1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất

114 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Tác giả Lê Nguyên Hải
Người hướng dẫn PGS.TS Châu Ngọc Ẩn, TS Lê Trọng Nghĩa
Trường học Đại học Quốc gia TP. HCM
Chuyên ngành Địa Kỹ Thuật Xây Dựng
Thể loại Luận văn thạc sĩ
Năm xuất bản 2017
Thành phố TP. Hồ Chí Minh
Định dạng
Số trang 114
Dung lượng 1,9 MB

Nội dung

Trong nghiên cứu này, phương pháp phân tích giới hạn theo định lý cận trên được sử dụng để phân tích một số bài toán trong địa kỹ thuật bởi việc xấp xỉ trường chuyển vị tương đối dễ dàng

Trang 1

-

LÊ NGUYÊN HẢI

PHÂN TÍCH GIỚI HẠN NỀN CÓ XÉT ĐẾN ẢNH HƯỞNG

Trang 2

CÔNG TRÌNH ĐƯỢC HOÀN THÀNH TẠI TRƯỜNG ĐẠI HỌC BÁCH KHOA –ĐHQG -HCM Cán bộ hướng dẫn khoa học 1: PGS.TS CHÂU NGỌC ẨN

Cán bộ hướng dẫn khoa học 2: TS LÊ TRỌNG NGHĨA

Cán bộ chấm nhận xét 1: PGS.TS BÙI TRƯỜNG SƠN

Cán bộ chấm nhận xét 2: PGS.TS DƯƠNG HỒNG THẨM

Luận văn thạc sĩ được bảo vệ tại Trường Đại học Bách Khoa, ĐHQG Tp HCM ngày 05 tháng 01 năm 2017 Thành phần Hội đồng đánh giá luận văn thạc sĩ gồm: (Ghi rõ họ, tên, học hàm, học vị của Hội đồng chấm bảo vệ luận văn thạc sĩ) 1 PGS.TS TÔ VĂN LẬN

2 PGS.TS BÙI TRƯỜNG SƠN

Trang 3

ĐẠI HỌC QUỐC GIA TP HCM CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM

NHIỆM VỤ LUẬN VĂN THẠC SĨ

Họ và tên học viên: LÊ NGUYÊN HẢI MSHV: 7141175 Ngày, tháng, năm sinh: 10/01/1991 Nơi sinh: Đồng Nai Chuyên ngành: Địa kỹ thuật xây dựng Mã số: 60 58 02 11

TÊN ĐỀ TÀI: PHÂN TÍCH GIỚI HẠN NỀN CÓ XÉT ĐẾN ẢNH HƯỞNG CỦA

ĐỘNG ĐẤTI NHIỆM VỤ VÀ NỘI DUNG

1 Rời rạc hóa trường biến dạng bằng phương pháp phần tử hữu hạn trơn trên cạnh vàtrơn trên miền

2 Thiết lập bài toán phân tích giới hạn có xét đến ảnh hưởng của động đất dựa trên tiêuchuẩn bền Morh-Coulomb và luật chảy dẻo kết hợp

3 Vận dụng lý thuyết phân tích giới hạn từ lời giải cận trên xác định cơ cấu trượt cũngnhư tải phá hủy cho một số bài toán: (i) sức chịu tải của nền, (ii) ổn định của mái dốc, (iii) ổn định của cống ngầm

4 Kết luận chung về sự ảnh hưởng của động đất đến cơ chế trượt cũng như tải trọngphá hủy so với thông qua việc so sánh kết quả thu được với kết quả phân tích không xét đến yếu tố này

II.NGÀY GIAO NHIỆM VỤ: tháng 01 năm 2016III.NGÀY HOÀN THÀNH NHIỆM VỤ: tháng 12 năm 2016IV.HỌ VÀ TÊN CÁN BỘ HƯỚNG DẪN 1: PGS.TS CHÂU NGỌC ẨN

HỌ VÀ TÊN CÁN BỘ HƯỚNG DẪN 2: TS LÊ TRỌNG NGHĨA

TP HCM, ngày 05 tháng 12 năm 2016

PGS.TS CHÂU NGỌC ẨN TS LÊ TRỌNG NGHĨA PGS.TS LÊ BÁ VINH

TRƯỞNG KHOA KỸ THUẬT XÂY DỰNG

PGS.TS NGUYỄN MINH TÂM

Trang 4

LỜI CÁM ƠN

Đầu tiên, tôi muốn gửi cảm ơn chân thành và đặc biệt nhất đến người anh, người

thầy và cũng là người bạn đó là Ths Nguyễn Chánh Hoàng, người đã đưa tôi đến

với nghiên cứu khoa học cũng như định hướng tôi đi theo con đường phương pháp số Anh đã luôn thôi thúc, truyền cho tôi cảm hứng, niềm tin yêu vào con đường này Ở anh tôi học được phong thái làm việc, triết lý sống cũng như cách đối nhân xử thế Thật khó có thể dùng từ ngữ để diễn tả hết tình cảm trong tôi dành cho anh Có một điều tôi biết chắc rằng, nếu không có anh thì chắc sẽ không có luận văn này!

Lời thứ hai, tôi xin gửi lời cảm ơn chân thành nhất đến thầy hướng dẫn của tôi

PGS.TS Châu Ngọc Ẩn, người đã đồng hành cùng tôi trong suốt quá trình thực hiện

luận văn này, người đã cho tôi nền tảng, giúp tôi mở mang khối kiến thức hạn hẹp về cơ đất của mình Thầy mang đến cho tôi sự hứng thú với cơ đất ngày từ những buổi đầu đại học Đồng thời, tôi cũng muốn gửi lời cảm ơn này đến thầy đồng hướng dẫn

tôi TS Lê Trọng Nghĩa, mặc dù thời gian tiếp xúc và làm việc với thầy không nhiều

nhưng tôi cảm nhận được sự chân thành, nhẹ nhàng cùng những góp ý vô cùng quý báu giúp tôi hoàn thiện luận văn này hơn Làm việc cùng thầy, tôi cảm nhận không có khoảng cách thầy trò mà dường như là hai người anh em của nhau, thầy – đàn anh dìu dắt tôi – đàn em trên con đường hoàn thiện bản thân Một lần nữa, tôi xin gửi lời cảm ơn chân thành này đến hai thầy

Xin gửi lời cảm ơn sâu sắc đến thầy PGS.TS Nguyễn Thời Trung, thầy đã cho

tôi biết thế nào là phần tử hữu hạn, cách lập trình Matlab và đặc biệt là những triết lý cuộc sống, là phong thái làm việc Và đặc biệt cảm ơn về những đầu sách mà thầy đã dành tặng cho tôi

Tôi cũng xin gửi lời cảm ơn đến PGS.TS Lê Văn Cảnh, người đã phát triển kết

hợp phương pháp phần tử hữu hạn trơn (SFEM) với chương trình tối ưu hóa hình nón bậc hai Mặc dù chưa từng được làm việc cùng thầy nhưng luận văn này có thể hoàn thành là nhờ được thừa hưởng những thành quả mà thầy đã phát triển

Trang 5

Cảm ơn GS.TS Dương Nguyên Vũ về những bài học quý báu trong phương

pháp nghiên cứu khoa học Không có những bài học đó, tôi không thể bước đi trên con đường này một cách thuận lợi như bây giờ

Đặc biệt không thể không nhắc đến công lao to lớn của quý thầy cô Khoa Kỹ Thuật Xây Dựng, đặc biệt là những thầy cô đã trực tiếp giảng dạy tôi trong suốt

chương trình cao học: PGS.TS Võ Phán, PGS.TS Nguyễn Minh Tâm, PGS.TS Lê

Bá Vinh – những người đã giúp tôi hoàn thiện hơn khối kiến thức còn hạn chế của

mình

Cảm ơn bạn Thân Nguyên Hải, NCS Võ Minh Thiện, Ths Trương Phước

Trí, Ths Nguyễn Minh Toãn đã giúp đỡ tôi rất nhiều về mặt tinh thần cũng như

trong công việc nghiên cứu

Và cuối cùng niềm động viên lớn nhất, là động lực để giúp tôi hoàn thành luận văn này là ba mẹ, là anh chị em trong gia đình Con làm tất cả đều này là vì mọi người và đây là điều cao quý nhất mà con muốn gởi đến mọi người

Tp.HCM, ngày 05 tháng 12 năm 2016

Học Viên Cao Học

Lê Nguyên Hải

Trang 6

TÓM TẮT LUẬN VĂN TÊN ĐỀ TÀI: PHÂN TÍCH GIỚI HẠN NỀN CÓ XÉT ĐẾN ẢNH HƯỞNG

CỦA ĐỘNG ĐẤT

Một nhân tố mới được xem xét trong phân tích các bài toán địa kỹ thuật – ảnh hưởng của động đất Cụ thể, động đất được xem xét như lực quán tính tác dụng theo phương ngang lên nền đất cũng như kết cấu trên nền Tiếp cận bài toán từ lời giải cận trên bằng những phương pháp số mới Phương pháp phần tử hữu hạn trơn dựa trên cạnh (ES-FEM) và trơn trên miền (CS – FEM) được dùng để xấp xỉ trường chuyển vị Trường biến dạng được sử dụng là trường biến dạng trên miền trơn dựa trên cạnh (ES – FEM) và trên miền tứ giác đã được làm trơn (CS – FEM) Mô hình dẻo lý tưởng Mohr - Coulomb và luật chảy dẻo kết hợp được giả định để dễ dàng tính thành phần gia tăng biến dạng dẻo khi trạng thái ứng suất của đất nền nằm trên mặt ngưỡng Mohr - Coulomb Bài toán phân tích giới hạn từ lời giải cận trên được đưa về bài toán tối ưu hóa, cực tiểu năng lượng tiêu tán dẻo Bài toán cực tiểu năng lượng tiêu tán dẻo được đưa về bài toán tối ưu với ràng buộc hình nón bậc hai bằng cách đặt thêm ẩn phụ Thông qua thuật toán tối ưu hóa được phát triển và viết thành phần mềm Mosek bởi các nhà toán học để tìm trường biến dạng dẻo ứng với cơ cấu sụp đổ Từ đó, một số bài toán địa kỹ thuật xây dựng sẽ được khảo sát để tiên đoán tải phá hủy cũng như cơ cấu sụp đổ tương ứng trong điều kiện động đất như: sức chịu tải của nền, cơ cấu trượt và hệ số an toàn của bài toán ổn định mái dốc, phân tích ổn định công trình ngầm Kết quả được so sánh với một số tác giả sử dụng những phương pháp số khác cũng như bằng những phương pháp khác nhau để cho thấy sự tối ưu của phương pháp số đang sử dụng, đồng thời so sánh với trường hợp không có sự tác động của động đất để làm rõ sự ảnh hưởng của nhân tố này

Trang 7

SUMMARY OF THESIS TITLE OF THESIS:

“LIMIT ANALYSIS ON SOIL CONSIDERING EFFECT OF

EARTHQUAKE”

A new factor to be considered in the analysis of geotechnical problems is effect of earthquakes In this case, earthquake forces are considered as horizontal inertial forces that put on soil as well as superstructure Novel procedure for upper bound limit analysis and second order cone programming have been established The edge – based smoothed finite element method (ES-FEM) and cell – based smoothed finiteelement method (CS – FEM) are used to approximate the kinematically admissible velocity fields The ES – FEM and CS – FEM use smoothed strains over local smoothing domains which constructed based on edges of elements and quadrilateral smoothing domains, respectively The soil is modeled as a perfectly – plastic Mohr – Coulomb model and flow rule is assumed The upper bound limit analysis formulation becomes an optimization problem – minimum plastic energy dissipation, which is then formulated as a standard second – order cone programming (SOCP) problem Using a state-of-the-art SOCP code developed by mathematical researchers to determine collapse load as well as failure mechanism So some geotechnical problems are described to find out collapse load and failure mechanism in seismic conditions such that: bearing capacity factor of strip, the stability of slope and footing on slope as well as the stability of tunnel Results are compared with other research using different method to confirm that this numerical procedure provides stable and accurate solutions as well as show the difference between static conditions and seismic conditions

Trang 8

LỜI CAM ĐOAN

Tôi xin cam đoan luận văn do chính tôi thực hiện bằng sự nổ lực của bản thân

dưới sự hướng dẫn của thầy PGS.TS Châu Ngọc Ẩn và TS Lê Trọng Nghĩa

Các hướng nghiên cứu chưa được công bố ở các nghiên cứu khác Tôi xác định rõ ràng rằng luận văn có sự kế thừa một số kết quả nghiên cứu trước, cũng như những đóng góp mới của cá nhân tôi

Tôi xin chịu trách nhiệm về công việc thực hiện của mình

Tp.HCM, ngày 05 tháng 12 năm 2016

Học Viên Cao Học

Lê Nguyên Hải

Trang 9

2 Tình hình nghiên cứu thế giới và trong nước 2

2.1 Tình hình nghiên cứu thế giới 2

2.2 Tình hình nghiên cứu trong nước 3

3 Ý nghĩa khoa học của đề tài 4

4 Ý nghĩa thực tiễn của đề tài 4

5 Mục tiêu và nhiệm vụ nghiên cứu 5

5.1 Mục tiêu 5

5.2 Nhiệm vụ đề tài 5

CHƯƠNG 1 LÝ THUYẾT CƠ SỞ 6

1.1 Dẻo lý tưởng và tiêu chuẩn phá hủy cho đất 6

Trang 10

CHƯƠNG 3 TỐI ƯU HÓA BÀI TOÁN VÀ CÁCH THIẾT LẬP BÀI TOÁN TỐI

ƯU HÓA TỪ LỜI GIẢI CẬN TRÊN 23

3.1 Chương trình tối ưu hóa 23

3.2 Tối ưu hóa hình nón cho bài toán biến dạng phẳng 25

3.3 Thiết lập bài toán tối ưu hóa 26

CHƯƠNG 4 ĐỘNG ĐẤT TRONG PHÂN TÍCH GIỚI HẠN 30

TÀI LIỆU THAM KHẢO 93

DANH MỤC BÀI BÁO 98

LÝ LỊCH TRÍCH NGANG 99

Trang 11

DANH MỤC HÌNH ẢNH

Hình 1.1 Sự minh họa hình học của luật chảy dẻo kết hợp 8

Hình 1.2 Ứng xử thật của đất và ứng xử đàn hồi - dẻo lý tưởng 9

Hình 1.3 Mô hình Mohr - Coulomb 10

Hình 1.4 Phương của vector gia số biến dạng dẻo trên hệ trục  -  10

Hình 1.5 Nghiệm của lời giải cận trên và cận dưới cho bài toán phân tích giới hạn 11

Hình 1.6 Điều kiện biên lực và chuyển vị 12

Hình 2.1 Miền trơn được chia dựa trên tam giác, tứ giác và ngũ giác 17

Hình 2.2 Định nghĩa một miền trơn 17

Hình 2.3 Miền trơn Ωk dựa trên cạnh 19

Hình 5.1 Bài toán móng băng đặt trên nền đồng nhất 38

Hình 5.2 Móng đặt trên nền đồng nhất không trọng lượng, không phụ tải hông 40

Hình 5.3 Chia lưới và điều kiện biên cho bài toán phân tích NcE trong phương pháp ES – FEM 41

Hình 5.4 Chia lưới và điều kiện biên cho bài toán phân tích NcE trong phương pháp CS – FEM 42

Hình 5.5 So sánh giá trị Nc giữa các phương pháp trong điều kiện không có lực động đất 42

Hình 5.6 So sánh hệ số NcE với một số tác giả khác trong trường hợp φ’=30o 43

Hình 5.7 Sự thay đổi của hệ số NcE khi có động đất 44

Hình 5.8 Cơ chế trượt của đất nền có φ’=30o khi sử dụng phương pháp ES – FEM tương ứng với αh lần lượt là 0, 0.1 và 0.5 45

Trang 12

Hình 5.9 Cơ chế trượt của đất nền có φ’=30o khi sử dụng phương pháp CS – FEM

tương ứng với αh lần lượt là 0, 0.1 và 0.5 45

Hình 5.10 Móng nông đặt trên nền đồng nhất không trọng lượng, không lực dính 46 Hình 5.11 Chia lưới và điều kiện biên cho bài toán phân tích NcE trong phương pháp ES – FEM 47

Hình 5.12 Chia lưới và điều kiện biên cho bài toán phân tích NcE trong phương pháp CS – FEM 48

Hình 5.13 So sánh hệ số NqE với một số tác giả khác trong trường hợp φ’=30o 49

Hình 5.14 Sự thay đổi của hệ số NqE khi có động đất 50

Hình 5.15 Cơ chế trượt của đất nền có φ’=30o khi sử dụng phương pháp ES – FEM tương ứng với αh lần lượt là 0, 0.1 và 0.3 50

Hình 5.16 Cơ chế trượt của đất nền có φ’=30o khi sử dụng phương pháp CS – FEM tương ứng với αh lần lượt là 0, 0.1 và 0.3 51

Hình 5.17 Móng đặt trên nền đồng nhất không lực dính, không phụ tải hông 52

Hình 5.18 Chia lưới và điều kiện biên cho bài toán phân tích NγE trong phương pháp ES – FEM 53

Hình 5.19 Chia lưới và điều kiện biên cho bài toán phân tích NγE trong phương pháp CS – FEM 54

Hình 5.20 Hệ số sức chịu tải Nγ 55

Hình 5.21 Sự thay đổi hệ số sức chịu tải NγE 56

Hình 5.22 Hệ số sức chịu tải Nγ 57

Hình 5.23 So sánh hệ số sức chịu tải NγE 58

Hình 5.24 Sự thay đổi hệ số sức chịu tải NγE 59

Trang 13

Hình 5.29 Cơ chế trượt của mái dốc xác định từ phương pháp ES – FEM: a) c/γHtanφ

= 0.022 và b) c/γHtanφ = 0.173 63

Hình 5.30 Cơ chế trượt của mái dốc xác định từ phương pháp CS – FEM: a) c/γHtanφ = 0.022 và b) c/γHtanφ = 0.173 64

Hình 5.31 Sự thay đổi hệ số ổn định γHtanφ/c định theo β 65

Hình 5.32 Cơ chế trượt của mái dốc xác định từ phương pháp ES – FEM: a) β = 30o, b) β = 45o, c) β = 60o và d) β = 90o 65

Hình 5.33 Cơ chế trượt của mái dốc xác định từ phương pháp CS – FEM: a) β = 30o, b) β = 45o, c) β = 60o và d) β = 90o 66

Hình 5.34 So sánh hệ số ổn định mái dốc γHtanφ/c trong trường hợp có và không có lực động đất 67

Hình 5.35 Mô hình bài toán móng đặt trên mái dốc 69

Hình 5.36 Kích thước miền bài toán được chọn trong phương pháp ES – FEM và được chia lưới khoảng 16000 phần tử 70

Hình 5.37 Kích thước miền bài toán được chọn trong phương pháp CS – FEM và được chia lưới khoảng 16000 phần tử 71

Hình 5.38 So sánh sức chịu tải cực hạn p/γB 72

Hình 5.39 Sự thay đổi sức chịu tải cực hạn theo hệ số địa chấn 73

Hình 5.40 Cơ chế trượt trong trường hợp H/D=3, β=90o, cu/γB=3, q/γB=0, φu=0 và L/B = 1 và hệ số địa chấn αh là: a) αh = 0, b) αh = 0.5 73

Hình 5.41 Hầm tròn đặt trong nền đồng nhất chịu tải động đất 76

Hình 5.42 Mô hình hầm tròn trong phương pháp ES – FEM 77

Hình 5.43 Mô hình hầm tròn trong phương pháp CS – FEM 78

Hình 5.44 So sánh hệ số ổn định Sn với các tác giả khác 79

Hình 5.45 Cơ chế trượt khi αh bằng 0 và 0.5 với H/D = 1: a) ES – FEM, b) CS – FEM 79

Hình 5.46 Sự thay đổi hệ số ổn định theo độ sâu đặt hầm 80

Hình 5.47 Hầm tròn đặt trong nền đồng nhất chịu tải phân bố đều trong điều kiện động đất 81

Hình 5.48 Mô hình hầm tròn trong phương pháp ES – FEM 83

Trang 14

Hình 5.49 Mô hình hầm tròn trong phương pháp CS – FEM 83

Hình 5.50 So sánh kết quả hệ số ổn định Sn trong trường hợp không có động đất 84

Hình 5.51 Sự thay đổi hệ số ổn định theo αh và H/D 85 Hình 5.52 Sự thay đổi hệ số ổn định theo góc nội ma sát, theo tỉ số H/D và hệ số địa chấn αh 86 Hình 5.53 Cơ chế trượt khi αh bằng 0 và 0.5 với H/D = 1 trong phương pháp CS – FEM 87

Trang 15

DANH MỤC BẢNG BIỂU

Bảng 5.1 Hệ số sức chịu tải NcE 43

Bảng 5.2 Hệ số sức chịu tải NqE 48

Bảng 5.3 Hệ số sức chịu tải Nγ 54

Bảng 5.4 Hệ số sức chịu tải NγE 55

Bảng 5.5 Hệ số Nγ trong trường hợp không có động đất 56

Bảng 5.6 Hệ số sức chịu tải NγE 57

Bảng 5.7 Hệ số địa chấn ngang cực đại (αhc) 62

Bảng 5.8 Sự thay đổi hệ số ổn γHtanφ/c định theo β 64

Trang 16

MỞ ĐẦU 1 Đặt vấn đề

Trong công tác tính toán, thiết kế việc đảm bảo cũng như đánh giá độ an toàn của kết cấu là rất quan trọng Để làm được điều đó, người kỹ sư cần có cái nhìn tổng quát về tất cả những yếu tố trực tiếp gây sụp đổ kết cấu Chính vì vậy, việc xem xét lực động đất trong quá trình tính toán tải trọng giới hạn để đưa ra hệ số an toàn hợp lý là cần thiết Để đánh giá vấn đề này có nhiều cách tiếp cận khác nhau, tuy nhiên có ba phương pháp thường được sử dụng:

– Phương pháp cân bằng giới hạn (limit equilibrium method): đây là phương pháp được sử dụng rộng rãi, đặc biệt là sử dụng để phân tích các bài toán mái dốc Trong phương pháp này, các phương trình cần bằng lực và moment được thiết lập và giải cho mỗi mặt trượt Mặt trượt được giả định trước và có thể được phân chia thành nhiều mảnh nhỏ (slice) với giả thiết hệ số an toàn của các mảnh là như nhau, giữa các mảnh có lực tương tác Đây là phương pháp do Fellenius (1926) đề xuất, sau đó được nhiều tác giả tiếp tục phát triển như Janbu (1954), Bishop (1955), Spencer (1967), … Mỗi tác giả đưa ra phương trình cân bằng khác nhau, chủ yếu ở việc xét mối quan hệ giữa các lực tương tác giữa các mảnh Phương pháp này cũng được phát triển thành các phần mềm thương mại, điển hình là phần mềm Geoslope Ưu điểm chính của phương pháp này là tính đơn giản, dễ xác định Tuy nhiên, phương pháp lại không thỏa mãn điều kiện cân bằng ứng suất cũng như xem xét quan hệ ứng suất – biến dạng, do đó sự phân bố ứng suất không đúng với thực tế Kết quả phụ thuộc vào dạng mặt trượt giả định, do đó phụ thuộc vào kinh nghiệm của người kỹ sư

– Phương pháp đặc trưng (characteristic method): nội dung của phương pháp là biến đổi phương trình vi phân đạo hàm riêng và hệ phương trình vi phân thường từ đó tìm lời giải cho bài toán ở hệ phương trình vi phân thường này

Trang 17

– Phương pháp phân tích giới hạn (limit analysis): đây là một phương pháp hữu hiệu trong việc xác định tải trọng giới hạn cũng như cơ chế trượt của kết cấu Phương pháp này dựa trên hai định lý cận cơ bản: định lý cận dưới (trường ứng suất) sẽ cho giá trị tải trọng giới hạn nhỏ hơn giá trị chính xác và ngược lại, định lý cận trên (trường chuyển vị) sẽ cho giá trị tải trọng giới hạn lớn hơn giá trị chính xác Giá trị nghiệm trung bình của hai định lý cận sẽ gần với giá trị tải trọng chính xác

Trong nghiên cứu này, phương pháp phân tích giới hạn theo định lý cận trên được sử dụng để phân tích một số bài toán trong địa kỹ thuật bởi việc xấp xỉ trường chuyển vị tương đối dễ dàng hơn so với xấp xỉ trường ứng suất Quá trình tìm lời giải của bài toán phân tích giới hạn được thực hiện qua hai bước:

Bước 1: Rời rạc hóa miền bài toán để xấp xỉ trường chuyển vị - biến dạng bằng phương pháp phần tử hữu hạn trơn (SFEM), mà cụ thể là phương pháp phần tử hữu hạn trơn trên cạnh (ES – FEM) và phương pháp phần tử hữu hạn trơn trên miền (CS – FEM) Việc sử dụng hai phương pháp số này sẽ tránh được hiện tượng “locking” bởi vì CS – FEM sử dụng phần tử bậc cao Q4 còn trường biến dạng được dùng trong ES – FEM là trường biến dạng trung bình được tính toán trên miền làm trơn trên cạnh

Bước 2: Sau khi trường chuyển vị - biến dạng đã được rời rạc và xấp xỉ, bài toán phân tích giới hạn được đưa về bài toán tối ưu hóa toán học Thuật toán tối ưu hóa tuyến tính, phi tuyến hoặc tối ưu hóa hình nón bậc hai (second – order cone programing) sẽ được sử dụng để giải bài toán tối ưu hóa Trong nghiên cứu này, thuật toán tối ưu hóa hình nón bậc hai sẽ được sử dụng và được trình bày cụ thể trong chương ba

2 Tình hình nghiên cứu thế giới và trong nước 2.1 Tình hình nghiên cứu thế giới

Phân tích ảnh hưởng của động đất đến các bài toán địa kỹ thuật đã được rất nhiều nhà nghiên cứu quan tâm tiến hành bởi nhiều cách tiếp cận khác nhau Trong

Trang 18

đó có thể kể đến một số tác giả đã đạt được thành quả như: Sarma and Iossifelis (1990), Richard et al (1993), Budhu and Al-karni (1993), Choudhury and Subha Rao (2005), Saran and Rangwala (2011), … sử dụng phương pháp cân bằng để xác định hệ số sức chịu tải; Kumar and Rao (2002, 2003), Cascone and Casablanca (2016) cũng xác định hệ số sức chịu tải nhưng bằng phương pháp đặc trưng, Fredlund and Krahn (1977), Zhu và đồng nghiệp (2003), … phân tích ổn định mái dốc bằng phương pháp cân bằng, … Mặc dù phân tích giới hạn đã trở thành một công cụ rất mạnh cho việc phân tích các bài toán địa kỹ thuật nhờ vào nhiều phương pháp số cũng như kỹ thuật tối ưu được phát triển, tuy nhiên phân tích giới hạn cho các bài toán địa kỹ thuật có xét đến ảnh hưởng của động đất đang có phần hạn chế về số lượng các nhà nghiên cứu Trong đó, có thể kể đến một số tác giả đã được thành tựu như: Chakracborty, Kumar, Mahesh, Loukidis, Sahoo, … Thông tin chi tiết các nghiên cứu của các tác giả nói trên sẽ được đề cập trong các chương sau khi đi phân tích cụ thể cho từng bài toán

2.2 Tình hình nghiên cứu trong nước

Phân tích giới hạn cho các bài toán địa cơ nền móng được triển khai bởi Ths Nguyễn Chánh Hoàng (2012) Trong nghiên cứu này, Ths Nguyễn Chánh Hoàng sử dụng ES-FEM để xấp xỉ trường chuyển vị và dùng Mosek để giải bài toán tôi ưu hình nón bậc hai (SOCP) Tiếp đó, Ths Trương Phước Trí (2013) dùng phần tử bậc cao (EFG) và kết quả đạt được tốt hơn kết quả trước đó của Ths Nguyễn Chánh Hoàng (2012) khi xét về số lượng phần tử và độ hội tụ của lời giải Một số nghiên cứu khác cũng được tiến hành để khảo sát các bài toán ổn định nền, mái dốc và cống ngầm như Ths Phạm Quang Tạ (2013) sử dụng phần tử làm trơn trên miền, Ths Nguyễn Tấn và Ths Nguyễn Minh Toãn (2014) sử dụng IGA và SOCP Gần đây, NCS Võ Minh Thiện dưới sự hướng dẫn của PGS.TS Châu Ngọc Ẩn và PGS.TS Nguyễn Minh Tâm đang khảo sát bài toán ổn định cống ngầm sử dụng phương pháp phần tử hữu hạn trơn (S-FEM) và SOCP

Trong nghiên cứu này, chúng tôi muốn xem xét tác động của động đất lên sự ổn định của đất nền bao gồm các bài toán điển hình như sức chịu tải nền, ổn định mái

Trang 19

dốc và cống ngầm Bằng cách sử phần tử phần tử hữu hạn trơn CS-FEM và ES – FEM, kết quả sẽ được so sánh với các tác giả khác đang nghiên cứu vấn đề này nhưng sử dụng phần tử hữu hạn chuẩn như Sahoo và Kumar (2012), Loukidis (2003) … cũng như kết quả tiếp cận từ những phương pháp phân tích khác

3 Ý nghĩa khoa học của đề tài

Ảnh hưởng của động đất lên đất nền được tiến hành trong nghiên cứu này bằng cách sử dụng lý thuyết phân tích giới hạn Các tác giả khác trên thế giới cũng sử dụng lý thuyết phân tích giới hạn nhưng trong các nghiên cứu này phần tử hữu hạn chuẩn được sử dụng để rời rạc trường biến dạng dẻo, trong khi đó đề tài này sẽ sử dụng những phương thức số khác nhau để khảo sát các bài toán trong địa kỹ thuật như ổn định mái dốc, cống ngầm Với việc sử dụng phần tử làm trơn như ES-FEM hay CS-FEM, kết quả thu được tốt hơn các tác giả khác khi sử dung FEM chuẩn

4 Ý nghĩa thực tiễn của đề tài

Khi có sự tác động của động đất, việc xác định tải trọng giới hạn cũng như có chế trượt sẽ không còn giống như điều kiện bình thường mà tương đối phức tạp, do đó không thể áp dụng các phương pháp truyền thống bởi như thế sẽ không phản ánh đúng thực tế Phân tích giới hạn sẽ là công cụ hữu hiệu trong việc xác định những vấn đề nêu trên do đó nó có ý nghĩa rất quan trọng trong thực tiễn thiết kế Người kỹ sư có thể tiên đoán được tải trọng phá hoại của kết cấu và cơ chế trượt tương ứng khi có sự tác động của động đất bằng cách tiếp cận này Đặc biệt đối với những bài toán phức tạp như: nền nhiều lớp đất, ổn định mái dốc, ổn định cống ngầm… thì việc tính toán bằng những công thức trực tiếp sẽ vô cùng khó khăn và dường như không thể khi có sự tác động của lực động đất Để giải quyết những khó khăn đó, phương pháp phân tích giới hạn sẽ cung cấp những số liệu trực quan, sinh động giúp người thiết kế có cái nhìn tổng quan hơn

Trang 20

5 Mục tiêu và nhiệm vụ nghiên cứu 5.1 Mục tiêu

Khảo sát một số bài toán cụ thể: i) sức chịu tải nền đồng, ii) bài toán ổn định mái dốc, iii) bài toán ổn định cống ngầm có xét đến lực động đất và so sánh với trường hợp không có sự tác động của lực động đất để thấy được sự khác biệt cũng như ảnh hưởng của lực động đất; đồng thời cũng so sánh với các kết quả được thực bởi nhiều tác giả khác để thấy được ưu điểm của phương pháp số đang sử dụng

5.2 Nhiệm vụ đề tài

Sử dụng phương pháp phần tử hữu hạn trơn ES – FEM và CS – FEM và chương trình tối ưu hóa hình nón bậc hai (SOCP) xây dựng trên lý thuyết cận trên để khảo sát ảnh hưởng của động đất đến các bài toán đã được đề cập phía trên Các bước cần triển khai trong nghiên cứu này gồm:

 Rời rạc hóa trường ứng suất và biến dạng

 Thiết lập năng lượng tiêu tán dẻo dựa trên tiêu chuẩn bền Mohr – Coulomb và luật chảy dẻo kết hợp

 Đưa bài toán phân tích giới hạn về bài toán tối ưu hóa có ràng buộc dạng hình nón bậc hai

 Lập trình mô phỏng số (dùng ngôn ngữ lập trình Matlab) cho các bài toán trên

 Kết luận chung về sự ảnh hưởng của động đất đến cơ chế trượt cũng như tải trọng phá hủy so với thông qua việc so sánh kết quả thu được với kết quả phân tích không xét đến yếu tố này

Trang 21

CHƯƠNG 1 LÝ THUYẾT CƠ SỞ

Các lý thuyết liên quan đến việc tìm hệ số tải trọng sụp đổ cũng như cơ chế trượt tương ứng sẽ được trình bày một cách ngắn gọn, bao gồm hai nội dung chính: tiêu chuẩn chảy dẻo sẽ được ứng dụng để phân tích các bài toán và lý thuyết cận được sử dụng trong phân tích giới hạn

1.1 Dẻo lý tưởng và tiêu chuẩn phá hủy cho đất

Tiêu chuẩn chảy dẻo xác định các giới hạn đàn hồi của vật liệu dưới tác dụng của trạng thái úng suất phức tạp Đối với nhiều ứng dụng thực tế, một vật liệu có thể được lý tưởng hóa và được giả định có hiệu ứng biến cứng có thể bỏ qua, nghĩa là khi vượt qua giới hạn đàn hồi, ứng suất và biến dạng được xấp xỉ bằng đường thẳng nằm ngang Do đó, biến dạng dẻo được giả định là xảy ra dưới ứng suất hằng Ứng xử này được gọi là ứng xử chảy dẻo hoàn hảo hay ứng xử chảy dẻo lý tưởng

Sự lý tưởng hóa chảy dẻo có thể dẫn đến sự đơn giản hóa trong việc phân tích bài toán kết cấu phức tạp Điều này vô cùng thuận tiện trong phân tích giới hạn mà đặc biệt là lý thuyết phân tích tiếp cận từ trường chuyển vị (cận trên)

1.1.1 Giới hạn đàn hồi và hàm chảy

Giới hạn đàn hồi hay “nhượng” là hiện tượng “biến dạng không hồi phục” bắt

đầu xuất hiện trong quan hệ ứng suất – biến dạng của vật liệu Ứng xử sau điểm nhượng trên đường quan hệ ứng suất – biến dạng đối với:

– Thủy tinh, đá, đất khô cứng, đất cố kết trước nặng, cát chặt, gốm là vở, bể vụn – Kim loại dẻo là chảy dẻo

– Đất sau “nhượng” là dẻo tái bền rồi sau cùng là phá hoại dẻo (dẻo thuần túy) Tiêu chuẩn nhượng là tập hợp các hàm toán học diễn tả đặc trưng nhượng của vật liệu, có rất nhiều tiêu chuẩn nhượng đã được đề xuất bởi các kỹ sư và các nhà nghiên cứu, đầu tiên là của Coulomb công bố năm 1773 Tiêu chuẩn nhượng của

Trang 22

Mohr - Coulomb đã trở thành nền tảng cho sự hiểu biết ứng xử của đất cho đến ngày nay

Tổng quát, nhượng là giới hạn trạng thái đàn hồi của vật liệu và nếu sau đó vật liệu chuyển sang ứng xử dẻo thuần túy hoặc đàn hồi - dẻo thì nhượng là ngưỡng dẻo

Trong không gian ứng suất quỹ đạo các điểm ngưỡng là mặt ngưỡng thường được ký hiệu hàm ƒ() viết với các thành phần ứng suất cơ bản

( x, y, z, xy, xz, yz)

trong đó: k là hằng số và có thể bằng không Khi vật liệu đồng nhất, hàm ngưỡng có thể diễn tả theo các ứng suất chính

123

Trong trường hợp vật liệu đồng nhất hàm f cũng có thể diễn tả theo các bất biến

của ten xơ ứng suất Đối với mô hình dẻo lý tưởng, thành phần biến dạng gồm:

   (1.3) trong đó:

ije: Theo định luật Hooke hay mô hình đàn hồi phi tuyến khác bất kỳ p

ij

 : Theo định luật chảy dẻo

1.1.2 Luật chảy dẻo kết hợp

Vấn đề cốt lõi của lý thuyết dẻo là làm sao tính toán được biến dạng dẻo khi trạng thái ứng suất nằm trên mặt ngưỡng dẻo Hầu hết các lý thuyết dẻo đang được sử dụng hiện nay dựa trên gia số biến dạng dẻo:

pij

ijg

Trang 23

trong đó:  là hệ số vô hướng dương và g là hàm thế năng dẻo Bởi vì mặt chảy dẻo ƒ không trùng với hàm thế năng dẻo g trong quá trình xảy

ra biến dạng dẻo của đất nền, điều này có thể được hiểu một cách đơn giản như sau:

– Mặt chảy dẻo ƒ phụ thuộc vào góc nội ma sát φ

– Hàm thế năng dẻo g phụ thuộc vào góc giản nở ψ

Để có mối liên hệ đơn giản giữa vector gia số biến dạng dẻo và mặt chảy dẻo ta giả định mặt chảy dẻo trùng với mặt thế năng dẻo  gọi là quy luật chảy dẻo kết hợp Khi đó, gia số biến dạng dẻo có thể tính như sau:

pij

ijfd 



Mối liên hệ giữa vector gia số biến dạng dẻo và mặt chảy dẻo f(ij) = 0 được

tính theo luật chảy dẻo kết hợp như Hình 1.1

Hình 1.1 Sự minh họa hình học của luật chảy dẻo kết hợp

Như vậy, khi trạng thái ứng suất ij thỏa ƒ(ij) < 0 thì ứng xử của vật liệu là đàn

hồi, ngược lại, trạng thái chảy dẻo sẽ xảy ra khi ij nằm trên mặt chảy dẻo, tức là ƒ(ij) = 0 Do đó, nếu biết được hàm chảy dẻo f(ij) sẽ dễ dàng tìm được gia số biến

Mặt chảy dẻo ƒ(ij) = 0

pij

d

Đàn hồi ƒ(ij) < 0

Trang 24

dạng dẻo theo luật chảy kết hợp và khi đó vector gia số biến dạng dẻo sẽ vuông góc với mặt chảy dẻo

1.1.3 Hàm chảy dẻo Mohr – Coulomb

Quan hệ ứng suất - biến dạng của đất thể hiện qua Hình 1.2 Thông thường, quan hệ giữa ứng suất và biến dạng thu được từ kết quả cắt trực tiếp hoặc thí nghiệm ba trục Dễ dàng nhận thấy quan hệ giữa ứng suất và biến dạng thật của đất bao gồm cả tăng và giảm bền không như ứng xử của dẻo lý tưởng Tuy nhiên, trong phân tích giới hạn, để dễ dàng thiết lập mối quan hệ giữa ứng suất và biến dạng, mô hình dẻo lý tưởng Mohr - Coulomb được áp dụng

Hình 1.2 Ứng xử thật của đất và ứng xử đàn hồi - dẻo lý tưởng

Tiêu chuẩn bền của Mohr - Coulomb được sử dụng rất rộng rãi trong cơ học đất, dạng được dùng thông dụng nhất là:

Trang 25

Hình 1.3 Mô hình Mohr - Coulomb

Phương của vector gia số biến dạng dẻo cho hai trường hợp: đất không thoát nước và đất thoát nước được thể hiện qua Hình 1.4

Hình 1.4 Phương của vector gia số biến dạng dẻo trên hệ trục  - 

1.2 Phân tích giới hạn

Một khuynh hướng mạnh nhất của lý thuyết dẻo trong việc tiên liệu giá trị gần đúng của tải phá hủy Điều này xuất phát từ hai định lý cận do Drucker đề xuất năm 1950: “Một vật thể đàn hồi – dẻo thuần túy hoặc chịu phân bố ứng suất tránh bị phá hủy hoặc sẽ bị phá hủy nếu điều kiện khả dĩ động xuất hiện” hoặc hiểu theo định lý cận dưới và định lý cận trên, được sử dụng để phân tích bài toán tải giới hạn

Phân tích giới hạn nhằm xác định trạng thái của cấu kiện khi sụp đổ và cơ chế phá hủy ứng với trạng thái đó Để giải một bài toán phân tích giới hạn ta có thể tiếp cận từ 2 trường: trường ứng suất (áp dụng định lý cận dưới) và trường chuyển vị (áp dụng định lý cận trên) và nghiệm cho như Hình 1.5 Bài toán phân tích giới hạn sẽ

   

pijd

pijd

uc

 



uc

Trang 26

chuyển thành bài toán tối ưu hóa Nếu tiếp cận từ cận dưới ta cần tìm cực đại 

và ngược lại nếu tiếp cận từ cận trên ta cần tìm cực tiểu 

Hình 1.5 Nghiệm của lời giải cận trên và cận dưới cho bài toán phân tích giới hạn

Cần phải phân biệt tải phá hủy với tải đạt ngưỡng dẻo, đối với một số trường hợp đá cứng tải đạt ngưỡng dẻo cũng là tải phá hủy, nhưng đối với phần lớn đất đá tải phá hủy sẽ diễn ra sau khi đạt tải ngưỡng dẻo

Trong luận văn này, trường chuyển vị (biến dạng) sẽ được áp dụng để giải quyết một số vần đề trong địa kỹ thuật xây dựng liên quan đến tải phá hủy, mặt trượt và độ ổn định của bài toán mái dốc Do vậy, lý thuyết cho lời giải cận trên sẽ được trình bày kỹ hơn Nguyên lý biến phân là nền tảng của lý thuyết phân tích giới hạn Trong các trường khả dĩ động và tốc độ biến dạng dẻo tương thích, trường thực sẽ là trường làm phiếm hàm năng lượng đạt giá trị cực tiểu Một trong ứng dụng quan trọng của nguyên lý biến phân là tìm được trường khả dĩ động và khả dĩ tĩnh thực, bằng cách tìm phiếm hàm năng lượng và cho hàm năng lượng đạt giá trị cực tiểu

Với điều kiện biên chuyển vị và điều kiện biên lực thể hiện như hình dưới lần lượt hai định lý cận được trình bày chi tiết

Trang 27

t: lực mặt phân bố trên biên Γt

g: lực thể tích phân bố trong miền Ω

Γt: điều kiện biên lực (tĩnh học)

Γu: điều kiện biên chuyển vị (động học)

Hình 1.6 Điều kiện biên lực và chuyển vị

1.2.1 Định lý cận dưới

Ta xem vật thể cứng – dẻo tuyệt đối trong miền 2

R

 với biên tĩnh học t, với

lực thể tích g và lực trên biên t Theo lý thuyết cận dưới, kết cấu bị sụp đổ khi và chỉ khi tồn tại trường khả dĩ tĩnh σ, sao cho thõa mãn:

i) điều kiện cân bằng trong toàn miền Ω ii) ứng suất trên biên tĩnh học t

iii) đảm bảo điều kiện chảy dẻo Để tìm được  (hệ số tải trọng với cơ cấu bị sụp đổ) cần liên quan đến nguyên lý công ảo và hàm chảy dẻo lồi (véc tơ biến dạng vuông góc mặt thế năng dẻo) Hodge (1963), Save & Masmnet (1972), Lubliner (1990) Điều kiện để tìm  có thể viết tóm tắt như sau:

Trang 28

Ωên

T

t

L t trongn.gtr

/ f( x )x

  



1.2.2 Định lý cận trên

Ta xem vật thể cứng – dẻo tuyệt đối trong miền 2

R

 với biên Γt, với lực thể

tích g và lực trên biên t Điều kiện biên ràng buộc về chuyển vị Γu được thiết lập,

tại trường khả dĩ động u U , sao cho

Trang 29

trọng (tĩnh tải) Do vậy cận trên có thể tìm được thông qua bài toán tối ưu

Trang 30

0

1

uext

Về ý nghĩa vật lý ta có thể hiểu nôm na như sau, cấu kiện bị sụp đổ khi và chỉ khi nội tại không còn khả năng hấp thu năng lượng do công ngoài sinh ra Ứng với mỗi trường biến dạng dẻo sẽ thiết lập được năng lượng tiêu tán dẻo cho toàn miền Thông qua bài toán tối ưu, trường biến dạng dẻo ứng với cơ chế sụp đổ sẽ được tìm

Việc phân tích giới hạn theo định lý cận trên, tức tiếp cận bài toán từ trường biến dạng, sử dụng năng lượng và công để đưa về bài toán tối ưu hóa nên ta không tính ứng suất, biến dạng ở một trạng thái bất kỳ trên lộ trình ứng suất mà ta xác định trực tiếp tải trọng phá hoại của vật thể, lúc đó trạng thái ứng suất của vật thể đã chạm đường bao chống cắt Mohr – Coulomb

Trang 31

CHƯƠNG 2 PHƯƠNG PHÁP SỐ VÀ CÁCH TÍNH NĂNG

LƯỢNG TIÊU TÁN DẺO CHO PHẦN TỬ

Việc xấp xỉ trường biến dạng bằng các phương pháp số khác nhau sẽ ảnh hưởng trực tiếp đến nghiệm của bài toán phân tích giới hạn Trong nghiên cứu này, hai phương pháp số được sử dụng là phương pháp phần tử hữu hạn trơn trên cạnh (ES – FEM) và phương pháp phần tử hữu hạn trơn trên miền (CS – FEM)

2.1 Phương pháp số 2.1.1 Phương pháp phần tử hữu hạn trơn trên miền (CS – FEM)

Ý tưởng cơ bản của phương pháp phần tử hữu hạn trơn triên miền (CS – FEM) là kết hợp phương pháp phần tử hữu hạn truyền thống (FEM) và một chương trình làm mịn trường biến dạng Trong CS – FEM, miền bài toán cũng được chia thành nhiều phần tử giống như FEM, tức là chi miền Ω thành nhiều miền con sao cho

Trang 32

Hình 2.1 Miền trơn được chia dựa trên tam giác, tứ giác và ngũ giác

Các thành phần biến dạng tại một phần tử Ωe bất kỳ thu được như sau



với AC là diện tích miền làm trơn Ce như Hình 2.2

Hình 2.2 Định nghĩa một miền trơn

Thế (2.4) vào (2.2) ta có

Trang 33

x

nn

C

trong đó:

11[ , , , ]

1 ( ) , 1, 2, ,

e

Ccns

kk kIG

kC



Trang 34

2.1.2 Phương pháp phần tử hữu hạn trơn trên cạnh (ES – FEM)

Trong phương pháp phần tử hữu hạn trơn dựa trên cạnh ES – FEM, ta chia miền Ω thành những miền "trơn" Ωk con, được định nghĩa:

ed

N

k 1  và    i j với i ≠ j, trong đó Ned là tổng số cạnh của các phần tử Hàm dạng của ES – FEM được xây dựng giống như cách xây dựng trong phương pháp phần tử hữu hạn truyền thống (FEM) Tuy nhiên, thay vì sử dụng biến dạng tương thích thì ES – FEM sử dụng dụng biến dạng trên miền đã được làm trơn Đối với phần tử tam giác ba nút, miền trơn Ωkdựa trên cạnh k được tạo ra bằng cách kết nối hai đầu nút của cạnh chung với hai trọng tâm của phần tử tam giác đang xét và phần tử tam giác kề bên như Hình 2.3

Hình 2.3 Miền trơn Ωk dựa trên cạnh Các thành phần biến dạng tại một điểm xc bất kỳ thu được như sau

phần tử thứ i

phần tử thứ j

Trang 35

Trong trường hợp đơn giản nhất, hàm làm trơn  được định nghĩa như sau

(k)

kc

k1/ A x(x x )



N(k )

ii 1

1

3 

với:

(k )eN : số phần tử có chung cạnh k ( (k )

eN 1 cho cạnh biên và (k )

eN 2 cho cạnh chung giữa hai phần tử)

Ai: là diện tích của phần tử thứ i có chung cạnh k

Biến dạng trung bình trên miền trơn Ωk của phần tử tam giác 3 nút được định nghĩa như sau

( k )ek

kjkj kj kj1,y1,xn ,yn ,x

Trang 36

Có thể dễ dàng thấy được điểm khác biệt giữa FEM và ES – FEM là: i) FEM sử dụng chuyển vị tương thích trên phần tử trong khi đó ES – FEM dùng biến dạng tương thích trên miền đã làm trơn; ii) quá trình lắp ghép ma trận của FEM dựa trên phần tử còn ES – FEM là trên miền trơn

2.2 Năng lượng tiêu tán dẻo của phần tử 2.2.1 Phương pháp phần tử hữu hạn trơn trên miền (CS – FEM)

Theo Martin [1], năng lượng tiêu tán dẻo của phần tử i có thể viết lại theo công

i

A là diện tích của miền trơn Ωe

c dựa trên miền  : là góc ma sát trong của đất khi phá hoại

xxyyxy

   : là thành phần biến dạng trong miền Ωe

Như vậy năng lượng tiêu tán dẻo của miền trơn Ωe được thiết lập dựa trên thành phần biến dạng của miền trơn Ωe và thông số nội tại của đất là góc ma sát trong và lực dính c Tuy nhiên, ứng với mỗi trường biến dạng ta sẽ thu được năng lượng tiêu tán dẻo Trường biến dạng ứng với cơ chế phá hủy sẽ được tìm thông qua bài toán tối ưu sẽ được trình bày chương 3

2.2.2 Phương pháp phần tử hữu hạn trơn trên cạnh (ES – FEM)

Theo Martin [1], năng lượng tiêu tán dẻo của phần tử i có thể viết lại theo công

Trang 37

   : là thành phần biến dạng trong miền Ωk

Như vậy năng lượng tiêu tán dẻo miền trơn k dựa trên cạnh được thiết lập dựa trên thành phần biến dạng của miền trơn k và thông số nội tại của đất là góc ma sát trong φ và lực dính c Tuy nhiên, ứng với mỗi trường biến dạng ta sẽ thu được

năng lượng tiêu tán dẻo Trường biến dạng ứng với cơ chế phá hủy sẽ được tìm thông qua bài toán tối ưu sẽ được trình bày chương 3

Trang 38

CHƯƠNG 3 TỐI ƯU HÓA BÀI TOÁN VÀ CÁCH THIẾT LẬP

BÀI TOÁN TỐI ƯU HÓA TỪ LỜI GIẢI CẬN TRÊN

Sau khi xấp xỉ trường chuyển vị - biến dạng, bài toán phân tích giới hạn sẽ đựợc đưa về bài toán tối hóa, trong đó bài toán tối hóa được xây dựng là cực tiểu năng lượng tiêu tán dẻo (thiết lập từ lời giải phân tích cận trên) với các ràng buộc chuyển vị trên biên và các liên hệ giữa thành phần biến dạng và chuyển vị

Hiệu quả của việc giải các bài toán phân tích giới hạn, phụ thuộc rất lớn vào thuật toán tối ưu được dùng Trong chương này sẽ trình bày một số thuật toán hiện nay đang được sử dụng cũng như cách xây dựng bài toán tối ưu cho bài toán biến dạng phẳng

3.1 Chương trình tối ưu hóa 3.1.1 Tối ưu hóa tuyến tính

Bài toán tối ưu tuyến tính có thể viết dưới dạng toán học tổng quát như sau:

Tmin c x (3.1) với các ràng buộc:Axbx0

Để dùng thuật toán tuyến tính thì tiêu chuẩn dẻo phải được tuyến tính hóa, do đó số ẩn số và điều kiện ràng buộc sẽ tăng đáng kể, dẫn đến chi phí tính toán rất lớn và gây nhiều hạn chế khi phân tích bài toán với số phần tử lớn

3.1.2 Tối ưu hóa phi tuyến

Bài toán tối ưu phi tính có thể viết dưới dạng toán học tổng quát như sau:

mn

ij iji 1 j 1

 

với các ràng buộc:

Trang 39

Thuật toán tối ưu phi tuyến có thể dùng để giải bài toán tối ưu phi tuyến Tuy nhiên, hàm mục tiêu không tồn tại đạo hàm tại những điểm không có biến dạng dẻo, trong khi các thuật toán tối ưu phi tuyến mạnh đều đòi hỏi hàm mục tiêu phải tồn tại đạo hàm mọi nơi

3.1.3 Tối ưu hóa hình nón

Gần đây, thuật toán tối ưu nón bậc hai (second – order cone programming) được phát triển để khắc phục các vấn đề trên Hơn nữa, phần lớn các tiêu chuẩn chảy dẻo đều có thể chuyển về dạng hình nón bậc hai Do đó, trong nghiên cứu này thuật toán tối ưu nón bậc hai sẽ được áp dụng để giải bài toán phân tích giới hạn cho các bài toán địa kỹ thuật

Bài toán tối ưu hóa hình nón có thể viết dưới dạng toán học tổng quát như sau:

Trang 40

Hình 3.1 Không gian hình nón Dạng toán học của một số hình nón có thể biểu diễn như sau:

3.2 Tối ưu hóa hình nón cho bài toán biến dạng phẳng

Năng lượng tiêu tán dẻo cho phần tử i:

Ngày đăng: 09/09/2024, 05:42

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] A. Makrodimopoulos and C. M. Martin, "Upper bound limit analysis using simplex strain elements and second-order cone programming," International Journal for Numerical and Analytical Methods in Geomechanics, no. 31, p.835–865, 2006 Sách, tạp chí
Tiêu đề: Upper bound limit analysis using simplex strain elements and second-order cone programming
[3] Tran Viet HUNG and KIYOMIYA, "Ground motion attentuation relationship for shallow strike – slip earthquake in north Vietnam based on strong motion records from Japan, Vietnam and adjacent regions," in Structure Eng./Earthquake Eng., JSCE, 2012 Sách, tạp chí
Tiêu đề: Ground motion attentuation relationship for shallow strike – slip earthquake in north Vietnam based on strong motion records from Japan, Vietnam and adjacent regions
[4] Le Minh Nguyen, Ting – Li Lin, Yih – Min Wu, Bor – Shouh Huang, Chien – Hsin Chang, Win – Gee Huang, Tu Son Le, Quoc Cuong Nguyen and Van Toan Dinh, "The first peak ground motion attenuation relationships for North of Vietnam," Journal of Asian Earth Sciences, vol. 43, p. 241 – 253, 2012 Sách, tạp chí
Tiêu đề: The first peak ground motion attenuation relationships for North of Vietnam
[5] Shafiee, A. H. and Jahanandish, M., "Seismic bearing capacity factors for strip footings," in National Congress on Civil Engineering, Iran, 2010 Sách, tạp chí
Tiêu đề: Seismic bearing capacity factors for strip footings
[6] Chakraborty, D. and Mahesh, Y., "Seismic Bearing Capacity Factors for Strip Footings on an Embankment by Using Lower-Bound Limit Analysis,"International Journal of Geomechanics, 2015 Sách, tạp chí
Tiêu đề: Seismic Bearing Capacity Factors for Strip Footings on an Embankment by Using Lower-Bound Limit Analysis
[7] K. Yamamoto, "Seismic Bearing Capacity of Shallow Foundations Near Slopes Using Upper-Bound Limit Analysis," International Journal of Geomechanics Engineering, pp. 255-267, 2015 Sách, tạp chí
Tiêu đề: Seismic Bearing Capacity of Shallow Foundations Near Slopes Using Upper-Bound Limit Analysis
[8] Cascone, E.; Casablanca, O.; Ingegneria, D.; Dio, C. and Messina, S. A., "Static and seismic bearing capacity of shallow strip footings," Soil Dynamics and Earthquake Engineering, pp. 204-223, 2016 Sách, tạp chí
Tiêu đề: Static and seismic bearing capacity of shallow strip footings
[9] L. Prandtl, "ĩber die Họrte plastischer Kửrper," Nachrichten von der Gesellschaft der Wissenschaften zu Gửttingen, Mathematisch-Physikalische Klasse, pp. 74-85, 1920 Sách, tạp chí
Tiêu đề: ĩber die Họrte plastischer Kửrper
[10] G. G. Meyerhof and A. M. Hanna, "Ultimate bearing capacity of foundations on layered under inclined load," Canadian Geotechnical Journal, no. 15, pp.565-572, 1978 Sách, tạp chí
Tiêu đề: Ultimate bearing capacity of foundations on layered under inclined load
[12] Rangwala, S. K. Saran and Hasan, "Seismic bearing capacity of footings," International Journal of Geotechnical Engineering, vol. 5, p. 447 – 445, 2011 Sách, tạp chí
Tiêu đề: Seismic bearing capacity of footings
[13] A. H. Soubra, "Seismic bearing capacity of shallow strip footings in seismic conditions," in Pro. Instn Civ. Engrs Geotech. Engng, 1997 Sách, tạp chí
Tiêu đề: Seismic bearing capacity of shallow strip footings in seismic conditions
[14] D. Loukidis, P. Bandini, and R. Salgado, "Stability of seismically loaded slopes using limit analysis," Géotechnique, vol. 53, no. 5, p. 463–479`, 2003 Sách, tạp chí
Tiêu đề: Stability of seismically loaded slopes using limit analysis
[15] Shiau, J., Merifield, R., Lyamin, A., and Sloan, S, "Undrained Stability of Footings on Slopes," Int. J. Geomech., no. 11(5), p. 381–390, 2011 Sách, tạp chí
Tiêu đề: Undrained Stability of Footings on Slopes
[16] Sahoo, J. P. and Kumar, J., "Seismic stability of a long unsupported circular tunnel," Comput. Geotech., vol. 44, p. 109–115, 2012 Sách, tạp chí
Tiêu đề: Seismic stability of a long unsupported circular tunnel
[17] Chakraborty, D. and Kumar, J., "Stability of a long unsupported circular tunnel in soils with seismic forces," Journal of the International Society for the Sách, tạp chí
Tiêu đề: Stability of a long unsupported circular tunnel in soils with seismic forces
[18] Kentaro Yamamoto, Andrei V. Lymin, Daniel W. Wilson, Scott W. Sloan, Andrew J. Abbo, "Stability of a circular tunnel in cohesive-frictional soil subjected to surcharge loading," Computer and Geotechnics, vol. 38, p. 504 – 514, 2011 Sách, tạp chí
Tiêu đề: Stability of a circular tunnel in cohesive-frictional soil subjected to surcharge loading
[19] G.R. Liu, T. Nguyen -Thoi, and K.Y. Lam, "An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids," Journal of Sound and Vibration, no. 320, pp. 1110-1130, 2009 Sách, tạp chí
Tiêu đề: An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids
[20] H. Nguyen-Xuan, G. R. Liu, T. Nguyen-Thoi, and C. Nguyen Tran, "An edge- based smoothed finite element method (es-fem) for analysis of two-dimensional piezoelectric structures," Journal of Smart Material and Structures, no. 18, 2009 Sách, tạp chí
Tiêu đề: An edge-based smoothed finite element method (es-fem) for analysis of two-dimensional piezoelectric structures
[21] C. H. Nguyen, M. T. Nguyen, T. A. Tran, and V. N. Le, "Undrained stability of footings on slopes using isogeometric analysis and conic programming," in The 6th ASEAN Civil Engineering Conference (ACEC) and the 6th ASEAN Environmental Engineering Conference (AEEC), Ho Chi Minh, 2013 Sách, tạp chí
Tiêu đề: Undrained stability of footings on slopes using isogeometric analysis and conic programming
[22] C.V. Le, H. Nguyen-Xuan, H. Askes, S. Bordas, T. Rabczuk, and H. Nguyen- Vinh, "A cell-based smoothed finite element method for kinematic limit analysis," International Journal for Numerical Methods in Engineering, no. 83, p. 1651–1674, 2010 Sách, tạp chí
Tiêu đề: A cell-based smoothed finite element method for kinematic limit analysis

HÌNH ẢNH LIÊN QUAN

Hình 4.4 Sóng Rayleigh (R). - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 4.4 Sóng Rayleigh (R) (Trang 47)
Hình 5.2 Móng đặt trên nền đồng nhất không trọng lượng, không phụ tải hông. - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.2 Móng đặt trên nền đồng nhất không trọng lượng, không phụ tải hông (Trang 55)
Hình 5.3 Chia lưới và điều kiện biên cho bài toán phân tích N cE  trong phương pháp - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.3 Chia lưới và điều kiện biên cho bài toán phân tích N cE trong phương pháp (Trang 56)
Hình 5.5 So sánh giá trị N c  giữa các phương pháp trong điều kiện không có lực - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.5 So sánh giá trị N c giữa các phương pháp trong điều kiện không có lực (Trang 57)
Hình 5.6 So sánh hệ số N cE  với một số tác giả khác trong trường hợp φ’=30 o . - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.6 So sánh hệ số N cE với một số tác giả khác trong trường hợp φ’=30 o (Trang 58)
Hình 5.8 Cơ chế trượt của đất nền có φ’=30 o  khi sử dụng phương pháp ES – FEM - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.8 Cơ chế trượt của đất nền có φ’=30 o khi sử dụng phương pháp ES – FEM (Trang 60)
Hình 5.13 So sánh hệ số N qE  với một số tác giả khác trong trường hợp φ’=30 o . - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.13 So sánh hệ số N qE với một số tác giả khác trong trường hợp φ’=30 o (Trang 64)
Hình 5.14 Sự thay đổi của hệ số N qE  khi có động đất. - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.14 Sự thay đổi của hệ số N qE khi có động đất (Trang 65)
Hình 5.16 Cơ chế trượt của đất nền có φ’=30 o  khi sử dụng phương pháp CS – FEM - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.16 Cơ chế trượt của đất nền có φ’=30 o khi sử dụng phương pháp CS – FEM (Trang 66)
Hình 5.19 Chia lưới và điều kiện biên cho bài toán phân tích N γE  trong phương pháp - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.19 Chia lưới và điều kiện biên cho bài toán phân tích N γE trong phương pháp (Trang 69)
Hình 5.21 Sự thay đổi hệ số sức chịu tải N γE . - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.21 Sự thay đổi hệ số sức chịu tải N γE (Trang 71)
Hình 5.22 Hệ số sức chịu tải N γ . - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.22 Hệ số sức chịu tải N γ (Trang 72)
Hình 5.23 So sánh hệ số sức chịu tải N γE - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.23 So sánh hệ số sức chịu tải N γE (Trang 73)
Hình 5.24 Sự thay đổi hệ số sức chịu tải N γE . - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.24 Sự thay đổi hệ số sức chịu tải N γE (Trang 74)
Hình 5.27 Kích thước miền bài toán được chọn trong phương pháp CS – FEM và - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.27 Kích thước miền bài toán được chọn trong phương pháp CS – FEM và (Trang 77)
Hình 5.28 Hệ số địa chấn ngang cực đại (α hc ) - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.28 Hệ số địa chấn ngang cực đại (α hc ) (Trang 78)
Hình 5.34 So sánh hệ số ổn định mái dốc γHtanφ/c trong trường hợp có và không - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.34 So sánh hệ số ổn định mái dốc γHtanφ/c trong trường hợp có và không (Trang 82)
Hình 5.35 Mô hình bài toán móng đặt trên mái dốc. - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.35 Mô hình bài toán móng đặt trên mái dốc (Trang 84)
Hình 5.36 Kích thước miền bài toán được chọn trong phương pháp ES – FEM và - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.36 Kích thước miền bài toán được chọn trong phương pháp ES – FEM và (Trang 85)
Hình 5.37 Kích thước miền bài toán được chọn trong phương pháp CS – FEM và - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.37 Kích thước miền bài toán được chọn trong phương pháp CS – FEM và (Trang 86)
Hình 5.38 So sánh sức chịu tải cực hạn p/γB - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.38 So sánh sức chịu tải cực hạn p/γB (Trang 87)
Hình 5.39 Sự thay đổi sức chịu tải cực hạn theo hệ số địa chấn - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.39 Sự thay đổi sức chịu tải cực hạn theo hệ số địa chấn (Trang 88)
Hình 5.41 Hầm tròn đặt trong nền đồng nhất chịu tải động đất. - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.41 Hầm tròn đặt trong nền đồng nhất chịu tải động đất (Trang 91)
Hình 5.43 Mô hình hầm tròn trong phương pháp CS – FEM. - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.43 Mô hình hầm tròn trong phương pháp CS – FEM (Trang 93)
Hình 5.44 So sánh hệ số ổn định S n  với các tác giả khác. - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.44 So sánh hệ số ổn định S n với các tác giả khác (Trang 94)
Hình 5.47 Hầm tròn đặt trong nền đồng nhất chịu tải phân bố đều trong điều kiện - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.47 Hầm tròn đặt trong nền đồng nhất chịu tải phân bố đều trong điều kiện (Trang 96)
Hình 5.48 Mô hình hầm tròn trong phương pháp ES – FEM. - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.48 Mô hình hầm tròn trong phương pháp ES – FEM (Trang 98)
Hình 5.52 Sự thay đổi hệ số ổn định theo góc nội ma sát, theo tỉ số H/D và hệ số địa - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.52 Sự thay đổi hệ số ổn định theo góc nội ma sát, theo tỉ số H/D và hệ số địa (Trang 101)
Hình 5.53 Cơ chế trượt khi α h  bằng 0 và 0.5 với H/D = 1 trong phương pháp CS – - Luận văn thạc sĩ Địa kỹ thuật xây dựng: Phân tích giới hạn nền có xét đến ảnh hưởng của động đất
Hình 5.53 Cơ chế trượt khi α h bằng 0 và 0.5 với H/D = 1 trong phương pháp CS – (Trang 102)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w