Bài 1. Bài tập sử dụng công thức nguyên hàm, tích phân CHƯƠNG II. NGUYÊN HÀM VÀ TÍCH PHÂN BÀI 1. BÀI TẬP SỬ DỤNG CÔNG THỨC NGUYÊN HÀM, TÍCH PHÂN I. NGUYÊN HÀM VÀ TÍCH PHÂN BẤT ĐỊNH 1. Định nghĩa: • Giả sử y = f(x) liên tục trên khoảng (a, b), khi đó hàm số y = F(x) là một nguyên hàm của hàm số y = f(x) khi và chỉ khi F′(x) = f(x), ∀x∈(a, b). • Nếu y = F(x) là một nguyên hàm của hàm số y = f(x) thì tập hợp tất cả các nguyên hàm của hàm số y = f(x) là tập hợp I = { } + ∈ F( x ) c c R và tập hợp này còn được kí hiệu dưới dấu tích phân bất định = = + ∫ I f ( x )dx F( x ) c 2. Vi phân: 2.1 Giả sử y = f(x) xác định trên khoảng (a, b) và có đạo hàm tại điểm x∈(a,b). Cho x một số gia ∆x sao cho (x + ∆x) ∈ (a,b), khi đó ta có: • Công thức vi phân theo số gia: ( ) ( ) ( ) ′ = ∆ ′ = ∆ dy y x x df x f x x • Công thức biến đổi vi phân: Chọn hàm số y = x ⇒ dy = dx = x’.∆x = ∆x ⇒ dx = ∆x. Vậy ta có: ( ) ( ) ( ) ′ = ∆ ′ = ∆ dy y x x df x f x x ⇔ ( ) ( ) ( ) ′ = ′ = dy y x dx df x f x dx • Nếu hàm số f(x) có vi phân tại điểm x thì ta nói f(x) khả vi tại điểm x. Do ( ) ( ) df x f x x ′ = ∆ nên f(x) khả vi tại điểm x ⇔ f(x) có đạo hàm tại điểm x 2.2. Tính chất: Giả sử u và v là 2 hàm số cùng khả vi tại điểm x. Khi đó: ( ) ( ) ( ) − ± = ± = + = 2 udv vdu u d u v du dv ; d uv udv vdu ; d v v 2.3 Vi phân của hàm hợp Nếu = = y f ( u ) u g( x ) và f, g khả vi thì ( ) ( ) ( ) ′ ′ = = dy f u du f u u x dx 1 Chương II. Nguyên hàm và tích phân − Trần Phương 3. Quan hệ giữa đạo hàm − nguyên hàm và vi phân: ( ) ( ) ( ) ( ) ( ) ( ) ′ = + ⇔ = ⇔ = ∫ f x dx F x c F x f x dF x f x dx 4. Các tính chất của nguyên hàm và tích phân 4.1. Nếu f(x) là hàm số có nguyên hàm thì ( ) ( ) ( ) ′ = ∫ f x dx f x ; ( ) ( ) ( ) = ∫ d f x dx f x dx 4.2. Nếu F(x) có đạo hàm thì: ( ) ( ) ( ) = + ∫ d F x F x c 4.3. Phép cộng: Nếu f(x) và g(x) có nguyên hàm thì: ( ) ( ) ( ) ( ) + = + ∫ ∫ ∫ f x g x dx f x dx g x dx 4.4. Phép trừ: Nếu f(x) và g(x) có nguyên hàm thì: ( ) ( ) ( ) ( ) − = − ∫ ∫ ∫ f x g x dx f x dx g x dx 4.5. Phép nhân với một hằng số thực khác 0: ( ) ( ) = ∫ ∫ kf x dx k f x dx , ∀k ≠ 0 4.6. Công thức đổi biến số: Cho y = f(u) và u = g(x). Nếu ( ) ( ) = + ∫ f x dx F x c thì ( ) ( ) ( ) ( ) ( ) ′ = = + ∫ ∫ f g x g x dx f u du F u c 5. Nhận xét: Nếu ( ) ( ) = + ∫ f x dx F x c với F(x) là hàm sơ cấp thì ta nói tích phân bất định ( ) ∫ f x dx biểu diễn được dưới dạng hữu hạn. Ta có nhận xét: Nếu một tích phân bất định biểu diễn được dưới dạng hữu hạn thì hàm số dưới dấu tích phân là hàm sơ cấp và điều ngược lại không đúng, tức là có nhiều hàm số dưới dấu tích phân là hàm sơ cấp nhưng tích phân bất định không biểu diễn được dưới dạng hữu hạn mặc dù nó tồn tại. Chẳng hạn các tích phân bất định sau tồn tại − ∫ ∫ ∫ ∫ ∫ 2 x dx sin x cos x e dx ; ; sin x dx ; dx ; dx ln x x x nhưng chúng không thể biểu diễn được dưới dạng hữu hạn. 2 Bài 1. Bài tập sử dụng công thức nguyên hàm, tích phân II. TÍCH PHÂN XÁC ĐỊNH 1. Định nghĩa: Giả sử hàm số f(x) xác định và bị chặn trên đoạn [a, b]. Xét một phân hoạch π bất kì của đoạn [a, b], tức là chia đoạn [a, b] thành n phần tuỳ ý bởi các điểm chia: − = < < < < = 0 1 n 1 n a x x x x b . Trên mỗi đoạn [ ] −k 1 k x ,x lấy bất kì điểm [ ] 1k k k x ,x − ξ ∈ và gọi 1k k k x x − ∆ = − là độ dài của [ ] 1k k x ,x − . Khi đó: ( ) ( ) ( ) ( ) = = + + + ∑ n k k 1 1 2 2 n n k 1 f f f f ξ ∆ ξ ∆ ξ ∆ ξ ∆ gọi là tổng tích phân của hàm f(x) trên đoạn [a, b]. Tổng tích phân này phụ thuộc vào phân hoạch π, số khoảng chia n và phụ thuộc vào cách chọn điểm ξ k . Nếu tồn tại ( ) → = ∑ k n k k Max 0 k 1 lim f ∆ ξ ∆ (là một số xác định) thì giới hạn này gọi là tích phân xác định của hàm số f(x) trên đoạn [a, b] và kí hiệu là: ( ) ∫ b a f x dx Khi đó hàm số y = f(x) được gọi là khả tích trên đoạn [a, b] 2. Điều kiện khả tích: Các hàm liên tục trên [a, b], các hàm bị chặn có hữu hạn điểm gián đoạn trên [a, b] và các hàm đơn điệu bị chặn trên [a, b] đều khả tích trên [a, b]. 3. Ý nghĩa hình học: Nếu f(x) > 0 trên đoạn [a, b] thì ( ) ∫ b a f x dx là diện tích của hình thang cong giới hạn bởi các đường: y = f(x), x = a, x = b, y = 0 3 O y x 0 a=x 1 ξ 1 x 2 ξ x 2 k-1 x x k x n x n-1 =b k-1 ξ ξ k n-1 ξ ξ n C 1 2 C 3 C k-1 N k N n-1 C n C n N N 1 C k B 1 2 B B k B n B k+1 Chương II. Nguyên hàm và tích phân − Trần Phương 4. Các định lý, tính chất và công thức của tích phân xác định: 4.1. Định lý 1: Nếu f(x) liên tục trên đoạn [a, b] thì nó khả tích trên đoạn [a, b] 4.2. Định lý 2: Nếu f(x), g(x) liên tục trên đoạn [a, b] và f(x) ≤ g(x),∀x∈[a, b] thì ( ) ( ) ≤ ∫ ∫ b b a a f x dx g x dx . Dấu bằng xảy ra ⇔ f(x) ≡ g(x), ∀x∈[a, b] 4.3. Công thức Newton - Leipnitz: Nếu ( ) ( ) = + ∫ f x dx F x c thì ( ) ( ) ( ) ( ) = = − ∫ b b a a f x dx F x F b F a 4.4. Phép cộng: ( ) ( ) ( ) ( ) + = + ∫ ∫ ∫ b b b a a a f x g x dx f x dx g x dx 4.5. Phép trừ: ( ) ( ) ( ) ( ) − = − ∫ ∫ ∫ b b b a a a f x g x dx f x dx g x dx 4.6. Phép nhân với một hằng số khác 0: ( ) ( ) = ∫ ∫ b b a a kf x dx k f x dx , ∀k ≠ 0 4.7. Công thức đảo cận tích phân: ( ) ( ) = − ∫ ∫ b a a b f x dx f x dx ; ( ) = ∫ a a f x dx 0 4.8. Công thức tách cận tích phân: ( ) ( ) ( ) = + ∫ ∫ ∫ b c b a a c f x dx f x dx f x dx 4.9. Công thức đổi biến số: Cho y = f(x) liên tục trên đoạn [a, b] và hàm x = ϕ(t) khả vi, liên tục trên đoạn [m, M] và [ ] ( ) [ ] ( ) ∈ ∈ = = t m ,M t m,M Min t a; Max t b ϕ ϕ ; ( ) ( ) = =m a; M b ϕ ϕ . Khi đó ta có: ( ) ( ) [ ] ( ) ′ = ∫ ∫ b M a m f x dx f t t dt ϕ ϕ 4.10. Công thức tích phân từng phần: Giả sử hàm số u(x), v(x) khả vi, liên tục trên [a, b], khi đó: ( ) ( ) ( ) ( ) ( ) ( ) ′ ′ = − ∫ ∫ b b b a a a u x v x dx u x v x v x u x dx Iii. B¶ng c«ng thøc nguyªn hµm më réng 4 Bài 1. Bài tập sử dụng công thức nguyên hàm, tích phân ( ) 1 1 1 1 ax b ax b dx c , a α + α + + = + α ≠ − ÷ α + ∫ ( ) ( ) 1 cos ax b dx sin ax b a + = + ∫ + c 1dx ln ax b c ax b a = + + + ∫ + c ( ) ( ) 1 sin ax b dx cos ax b c a − + = + + ∫ 1 ax b ax b e dx e c a + + = + ∫ ( ) ( ) 1 tg ax b dx ln cos ax b c a + = − + + ∫ 1 ax b ax b m dx m c a ln m + + = + ∫ ( ) ( ) 1 cotg ax b dx ln sin ax b c a + = + + ∫ 2 2 1dx x arctg c a a a x = + + ∫ ( ) ( ) 2 1dx cotg ax b c a sin ax b − = + + + ∫ 2 2 1 2 dx a x ln c a a x a x + = + − − ∫ ( ) ( ) 2 1dx tg ax b c a cos ax b = + + + ∫ ( ) 2 2 2 2 dx ln x x a c x a = + + + + ∫ 2 2 x x arcsin dx x arcsin a x c a a = + − + ∫ 2 2 dx x arcsin c a a x = + − ∫ 2 2 x x arccos dx x arccos a x c a a = − − + ∫ 2 2 1dx x arccos c a a x x a = + − ∫ ( ) 2 2 2 x x a arctg dx x arctg ln a x c a a = − + + ∫ 2 2 2 2 1dx a x a ln c a x x x a + + = − + + ∫ ( ) 2 2 2 x x a arc cotg dx x arc cotg ln a x c a a = + + + ∫ ( ) ( ) b ln ax b dx x ln ax b x c a + = + + − + ÷ ∫ ( ) 1 2 dx ax b ln tg c sin ax b a + = + + ∫ 2 2 2 2 2 2 2 x a x a x a x dx arcsin c a − − = + + ∫ ( ) 1 2 dx ax b ln tg c sin ax b a + = + + ∫ ( ) 2 2 ax ax e a sin bx b cos bx e sin bx dx c a b − = + + ∫ ( ) 2 2 ax ax e a cos bx b sin bx e cos bx dx c a b + = + + ∫ 5 Chương II. Nguyên hàm và tích phân − Trần Phương IV. NHỮNG CHÚ Ý KHI SỬ DỤNG CÔNG THỨC KHÔNG CÓ TRONG SGK 12 Các công thức có mặt trong II. mà không có trong SGK 12 khi sử dụng phải chứng minh lại bằng cách trình bày dưới dạng bổ đề. Có nhiều cách chứng minh bổ đề nhưng cách đơn giản nhất là chứng minh bằng cách lấy đạo hàm 1. Ví dụ 1: Chứng minh: 2 2 dx 1 x a ln c 2a x a x a − = + + − ∫ ; 2 2 dx 1 a x ln c 2a a x a x + = + − − ∫ Chứng minh: 2 2 dx 1 1 1 1 dx dx 1 x a dx ln c 2a x a x a 2a x a x a 2a x a x a − = − = − = + ÷ ÷ − + − + + − ∫ ∫ ∫ ∫ ( ) 2 2 dx 1 1 1 1 dx d a x 1 a x dx ln c 2a a x a x 2a a x a x 2a a x a x − + = + = − = + ÷ ÷ + − + − − − ∫ ∫ ∫ ∫ 2. Ví dụ 2: Chứng minh rằng: ( ) 2 2 2 2 dx ln x x a x a = + + + ∫ + c Chứng minh: Lấy đạo hàm ta có: ( ) ( ) 2 2 2 2 2 2 1 x a ln x x a c x x a ′ ′ + + + + + = + + = 2 2 2 2 2 2 2 2 2 2 2 2 1 x 1 x x a 1 1 x x a x a x x a x a x a + + = + = × = ÷ + + + + + + + 3. Ví dụ 3: Chứng minh rằng: 2 2 dx 1 u c a a x = + + ∫ (với x tg u a = ) Đặt x tg u a = , ( ) u , 2 2 π π ∈ − ⇒ ( ) ( ) 2 2 2 2 d a tg u dx 1 1 du u c a a a x a 1 tg u = = = + + + ∫ ∫ ∫ 4. Ví dụ 4: Chứng minh rằng: 2 2 dx u c a x = + − ∫ (với x sin u a = , a > 0) Đặt x sin u a = ,u∈ , 2 2 π π − ⇒ ( ) ( ) 2 2 2 2 dx d a sin u du u c a x a 1 sin u = = = + − − ∫ ∫ ∫ Bình luận: Trước năm 2001, SGK12 có cho sử dụng công thức nguyên hàm 2 2 dx 1 x arctg c a a a x = + + ∫ và 2 2 dx x arcsin c a a x = + − ∫ (a > 0) nhưng sau đó không giống bất cứ nước nào trên thế giới, họ lại cấm không cho sử dụng khái niệm hàm ngược arctg x, arcsin x. Cách trình bày trên để khắc phục lệnh cấm này. 6 Bài 1. Bài tập sử dụng công thức nguyên hàm, tích phân V. CÁC DẠNG TÍCH PHÂN ĐƠN GIẢN V.1. CÁC KỸ NĂNG CƠ BẢN: 1. Biểu diễn luỹ thừa dạng chính tắc: = 1 n n x x ; = = m m n n k m m n nk x x ; x x − − = = 1 n n n n 1 1 x ; x x x ; − = m n n m 1 x x ; − = m nk n k m 1 x x 2. Biến đổi vi phân: dx = d(x ± 1) = d(x ± 2) = … = d(x ± p) adx = d(ax ± 1) = d(ax ± 2) = … = d(ax ± p) ( ) ( ) x p1 x 1 x 2 dx d d d a a a a ± ± ± = = = = ÷ L V.2. CÁC BÀI TẬP MẪU MINH HOẠ 1. 3 dx 1 x x − ∫ ( ) 3 2 1 1 1 dx 1 dx 1 1 x x x x x − + = = + + + ÷ − − ∫ ∫ = ( ) ( ) 2 3 2 1 1 1 1 dx ln 1 1 3 2 d x x x x x x x c x − + + + = + + + − + − ∫ ∫ 2. ( ) 1 4 7 dx = 4 7 7 4 7 dx 4 x x x x+ + − + ∫ ∫ ( ) ( ) ( ) ( ) ( ) 3 5 3 1 2 2 2 2 1 1 2 2 4 7 7 4 7 4 7 4 7 7 4 7 16 16 5 3 x x d x x x c = + − + + = + − × + + ∫ 3. ( ) ( ) ( ) 17 2 2 2 d 2 d 1 2 5 2 2 5 x x I x x = = + + ∫ ∫ 1 10 arctg 5 10 x c = + ÷ 4. ( ) ( ) ( ) x dx 1 2 1 1 1 1 2 2 ln ln 2 5ln 2 5ln 2 2 + 5 2 2 5 2 5 2 2 5 x x x x x x x x d d c = = − = + ÷ + + + ∫ ∫ ∫ 5. ( ) ( ) 5 3 2 3 cos cos 1 sin 1 sin cos cos sin dx 1 sin x dx x x dx x x x x x = + = − + − ∫ ∫ ∫ ( ) ( ) ( ) 3 4 2 3 sin cos 1 sin sin cos cos sin 3 4 x x x d x xd x x c= − − = − − + ∫ ∫ 7 Chương II. Nguyên hàm và tích phân − Trần Phương V.3. CÁC BÀI TẬP DÀNH CHO BẠN ĐỌC TỰ GIẢI ( ) ( ) ( ) ( ) 1 x 1 x 2 x 3 x 4 J dx x x + + + + = ∫ ; 2 7x 3 J dx 2x 5 − = + ∫ ; 2 3 3x 7x 5 J dx x 2 − + = − ∫ ( ) 3 2 2 2 4 5 6 10 2x 5x 7x 10 4x 9x 10 2x 3x 9 J dx ;J dx ; J dx x 1 2x 1 x 1 − + − − + − + = = = − − − ∫ ∫ ∫ ( ) ( ) 3 2 3 2 7 8 15 30 x 3x 4x 9 2x 5x 11x 4 J dx ; J dx x 2 x 1 − + − + − + = = − + ∫ ∫ ( ) ( ) ( ) ( ) ( ) ( ) ∫∫∫ −−+=+−=−+= dx1x25x3xJ;dx2x51xJ;dx1x3xJ 33 2 11 152 10 3100 9 ( ) ( ) ( ) ( ) 2 4 3 2 4 5 5 9 12 13 14 4 7 x 3x 5 J 2x 3 . x 1 dx ; J dx ; J x . 2x 3 dx 2x 1 − + = + − = = + + ∫ ∫ ∫ ( ) 9 3 15 16 17 4 2 2 10 5 x x x J dx ; J dx ; J dx x x 1 x x 1 2 3x = = = + − − − − ∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) ( ) 18 19 20 2 2 2 2 dx dx dx J ; J ; J x 2 x 5 x 2 x 6 x 2 x 3 = = = − + + + − + ∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) ( ) 21 22 23 2 2 2 2 2 2 x dx dx dx J ; J ; J x 3 x 7 3x 7 x 2 2x 5 x 3 = = = − − + + + − ∫ ∫ ∫ ln 2 ln 2 ln 2 ln 2 2x x x 24 25 26 27 x x x 1 0 0 0 dx e dx 1 e J ; J ; J e 1dx ; J dx 1 e e 1 e 1 − = = = + = + − + ∫ ∫ ∫ ∫ ( ) ( ) 2 2 x x 1 1 1 1 x 28 29 30 31 x 2x 2x x 3x 0 0 0 0 1 e dx 1 e e dx dx J ; J ; J ; J dx 1 e 1 e e e e − − + + = = = = + + + ∫ ∫ ∫ ∫ ln 2 ln 4 1 e 3x 32 33 34 35 x 3 x x x 0 0 0 1 dx dx e dx 1 ln x J ; J ; J ; J dx x e e 4e 1 e − + − − + = = = = − + ∫ ∫ ∫ ∫ ( ) 3 1 1 6 5 2 5 3 3 2 36 37 38 0 0 0 J x 1 x dx ; J x 1 x dx ; J x 1 x dx= + = − = − ∫ ∫ ∫ ( ) 2 x 1 1 1 1 2x x 39 40 41 42 x x x x 0 0 0 0 2 1 dx dx dx J ; J ; J ; J e 1 e dx 4 3 4 2 4 − − + = = = = + + + ∫ ∫ ∫ ∫ 8 . ∫ ln 2 ln 2 ln 2 ln 2 2x x x 24 25 26 27 x x x 1 0 0 0 dx e dx 1 e J ; J ; J e 1dx ; J dx 1 e e 1 e 1 − = = = + = + − + ∫ ∫ ∫ ∫ ( ) ( ) 2 2 x x 1 1 1 1 x 28 29 30 31 x 2x 2x x 3x 0 0 0 0 1 e dx 1. ( ) ( ) ( ) 18 19 20 2 2 2 2 dx dx dx J ; J ; J x 2 x 5 x 2 x 6 x 2 x 3 = = = − + + + − + ∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) ( ) 21 22 23 2 2 2 2 2 2 x dx dx dx J ; J ; J x 3 x 7 3x 7 x 2 2x 5 x 3 = =. + c Chứng minh: Lấy đạo hàm ta có: ( ) ( ) 2 2 2 2 2 2 1 x a ln x x a c x x a ′ ′ + + + + + = + + = 2 2 2 2 2 2 2 2 2 2 2 2 1 x 1 x x a 1 1 x x a x a x x a x a x a + + = + = × =