượng nhựa không đủ để thấm ướt, liên kết sợi và hệ trở nên kém liên tục. 4.4. Khảo sát kính hiển vi điện tử quét (SEM) Kết quả chụp SEM cho thấy hình thái bề mặt phá hủy của mẫu ở Hình 5. (a) (b) Hình 5. Ảnh SEM của mẫu composite sau khi bị phá hủy kéo, (a) 0% Ex và (b) 2% Ex. Bề mặt phá hủy của mẫu composite không chứa Ex có mức độ kết dính kém tại bề mặt tiếp xúc giữa sợi và nhựanên xuất hiện nhiều lỗ rỗng và vết nứt ở vùng xung quanh sợi (Hình 5a). Tuy nhiên, khi nềnnhựa được biếntínhbằng Ex thì kết dính tại TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 1(36).2010 34 vùng bề mặt tiếp xúc được cảithiện đáng kể do vậy số lượng và kích thước các vết nứt và lỗ rỗng ở vùng ranh giới nhựa/sợi giảm nhiều (Hình 5b). 4.5. Khảo sát ảnh hưởng của nước Hình 6a cho thấy khi hàm lượng sợi trong mẫu tăng thì độ hấp thụ nước tăng. Ở nhiệt độ cao (70 o C) mẫu composite hấp thụ nước mạnh hơn ở nhiệt độ thấp (25 o Điều thú vị khi kết quả cho thấy độ bền kéo của mẫu PP và composite ( C). Sự sử dụng 2% Ex đã hạn chế đáng kể sự hấp thụ nước, đặc biệt ở các mẫu có hàm lượng sợi cao. Hình 6b) không giảm hoặc thậm chí tăng nhẹ sau khi ngâm trong nước 7 ngày ở nhiệt độ phòng 25 o C. Tuy nhiên, ở nhiệt độ cao 70 o 0 10 20 30 0 1 2 3 4 5 6 Weight gain (%) Fibre content (volume %) Comp. soi day/PP+2% Ex, 25 o C Comp. soi day/PP, 25 o C Comp. soi day/PP+2% Ex, 70 o C Comp. soi day/PP, 70 o C C hầu hết các mẫu ngâm sau 7 ngày đều có độ bền thấp hơn mẫu ban đầu chưa ngâm. Với cùng điều kiện ngâm và hàm lượng sợi như nhau, mẫu composite chứa 2% Ex có độ bền vẫn cao hơn mẫu không chứa Ex. (a) 0 10 20 30 0 10 20 30 40 50 Tensile strength (MPa) Fibre content (volume %) Comp. soi day/PP Comp. soi day/PP, 25 o C Comp. soi day/PP, 70 o C Comp. soi day/PP+2% Ex Comp. soi day/PP+2% Ex, 25 o C Comp. soi day/PP+2% Ex, 70 o C (b) Hình 6: Sự thay đổi khối lượng (a)và độ bền kéo (b) của mẫu sau khi ngâm trong nước. 5. Kết luận Sự xử lý nhựanền đã cảithiện đáng kể đa số các tínhnăngcủavậtliệu composite. Trong số các chất tương hợp MAHgPP, Ex dùng với hàm lượng 2% được xem là tối ưu để biếntínhnhựanền PP. Sự sử dụng Ex làm tăng độ bền kéo trượt của mẫu micro-composite (khoảng 92%), tăng đáng kể độ bền kéo và độ bền va đập, tuy nhiên không làm thay đổi đáng kể module kéo của mẫu compositenềnnhựa polypropylene. Khảo sát lão hóa trong môi trường nước của mẫu compositenềnnhựa PP với thời gian 7 ngày cho thấy độ bền kéo không giảm hoặc tăng nhẹ khi ngâm ở nhiệt độ thấp (25 o C), tuy nhiên khi ngâm ở nhiệt độ cao hơn (70 o Lời cảm ơn: Cám ơn bà Tiến sĩ Khoahọc Edith Maeder và ông Tiến sĩ Shang- Lin Gao đã có những đóng góp đáng kể về mặt học thuật. Cám ơn Viện NghiêncứuVậtliệu polymer Dresden, CHLB Đức đã tài trợ cho nghiêncứu này. C) độ bền kéo giảm. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 1(36).2010 35 TÀI LIỆU THAM KHẢO [1] Bledzki A K, Gassan J. Composites reinforced with cellulose based fibres. Progress in Polymer Science 1999, 24, 221-274. [2] Fung K L, Li R K Y., Tjong S C. Interface modification on the properties of sisal fiber-reinforced polypropylene composites. Journal Applied Polymer Science 2002; 85: 169-278. [3] Mohanty A K, Drzal L T, Misra M. Journal of Materials Science Letters 2002, 21, 1885-1888. [4] Joseph P V, Joseph K, Thomas S, Pillai C K S, Prasad V S, Groeninckx G, Sarkissova M. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene. [5] Feng D, Caulfield D F, Sanadi A R. Effect of compatibilizer on the structure- property relationships of kenaf-fiber/polypropylene composites. Polymer Composites 2001, 22, 4, 506-517. [6] Sanadi A R, Caulfield D F. Transcrystalline interphases in natural fibre-PP composites: effect of coupling agent. Composite Interfaces, 2000, 7 (1), 31-43. [7] Qiu W, Zhang F, Endo T, Hirotsu T. Preparation and characteristics of composites of high-crystalline cellulose with polypropylene: effects of maleated polypropylene and cellulose content. Journal of applied Polymer Science, 2003, 87, 337-345. [8] Rana A K, Mandal A, Bandyopadhyay S. Short jute fibre reinforced polypropylene composites: effect of compatibiliser, impact modifier and fibre loading. Composites Science Technology, 2003, 63, 801-806. [9] Phan Thị Minh Ngoc, Cao Hoàng Long, Nghiê n cứu chế tạo vậtliệu polyme compozit trên cơ sở phenol -focmandehit gia cường bằng phoi tre, Tạp chí hóa học T43-1/2005. [10] Trần Vĩnh Diệu, Nguyễn Phạm Duy Linh, Đào Minh Anh, Nghiêncứu ảnh hưởng của xử lý bề mặt sợi tre bằng anhydric axetic đến tính chất kéo củavậtliệu polyme compozit trên cơ sở nhựa polypropylen, Tạp chí hóa học, T43-4/2005. [11] Trần Vĩnh Diệu, Phạm gia Huân, Phạm Xuân Khải, Nghiêncứu quá trình xứ lý bề mặt sợi tre bằng acrylonitril (AN) và tính chất củavậtliệu polyme compozit trên cơ sở nhựa polypropylen gia cường bằngsợi tre. Tạp chí hóa học T43-5/2005. [12] Polymerwerkstoffe- lecture from Prof. Heindrich, IPF Dresden, Germany. . dụng vật liệu composite sợi đay là rất cần thiết. Để cải thiện tính năng của vật liệu composite sợi đay nền nhựa polypropylene, nghiên cứu này thực hiện phương pháp biến tính nhựa nền bằng. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 1(36).2010 28 NGHIÊN CỨU CẢI THIỆN TÍNH NĂNG CỦA VẬT LIỆU COMPOSITE SỢI ĐAY/ NHỰA POLYPROPYLENE BẰNG PHƯƠNG PHÁP BIẾN TÍNH NHỰA NỀN. quan Vật liệu composite hay còn gọi là vật liệu kết hợp được hình thành từ hai hay nhiều vật liệu khác nhau, có tính năng hơn hẳn các vật liệu thành phần khi sử dụng riêng lẻ. Mỗi vật liệu composite