Đặc điểm của phần mềm trên máy tính * Có thể tải chương trình vào flash trong phiên bản này của bootloader, cho phép cài đặt các byte cài đặt configuration bytes và có thể thay đổi dễ d
Trang 1Môn vi xử lý
Đề tài : đồng hồ thời gian thực dùng DS 1307
I, Chức năng của mạch điện:
- Hiển thị : giờ ,phút,giây, ngày , tháng,năm,thứ trong tuần
- giao tiếp với 4 phím : status-mode-increase-decrease Phím status dùng để chuyển chế độ từ hiển thị giờ ,phút ,giây,thứ sang ngày ,tháng, năm Phím mode dùng để điều chỉnh ngày, tháng, năm và giờ ,phút ,giây,thứ
II, Mô tả mạch:
-Mạch sử dụng IC thời gian thực DS 1307 giao tiếp I2C với Pic
Pic16F877A
- Dùng 8 led 7 thanh loại 4 led/1 con
- Dùng 8 Tranzito để điều khiển việc đóng ngắt các led
- Vi điều khiển được dùng là PIC 16F877A
- Dùng thạch anh 20MHz để tạo dao động cho PIC
- Dùng một mạch tiny Bootloaderđể kết nối giữa pic và máy tính , nạp chương trình trực tiếp từ máy tính vào PIC mà không cần thông qua mạch nạp cho PIC
III/ Cơ bản về tiny bootloader:
Đây là bootloader cho các vi điều khiển Microchip PIC
* Nó là bootloader có kích thước nhỏ nhất, ít hơn 100 word bộ nhớ chương trình
Trang 2* File asm của bootloader rất dễ để chỉnh sửa lại,cho phù hợp với từng chip, tốc độ truyền nhận
Đặc điểm của phần mềm trên máy tính
* Có thể tải chương trình vào flash (trong phiên bản này của bootloader, cho phép cài đặt các byte cài đặt (configuration bytes) và có thể thay đổi dễ dàng theo từng loại PIC)
* Làm việc với tất cả các dòng PIC đã nêu trên; tự động nhận ra nội dung file HEX và dòng PIC
* Ghi nhớ cài đặt cuối (thuận tiện cho người dùng khi thao tác với một loại PIC)
* Trong trường hợp lỗi, nó sẽ truyền một tín hiệu ngược lại cho máy tính để tái đồng bộ giữa máy tính và PIC;
* Chế độ giao tiếp có thể được thay đổi, có thể dùng bất kỳ cổng COM nào với tốc độ baud nào Khái niệm chung về bootloader Một bootloader là một chương trình nằm trong vi điều khiển, và giao tiếp với máy tính (thông qua giao tiếp nối tiếp) Bootloader nhận một chương trình (đã được dịch ra thành file HEX) từ máy tính và ghi nó vào bộ nhớ flash của vi điều khiển thông qua một phần mềm trên máy tính, sau đó chạy chương trình đó trên vi điều khiển Bootloader chỉ có thể được dùng với những vi điều khiển nào cho phép ghi vào bộ nhớ flash thông qua phần mềm trên máy tính Bản thân bootloader phải được ghi vào trong bộ nhớ flash bằng một mạch nạp khác Để bootloader hoạt động, sau khi nhấn reset, một lệnh "goto bootloader" phải nằm ở địa chỉ đầu tiên của chương trình vi điều khiển Có 2 loại bootloader, một số loại đôi khi cần người dùng đặt lại địa chỉ các dòng lệnh đầu, một số khác thì tự bản thân nó đặt những dòng lệnh đầu của người dùng vào một địa chỉ khác khi mà bootloader đã nằm sẵn ở đó, và quay trở lại chương trình của người dùng khi kết thúc đoạn chương trình bootloader
Trong trường hợp này, tiny bootloader tự động đem các vị trí đầu của chương trình người viết, và đặt ở phía dưới cùng với chương trình bootloader (thực ra đoạn chương trình này chỉ tối đa có 4 dòng lệnh) địa chỉ 0x0004 đã là địa chỉ bắt đầu ngắt Chính vì vậy, nếu lập trình từ vị trí 0x0000 thì cũng chỉ viết được tối đa 4 dòng lệnh, sau đó phải nhảy đến chương trình chính Như vậy, tiny bootloader sẽ thực hiện thao tác, cắt 4 dòng đầu tiên từ 0x0000 đến 0x0003 , thay bằng dòng lệnh GOTO BOOTLOADER Và nó tự động đặt 4 dòng lệnh nằm ngay phía trên chương trình bootloader Sau đó, chạy chương trình tinybootloader phía bên dưới Rồi nó quay lên chạy 4 dòng lệnh Kết thúc 4 dòng này, nó lại trở về vị trí chương trình chạy bình thường ở bên trên . phiên bản mới nhất của tiny bootloader cho phép reset trên máy tính, không cần phải bấm reset nữa
Đây là một loại tiny bootloader : max232
Trang 3
IV/ Cơ chế hoạt động và chức năng của DS1307:
Vcc: nối với nguồn
X1,X2: nối với thạch anh 32,768 kHz
Vbat: đầu vào pin 3V
GND: đất
SDA: chuỗi data
SCL: dãy xung clock
SQW/OUT: xung vuông/đầu ra driver
· DS1307 là một IC thời gian thực với nguồn cung cấp nhỏ, dùng để cập nhật thời gian và ngày tháng với 56 bytes SRAM Địa chỉ và dữliệu được truyền nối tiếp qua 2 đường bus
2 chiều Nó cung cấp thông tin về giờ,phút,giây ,thứ,ngày ,tháng, năm.Ngày cuối tháng
sẽ tự động được điều chỉnh với các tháng nhỏ hơn 31 ngày,bao gồm cả việc tự động nhảy
Trang 4
Mô tả hoạt động của các chân:
· Vcc,GND: nguồn một chiều được cung cấp tới các chân này Vcc là đầu vào 5V Khi 5
V được cung cấp thì thiết bị có thể truy cập hoàn chỉnh và dữ liệu có thể đọc và viết Khi pin 3 V được nối tới thiết bị này và Vcc nhỏ hơn 1,25Vbat thì quá trình đọc và viết không được thực thi,tuy nhiên chức năng timekeeping không bị ảnh hưởng bởi điện áp vào thấp Khi Vcc nhỏ hơn Vbat thì RAM và timekeeper sẽ được ngắt tới nguồn cung cấp trong (thường là nguồn 1 chiều 3V)
· Vbat: Đầu vào pin cho bất kỳ một chuẩn pin 3V Điện áp pin phải được giữ trong khoảng từ 2,5 đến 3V để đảm bảo cho sự hoạt động của thiết bị
· SCL(serial clock input): SCL được sử dụng để đồng bộ sự chuyển dữ liệu trên đường dây nối tiếp
· SDA(serial data input/out): là chân vào ra cho 2 đường dây nối tiếp Chân SDA thiết kế theo kiểu cực máng hở , đòi hỏi phải có một điện trở kéo trong khi hoạt động
· SQW/OUT(square wave/output driver)- khi được kích hoạt thì bit SQWE được thiết lập
1, chân SQW/OUT phát đi 1 trong 4 tần số (1Hz,4kHz,8kHz,32kHz) Chân này cũng được thiết kế theo kiểu cực máng hở vì vậy nó cũng cần có một điện trở kéo trong Chân này sẽ hoạt động khi cả Vcc và Vbat được cấp
Trang 5· X1,X2: được nối với một thạch anh tần số 32,768kHz.Là một mạch tạo dao động ngoài ,
để hoạt động ổn định thì phải nối thêm 2 tụ 33pF
Seconds Minutes Hours Day Date Month Year Control Ram 58x8
Trang 6
· DS1307 có thể chạy ở chế độ 24h cũng như 12h Bit thứ 6 của thanh ghi hours là bit chọn chế độ 24h hoặc 12h khi bit này ở mức cao thì chế độ 12h được chọn ở chế độ 12h thì bit
5 là bit AM/PM với mức cao là là PM ở chế độ 24h thì bit 5 là bit chỉ 20h(từ 20h đến 23h)
· Trong quá trình truy cập dữ liệu, khi chỉ thị START được thực thi thì dòng thời gian được truyền tới một thanh ghi thứ 2,thông tin thời gian sẽ được đọc từ thanh ghi thứ cấp này,trong khi đó đồng hồ vẫn tiếp tục chạy
Trong DS1307 có một thanh ghi điều khiển để điều khiển hoạt động của chân SQW/OUT
· OUT(output control):bit này điều khiển mức ra của chân SQW/OUT khi đầu ra xung vuông
là disable Nếu SQWE=0 thì mức logic ở chân SQW/OUT sẽ là 1 nếu OUT=1,và =0 nếu OUT=0
· SQWE(square wave enable): bit này được thiết lập 1 sẽ enable đầu ra của bộ tạo dao động Tần số của đầu ra sóng vuông phụ thuộc vào giá trị của RS1 và RS0
Trang 7nhận sự điều khiển của master gọi là slave Các bus nhận sự điều khiển của master,là thiết bị phát
ra chuỗi xung clock(SCL),master sẽ điều khiển sự truy cập bus,tạo ra các chỉ thị START và STOP
Sự truyền nhận dữ liệu trên chuỗi bus 2 dây
Tuỳ thuộc vào bit R/ w mà 2 loại truyền dữ liệu sẽ được thực thi:
· truyền dữ liệu từ master truyền và slave nhận: Master sẽ truyền byte đầu tiên là địa chỉ của slave Tiếp sau đó là các byte dữ liệu slave sẽ gửi lại bit thông báo đã nhận được (bit acknowledge) sau mỗi byte dữ liệu nhận được dữ liệu sẽ truyền từ bit có giá trị nhất (MSB)
· truyền dữ liệu từ slave và master nhận: byte đầu tiên (địa chỉ của slave) được truyền tới slave bởi master Sau đó slave sẽ gửi lại master bit acknowledge tiếp theo đó slave sẽ gửi các byte
dữ liệu tới master Master sẽ gửi cho slave các bit acknowledge sau mỗi byte nhận được trừ byte cuối cùng,sau khi nhận được byte cuối cùng thì bit acknowledge sẽ không được gửi
Master phát ra tất cả các chuỗi xung clock và các chỉ thị START và STOP sự truyền sẽ kết thúc với chỉ thị STOP hoặc chỉ thị quay vòng START Khi chỉ thị START quay vòng thì sự truyền chuỗi dữ liệu tiếp theo được thực thi và các bus vẫn chưa được giải phóng Dữ liệu truyền luôn bắt đầu bằng bit MSB
2, DS1307 có thể hoạt động ở 2 chế độ sau:
· chế độ slave nhận( chế độ DS1307 ghi):chuỗi dữ liệu và chuỗi xung clock sẽ được nhận thông qua SDA và SCL Sau mỗi byte được nhận thì 1 bit acknowledge sẽ được truyền các điều kiện START và STOP sẽ được nhận dạng khi bắt đầu và kết thúc một truyền 1 chuỗi nhận dạng địa chỉ được thực hiện bởi phần cứng sau khi chấp nhận địa chỉ của slave
và bit chiều Byte địa chỉ là byte đầu tiên nhận được sau khi điều kiện START được phát
ra từ master Byte địa chỉ có chứa 7 bit địa chỉ của DS1307, là 1101000, tiếp theo đó là bit
chiều (R/ w ) cho phép ghi khi nó bằng 0 sau khi nhận và giải mã byte địa chỉ thì thiết bị sẽ
phát đi 1 tín hiệu acknowledge lên đường SDA Sau khi DS1307 nhận dạng được địa chỉ
và bit ghi thì master sẽ gửi một địa chỉ thanh ghi tới DS1307 , tạo ra một con trỏ thanh ghi trên DS1307 và master sẽ truyền từng byte dữ liệu cho DS1307 sau mỗi bit acknowledge nhận được sau đó master sẽ truyền điều kiện STOP khi việc ghi hoàn thành
Trang 8· chế độ slave phát ( chế độ DS1307 đọc): byte đầu tiên slave nhận được tương tự như chế
độ slave ghi Tuy nhiên trong chế độ này thì bit chiều lại chỉ chiều truyền ngược lại Chuỗi
dữ liệu được phát đi trên SDA bởi DS 1307 trong khi chuỗi xung clock vào chân SCL Các điều kiện START và STOP được nhận dạng khi bắt đầu hoặc kết thúc truyền một chuỗi byte địa chỉ nhận được đầu tiên khi master phát đi điều kiện START Byte địa chỉ chứa 7 bit địa chỉ của slave và 1 bit chiều cho phép đọc là 1 sau khi nhận và giải mã byte địa chỉ thì thiết bị sẽ nhận 1 bit acknowledge trên đường SDA Sau đó DS1307 bắt đầu gửi
dữ liệu tới địa chỉ con trỏ thanh ghi thông qua con trỏ thanh ghi nếu con trỏ thanh ghi không được viết vào trước khi chế độ đọc được thiết lập thì địa chỉ đầu tiên được đọc sẽ là địa chỉ cuối cùng chứa trong con trỏ thanh ghi DS1307 sẽ nhận được một tín hiệu Not Acknowledge khi kết thúc quá trình đọc
Trang 9
đặc tính và thời gian thực hiện:
V/ Tổng quan về vi điều khiển PIC16F877A:
Trang 10
PIC 16F877A trong mạch là loại có 40 chân,với 5 cổng vào ra la Port A(RA0÷RA5),Port B(RB0÷RB7),Port C(RC0÷RC7),Port D(RD0÷RD7),Port E(RE0÷RE2) Có 3 bộ định thời là timer0,timer1,timer2
8K bộ nhớ chương trình flash
Tổ chức bộ nhớ :
Có 3 khối bộ nhớ trong pic16F877A: bộ nhớ chương trình ,bộ nhớ dữ liệu và khối bộ nhớ EEPROM bộ nhớ chương trình và bộ nhớ dữ liệu có đường bus riêng vì vậy có thể truy cập vào từng bộ nhớ một cách riêng rẽ
Bộ đếm chương trình có 13 bit vì vậy không gian địa chỉ sẽ là 8k word x 8bit Truy cập ngoài vùng không gian trên sẽ gây lỗi
Bộ nhớ dữ liệu được chia thành 4 bank (Bank0÷Bank3) ,trong các bank chứa các thanh ghi thường
và các thanh ghi chức năng đặc biệt Bank được chọn phụ thuộc vào bit RP1 và RP0 (bit thứ 6 và bit thứ 5) của thanh ghi trạng thái status
Trang 11Các thanh ghi chức năng đặc biệt được CPU và bộ ngoại vi sử dụng để điều khiển các thiết bị các thanh ghi này hoạt động như một thanh RAM tĩnh
Thanh ghi trạng thái chứa trạng thái số học của ALU,trạng thái Reset và các bit chọn bank ở bộ nhớ dữ liệu
R/W-0 R/W-0 R/W-0 R-1 R-1 R/W-x R/W-x R/W-x
Các cổng vào ra của pic:
Port A: có 6 bit (tương ứng với 6 chân RA0÷RA5) các chân của cổng A có tích hợp một số chức năng ngoại vi,nếu một thiết bị ngoại vi được enable thì cổng này sẽ không hoạt động như một cổng vào ra
Bình thường Port A sẽ là một cổng vào ra 2 chiều Thanh ghi xác đinh chiều tương ứng của các chân port A là thanh ghi TrisA Các bit ở thanh ghi TrisA bằng 1 sẽ xác định các chân ở port A là đầu vào ngược lại sẽ là đầu ra
Port B: rộng 8 bit(tương ứng với 8 chân RB0÷RB7),là một cổng vào ra 2 chiều Thanh ghi qui đinh chiều của cổng B là thanh ghi Tris B thiết lập các bit ở thanh ghi TrisB bằng 1 sẽ làm cho cổng B
là cổng vào ngược lại sẽ là cổng ra
Port C: rộng 8 bit(tương ứng với các chân RC0÷RC7),bình thường nó là một cổng vào ra 2 chiều, thanh ghi qui định chiều của cổng là thanh ghi TrisC Các chân RC3,RC4 dùng để kết nối truyền nhân thông tin với các thiết bị ngoại vi
Port D: rộng 8 bit (RD0÷RD7),nó có thể là cổng vào hoặc cổng ra Port D có thể được cấu hình như một cổng vi xử lý rộng 8 bit (cổng slave song song) bằng cách thiêt lập bit điều khiển PSPSTATUS (TrisE.4) ở chế độ này thì đầu vào la tín hiệu TTL
Port E: rộng 3 bit(RE0÷RE2), được cấu hình là đầu ra hoặc đầu vào Port E có thể là đầu vào điều khiển I/O khi bit PSPSTATUS (TrisE.4) được thiết lập
Từ hình vẽ ta có thể thấy, pic16F877A có 2 chân Vcc và 2 chân GND, để pic có thể hoạt động được ta phải cấp nguồn cho tất cả các chân này
Ngoài cấp nguồn cung cấp ta phải cấp nguồn xung dao động để cho vi điều khiển hoạt động ta sẽ dùng một thạch anh 20MHz để cấp xung dao động nguồn dao động được cấp thông qua 2 chân 13
và 14 của pic
Mạch reset cho vi điều khiển là một công tắc để hở thông qua chân MCLR của vi điều khiển mạch
sẽ thực hiện reset khi chân này từ mức logic 1 xuống logic 0 khi công tắc để hở thì chân này luôn mang mức logic 1 do luôn được nối với nguồn thông qua một điện trở hạn dòng R1, điện trở này phải có giá trị nhỏ hơn 40k để đảm bảo điện áp cung cấp cho vi điều khiển
Trang 12
mạch reset của pic16f877a
VI/ Khối hiển thị:
- Khối hiển thị dùng 8 led
+,ở chế độ hiển thị ngày tháng năm:2 led để hiện thị ngày ,2 led hiển thị tháng ,4 led hiển thị năm
+,ở chế độ hiển thị giờ ,phút, giây: 2 led dùng để hiển thị giờ,2 led dùng để hiển thị phút, 2 led dùng để hiển thị giây, 1 led dùng hiển thị thứ trong tuần (chủ nhật led hiện giá trị 1,thứ 2 hiện giá trị 2…thứ 7 hiện giá trị 7)
Tất cả các led chung đường tín hiệu a,…,g còn các chân điều khiển thì mắc với các khoá điện
tử (8 Tranzito A1015) để điều khiển việc đóng ngắt các led
- việc cấp nguồn cho các led dựa trên thuật quét led
Sơ đồ thuật quét led:
Trang 13gửi dữ liệu cho led 1
cấp nguồn cho led 1
trễ 1ms
ngắt nguồn led 1
gửi dữ liệu cho led 8
cấp nguồn cho led 8
trễ 1ms
ngắt nguồn led 8
Trang 16Set minutes:
Trang 17Set year:
Trang 18Set month:
Trang 19Set day:
Trang 21Set date:
VIII/ Sơ đồ khối của mạch:
Trang 23IX,ngôn ngữ lập trình:
- ngôn ngữ lập trình cho pic là C, dùng CCS 3.227 để biên dịch
- sử dụng I2C tích hợp sẵn trong PIC để giao tiếp với DS1307
- sử dụng các hàm có sẵn trong CCS là:I2C_START;I2C_STOP; I2C_READ; I2C_WRITE dùng để khởi tạo,đọc giá trị từ DS1307 sang PIC
- việc hiển thị thời gian là liên tục ,ta dùng 8 byte RAM để làm bộ đệm hiển thị (các biến led1, led8), các giá trị thời gian đọc từ DS1307 sau khi đã chuyển sang BCD sẽ được lưu trong các biến này
- Ta sẽ đọc các giá trị thời gian từ DS1307 nhưng chỉ đọc giá trị giây, sau 1 phút ta mới cập nhật toàn bộ thanh ghi thời gian của DS1307 và đưa ra hiển thị
- Chương trình quét bàn phím sẽ xác định phím chức năng và gọi hàm xử lý tương ứng như: chuyển chế độ, chỉnh giờ ,tăng,giảm giá trị…
#define led1 ra0
#define led2 ra1
#define led3 ra2
#define led4 ra3
#define led5 ra4
#define led6 ra5
#define led7 re0
#define led8 re1
//Cac bien
int8 sec,min,hour,dow,date,month,year;
led_code[16]={0b00000011,0b10011111,0b00100101,0b00001101,0b10011001,0b01001001,0b01000001,0b00011111,0b00000001,0b00001001,0b01000001,0b01000001,0b01000001,0b01000001,0b01000001,0b01000001};
int8 sec1,sec2,min1,min2,hour1,hour2,day,date1,date2,month1,month2,year1,year2,year3,year4;