TỔNG QUAN VỀ THÍ NGHIỆM XÁC ĐỊNH SỨC CHỊU TẢI CỌC VÀ CÁC PHƯƠNG PHÁP XÁC ĐỊNH SỨC CHỊU TẢI GIỚI HẠN CỦA CỌC TỪ THÍ NGHIỆM NÉN TĨNH THEO TCVN
Các phương pháp thí nghiệm xác định sức chịu tải của cọc
1.1.1 Phương pháp thí nghiệm nén tĩnh
Thí nghiệm được tiến hành bằng phương pháp dùng tải trọng tĩnh ép dọc trục cọc sao cho dưới tác dụng của lực ép, cọc lún sâu thêm vào đất nền Tải trọng tác dụng lên đầu cọc được thực hiện bằng kích thủy lực với hệ phản lực và giàn chất tải, hệ cọc neo hoặc kết hợp dàn chất tải và hệ cọc neo tùy tình hình địa chất khu vực Các số liệu về tải trọng, chuyển vị và biến dạng có được trong quá trình thí nghiệm là cơ sở để phân tích, đánh giá sức chịu tải và mối quan hệ tải trọng – chuyển vị của cọc trong đất nền
Thiết bị thí nghiệm bao gồm hệ gia tải phản lực và hệ đo đạc quan trắc
Hệ gia tải gồm kích, bơm và hệ thống thủy lực phải bảo đảm không bị rò rỉ, hoạt động an toàn dưới áp lực không nhỏ hơn 150% áp lực làm việc
Hệ đo đạc quan trắc bao gồm thiết bị, dụng cụ đo tải trọng tác dụng lên đầu cọc, đo chuyển vị của cọc, máy thủy chuẩn, dầm chuẩn và dụng cụ kẹp đầu cọc
Tải trọng tác dụng lên đầu cọc được đo bằng đồng hồ đo áp lực lắp sẵn trong hệ thống thủy lực Đồng hồ áp lực nên được hiệu chỉnh đồng bộ cùng với kích và hệ thống thủy lực với độ chính xác đến 5%
Chuyển vị đầu cọc được đo bằng 2 đến 4 chuyển vị kế có độ chính xác đến 0,01 mm
Máy thủy chuẩn dùng để đo kiểm tra dịch chuyển, chuyển vị của gối kê, dàn chất tải, hệ thống neo, dầm chuẩn gá lắp chuyển vị kế, độ vồng của dầm chính và chuyển vị đầu cọc
Các bộ phận dùng để gá lắp thiết bị đo chuyển vị gồm dầm chuẩn bằng gỗ hoặc bằng thép và dụng cụ kẹp đầu cọc bằng thép bản phải đảm bảo ít bị biến dạng do thời tiết
Hệ phản lực được thiết kế để chịu được phản lực không nhỏ hơn 120% tải trọng thí nghiệm lớn nhất theo dự kiến Tùy thuộc điều kiện thí nghiệm, có thể chọn một trong ba dạng kết cấu sau đây để làm bệ phản lực: dầm chính kết hợp với dàn chất tải, dầm chính kết hợp với hệ dầm chịu lực liên kết với hệ cọc neo, hoặc phối hợp cả 2 dạng trên
Hình 1.1 Trường hợp sử dụng cọc neo làm hệ phản lực
Hình 1.2 Trường hợp sử dụng dàn chất tải và đối trọng làm hệ phản lực
Hình 1.3 Trường hợp sử dụng dàn chất tải và đối trọng kết hợp cọc neo làm hệ phản lực
Thời gian nghỉ từ khi kết thúc thi công cọc đến khi thực hiện thí nghiệm được quy định tối thiểu 21 ngày đối với cọc nhồi và 7 ngày đối với cọc đóng hoặc ép Đầu cọc thí nghiệm có thể được cắt bớt hoặc nối thêm nhưng phải đảm bảo độ phẳng, vuông góc với trục cọc và khoảng cách từ đầu cọc đến dầm chính đủ để lắp đặt kích, thiết bị đo
Kích phải đặt trực tiếp trên tấm đệm đầu cọc, chính tâm so với tim cọc Khi dùng nhiều kích thì phải bố trí các kích sao cho tải trọng được truyền dọc trục, chính tâm lên đầu cọc
Hệ phản lực phải lắp đặt theo nguyên tắc cân bằng, đối xứng qua trục dọc, bảo đảm truyền tải trọng dọc trục, chính tâm lên đầu cọc Khi lắp dựng xong, đầu cọc không bị nén trước khi thí nghiệm
Dụng cụ kẹp đầu cọc được bắt chặt vào thân cọc, cách đầu cọc khoảng 0,5 lần đường kính hoặc chiều rộng của tiết diện cọc
Các dầm chuẩn được đặt song song hai bên cọc thí nghiệm, các trụ đỡ dầm chuẩn được chôn chặt xuống đất Chuyển vị kế được lắp đối xứng hai bên đầu cọc và được gắn ổn định lên các dầm chuẩn
Khoảng cách lắp dựng các thiết bị được quy định như sau: o Từ tâm cọc thí nghiệm đến tâm cọc neo hoặc neo đất: ≥ 3D nhưng trong mọi trường hợp không nhỏ hơn 2 m (D – đường kính cọc) o Từ cọc thí nghiệm đến điểm gần nhất của các gối kê: ≥ 3D nhưng trong mọi trường hợp không nhỏ hơn 1,5 m o Từ cọc thí nghiệm đến các gối đỡ dầm chuẩn: ≥ 1,5 m o Từ mốc chuẩn đến cọc thí nghiệm, neo và gối kê dàn chất tải: ≥ 5D nhưng trong mọi trường hợp không nhỏ hơn 2,5 m
Trước khi thí nghiệm chính thức, tiến hành gia tải trước nhằm kiểm tra hoạt động của thiết bị thí nghiệm và tạo tiếp xúc tốt giữa thiết bị và đầu cọc Gia tải trước được tiến hành bằng cách tác dụng lên đầu cọc khoảng 5% tải trọng thiết kế sau đó giảm tải về 0, theo dõi hoạt động của thiết bị thí nghiệm Thời gian gia tải và thời gian giữ tải ở cấp 0 khoảng 10 phút
Thí nghiệm được thực hiện theo quy trình gia tải và giảm tải từng cấp, tính bằng phần trăm (%) của tải trọng thiết kế Cấp tải mới chỉ được tăng hoặc giảm khi chuyển vị hoặc độ phục hồi đầu cọc đạt ổn định quy ước hoặc đủ thời gian quy định
Tải trọng thí nghiệm lớn nhất do thiết kế quy định, thường được lấy bằng 250% đến 300% tải trọng thiết kế đối với cọc thăm dò và bằng 150% đến 200% tải trọng thiết kế đối với cọc thí nghiệm kiểm tra
Các phương pháp xác định sức chịu tải giới hạn của cọc từ kết quả nén tĩnh cọc
1.2.1 Sức chịu tải giới hạn từ kết quả thí nghệm nén tĩnh xác định theo TCVN
TCVN 9393 : 2012 cho phép xác định sức chịu tải giới hạn ứng với chuyển vị giới hạn theo các đề nghị khác nhau, thể hiện ở Bảng 1.2
Bảng 1.2 Giá trị sức chịu tải giới hạn ứng với chuyển vị giới hạn theo các đề nghị khác nhau
Chuyển vị giới hạn Điều kiện áp dụng Phương pháp đề nghị
Tiêu chuẩn Pháp DTU 13 - 2 Tiêu chuẩn Anh BS 8004 : 1986 Tiêu chuẩn Nhật JSF 1811 - 1993 2Smax
2,5%D Cọc khoan nhồi De Beer
60 mm đến 80 mm hoặc (2PL/3EA) + 20 mm
1.2.2 Sức chịu tải giới hạn từ kết quả thí nghiệm nén tĩnh xác định theo TCXD
Sức chịu tải giới hạn Qu của cọc được xác định như sau: o Là giá trị tải trọng gây ra độ lún tăng liên tục o Là giá trị ứng với độ lún ξSgh trong các trường hợp còn lại: Δ = ξSgh (1.1) trong đó:
Sgh - Trị số lún giới hạn trung bình cho trong tiêu chuẩn thiết kế nền móng xác định theo nhiệm vụ thiết kế hoặc lấy theo tiêu chuẩn đối với nhà và công trình ξ - Hệ số chuyển từ độ lún lúc thử đến độ lún lâu dài của cọc, thông thường lấy ξ 0,1 Khi có cơ sở thí nghiệm và quan trắc lún đầy đủ, có thể lấy ξ = 0,2
Hình 1.14 Phương pháp xác định Q u theo TCXD 205 : 1998
Nếu độ lún xác định theo công thức (1.1) lớn hơn 40 mm thì sức chịu tải cực hạn của cọc Qu nên lấy ở tải trọng ứng với Δ = 40 mm Đối với các cầu, sức chịu tải cực hạn của cọc chịu tải nén phải lấy tải trọng hơn 1 cấp so với tải trọng mà dưới tải trọng này gây ra o Sự tăng độ lún sau một cấp gia tải (ở tổng độ lún lớn hơn 40 mm vượt quá 5 lần độ lún của một cấp tải gia trước đó) o Độ lún không tắt dần trong thời gian một ngày đêm hoặc hơn (ở tổng độ lún của cọc lớn hơn 40 mm)
Một số phương pháp khác dùng để xác định sức chịu tải giới hạn của cọc khi không thể thử cọc đến phá hoại, nhất là đối với cọc có đường kính lớn
Phương pháp của Canadian Foundation Engineering Manual (1985)
Sức chịu đựng giới hạn của cọc là tải trọng xác định từ giao điểm của biểu đồ quan hệ tải trọng – chuyển vị với đường thẳng như hình 1.15
Hình 1.15 Xác định Q u theo phương pháp của Canadian Foundation Engineering
Sf - Độ lún tại cấp tải trọng phá hoại, m
Biến dạng đàn hồi của cọc, m p p
Q – Tải trọng tác dụng lên cọc, T
A – Diện tích tiết diện cọc, m 2
Ep – Module đàn hồi của vật liệu cọc, T/m 2
Sức chịu tải giới hạn của cọc là tải trọng ứng với độ lún trên đường cong tải trọng – độ lún có được lúc thử tĩnh:
Trong trường hợp cọc dài thì sức chịu tải giới hạn ứng với độ lún:
Nhận xét chương
Để kiểm tra sức chịu tải của cọc có nhiều phương pháp được áp dụng Ở đây có hai phương pháp cơ bản là tĩnh và động Phương pháp tĩnh dựa chủ yếu trên nguyên lý tải trọng và phản lực cân bằng nhau và do đó tải trọng áp dụng thí nghiệm phải cân bằng với tải trọng giới hạn cọc gánh chịu được, qua đó ghi nhận được sức chịu tải cọc Phương pháp động dựa trên nguyên lý truyền sóng trong vật liệu cọc để đo được sức kháng của đất khi có lực động tác động lên cọc
Thí nghiệm nén tĩnh cọc là phương pháp truyền thống được tin cậy để kiểm tra khả năng chịu tải của cọc trong thi công Thực tế, thí nghiệm nén tĩnh thường được yêu cầu thực hiện và giá trị tải trọng giới hạn từ thí nghiệm được xem là tiêu chuẩn để đánh giá trong thi công và cho cả quá trình thiết kế
Sức chịu tải giới hạn xác định theo các tiêu chuẩn Việt Nam chủ yếu dựa trên kinh nghiệm đúc kết từ các tác giả, các kết quả thu được không phản ánh được mức độ tiếp cận số liệu thí nghiệm khi cọc chưa nén đến phá hoại Do đó, việc ngoại suy đường cong quan hệ tải trọng – độ lún từ số liệu thí nghiệm theo các hàm xấp xỉ là cần thiết để có cơ sở đánh giá sức chịu tải giới hạn tốt hơn.
CÁC PHƯƠNG PHÁP PHÂN TÍCH ĐÁNH GIÁ KẾT QUẢ THÍ NGHIỆM NÉN TĨNH CỌC
Các phương pháp cũ đã được nghiên cứu
Trong quá trình thí nghiệm nén tĩnh cọc, dưới tác dụng của tải trọng nén dọc trục cọc bị co ngắn đàn hồi Nhận thấy ảnh hưởng của sự co ngắn đàn hồi và chuyển vị giới hạn của cọc, Davisson đã đề xuất phương pháp Offset Limit (hay còn gọi là phương pháp Davisson) để xác định sức chịu tải giới hạn của cọc thí nghiệm
Hình 2.1 Biểu đồ xác định sức chịu tải giới hạn Q u theo phương pháp Offset Limit Để xác định sức chịu tải giới hạn của cọc từ kết quả thí nghiệm bằng cách sử dụng phương pháp Offset Limit, thực hiện các bước sau:
Tính toán độ nén đàn hồi của cọc xem như là cột tự do: Δ = Q L AE
Trong đó: Q – tải trọng tác dụng
A – diện tích mặt cắt ngang của cọc
E – module đàn hồi của vật liệu làm cọc
Vẽ biểu đồ quan hệ tải trọng - chuyển vị đầu cọc
Dựa trên phương trình chuyển vị đàn hồi, vẽ đường thẳng qua gốc tọa độ với độ dốc
Vẽ đường thẳng song song với đường qua gốc tọa độ (có độ dốc ) cách một đoạn bằng x = 4 + D/120 (D là đường kính cọc tròn hay cạnh của cọc vuông tính bằng mm) Đường này chính là đường phá hoại
Giao điểm của đường phá hoại với đường cong quan hệ tải trọng – chuyển vị là giá trị tải trọng giới hạn Qu
Hình 2.2 Đường phá hoại Offset Limit không giao đường cong tải trọng – chuyển vị
Trong trường hợp cọc chưa nén đến phá hoại, đường cong tải trọng – chuyển vị sẽ không giao với đường phá hoại Offset Limit (Hình 2.2), khi đó không dự đoán được tải trọng giới hạn
Phương pháp Chin – Kondner dựa trên các kết quả thực nghiệm nghiên cứu và từ các thí nghiệm được thực hiện với các mô hình cọc cả ngoài hiện trường và trong phòng thí nghiệm Phương pháp Chin – Kondner là phương pháp phức tạp trong tiếp cận và xác định khả năng chịu tải cọc Roscoe, Dic, Mice (1984) và Vesic đã ghi nhận rằng ma sát thành cọc được huy động khi chuyển vị nhỏ (6 – 10 mm) và sức kháng mũi khi đó không được huy động toàn bộ cho đến khi chuyển vị đầu cọc lớn và đạt đến 30% đường kính cọc Theo đó, Chin đã đi đến phương pháp tách thành phần ma sát thành và sức kháng mũi ra từ số liệu thí nghiệm Phương pháp của Chin giả thiết rằng mối tương quan giữa tải trọng tác dụng (Q) và độ lún (S) có dạng hyperbol (Roscoe, 1984) Do đó, độ lún do tải trọng tác dụng có thể được biểu diễn theo trục ngang và trục đứng là tỷ số giữa độ lún và tải trọng Hình 2.3 thể hiện các điểm cho phép xác định các đường thẳng được chia ra bởi hai phần riêng biệt: phần đầu có quan hệ với ma sát bề mặt và phần thứ hai là quan hệ sức chịu tải giới hạn Nghịch đảo của độ dốc phần thứ hai cho phép xác định sức chịu tải giới hạn của cọc Quan hệ (S/Q) - S thừa nhận đường tải trọng – độ lún gần đúng có dạng hyperbol
Hình 2.3 Biểu đồ xác định sức chịu tải giới hạn Q u theo phương pháp Chin-Kondner
Phương pháp De Beer được đề cập đầu tiên vào năm 1971, với các kết quả chuyển vị và tải trọng tương ứng được biểu diễn theo logarit trên đồ thị quan hệ Log(S) – Log (Q) dưới dạng đường thẳng tuyến tính
Hình 2.4 Biểu đồ xác định sức chịu tải giới hạn Q u theo phương pháp De Beer
Cách xác định gồm 2 bước sau:
Vẽ đường quan hệ tải trọng – chuyển vị theo tỷ lệ logarit, các điểm được phân định nằm trên hai đường thẳng;
Sức chịu tải giới hạn của cọc được xác định như là lực gây ra thay đổi độ dốc của đường thẳng, tương ứng với giao điểm của hai đường thẳng do ứng xử được xem là từ giai đoạn đàn hồi chuyển sang giai đoạn dẻo
Decourt (1999) đề xuất phương pháp được xây dựng tương tự như phương pháp Chin – Kondner và Hansen Để sử dụng phương pháp này, bằng cách chia mỗi tải trọng với chuyển vị tương ứng và biểu diễn kết quả cùng với tải trọng trên hệ trục tọa độ Dùng những điểm phía cuối biểu đồ để xác định đường thẳng tuyến tính
Hình 2.5 Biểu đồ xác định tải trọng giới hạn Q u và đường cong hàm xấp xỉ theo phương pháp Decourt
Decourt ngoại suy tải trọng giới hạn bằng tỉ số giao điểm theo phương trục tung và độ dốc của đường thẳng Tải trong giới hạn được xác định theo biểu thức:
= −SC trong đó: Qu - khả năng chịu tải giới hạn; Q - tải trọng tác dụng; S - độ lún đầu cọc (chuyển vị đứng); C1 - độ dốc của đường thẳng; C2 - giao điểm của đường thẳng với trục tung
Hansen (1963) đề xuất khả năng chịu tải của cọc là tải trọng mà tại đó độ lún của đầu cọc gấp 4 lần độ lún đầu cọc khi tải trọng đạt 80% khả năng chịu tải Tiêu chuẩn 80% Brinch Hansen cho phép xác định Qu trực tiếp từ đường cong tải trọng – độ lún của thí nghiệm được thực hiện đến phá hoại nhưng chính xác hơn khi xác định trên biểu đồ căn bậc hai của độ lún chia cho tải trọng S Q và độ lún S Biểu đồ thu được như Hình 2.6 có nhiều điểm được thực hiện thí nghiệm theo phương pháp tốc độ xuyên không đổi
Hình 2.6 Biểu đồ xác định tải trọng giới hạn Q u theo tiêu chuẩn 80% Brinch Hansen
Tiêu chuẩn 80% Brinch Hansen gồm các bước: vẽ đường quan hệ S Q và S; tải trọng giới hạn Qu và độ lún giới hạn Su được xác định như sau:
= C ở đây: C1 – độ dốc của đường thẳng trong quan hệ S Q và S từ biểu đồ; C2 – giao điểm của trục tung và đường thẳng trong quan hệ S Q và S từ biểu đồ
Phương pháp này thừa nhận đường tải trọng – độ lún gần đúng có dạng parabol Tiêu chuẩn 80% Brinch Hansen được dùng cho cả thí nghiệm nhanh và thí nghiệm chậm Khi áp dụng tiêu chuẩn 80% Brinch Hansen cần thiết kiểm tra điểm (0,8Qu ; 0,25Su) có nằm trên hay gần với đường cong tải trọng – độ lún
Tiêu chuẩn 90% Brinch Hansen định nghĩa tải trọng giới hạn là tải trọng mà tại đó có độ lún gấp 2 lần độ lún đầu cọc khi tải trọng đạt 90% khả năng chịu tải Phương pháp này chỉ áp dụng được trong trường hợp cọc thí nghiệm xảy ra phá hoại
Hình 2.7 Biểu đồ xác tải trọng giới hạn Q u theo tiêu chuẩn 90% Brinch Hansen
Phương pháp này thừa nhận đường tải trọng – chuyển vị gần đúng là đường parabol Chi tiết xác định chủ yếu căn cứ biện pháp hình học được tiến hành theo các bước sau:
Vẽ đường quan hệ tải trọng - chuyển vị
Trên đường cong, chọn những điểm liên tục có hiệu độ lún bằng nhau (x2 – x1 = x3 – x2 = … = xn – xn-1) Từ các điểm này vẽ các đường thẳng nằm ngang song song với trục hoành và cắt trục tải trọng
Từ mỗi giao điểm với trục tải trọng, vẽ đường thẳng hợp với trục hoành góc
135 0 cắt đường tải trọng tiếp theo Các giao điểm giữa 2 đường này gần như nằm trên 1 đường thẳng
Giao điểm của đường thẳng này với trục tải trọng là giá trị tải trọng giới hạn
Hình 2.8 Biểu đồ xác định tải trọng giới hạn Q u theo phương pháp Mazurkiewicz
Các phương pháp mới được đề xuất dựa trên việc ngoại suy các hàm số toán học bằng phương pháp bình phương cực tiểu
NGOẠI SUY CÁC HÀM SỐ TOÁN HỌC BẰNG PHƯƠNG PHÁP BÌNH
2.2.1 Cơ sở lý thuyết thiết lập công thức tương quan theo các hàm số toán học
Mục đích của việc thiết lập công thức tương quan là tạo công cụ để tìm mối tương quan giữa các đại lượng thực nghiệm Để thiết lập mối tương quan của các đại lượng thực nghiệm, một trong những phương pháp thường được sử dụng là phương pháp phân tích hồi qui Đó là phương pháp số học xử lý mối quan hệ lẫn nhau giữa các đại lượng Có 2 phương pháp phân tích hồi qui: phân tích hồi qui tuyến tính và phân tích hồi qui phi tuyến
2.2.1.1 Phân tích hồi quy tuyến tính
Phân tích hồi qui tuyến tính là tìm ra một mối quan hệ bậc nhất giữa các đại lượng với nhau Khi đại lượng y chỉ phụ thuộc vào một đại lượng x thì gọi là hồi quy nhất nguyên tuyến tính; còn y phụ thuộc vào ít nhất 2 đại lượng khác nhau thì gọi là hồi quy đa nguyên tuyến tính
2.2.1.1.1 Hồi quy nhất nguyên tuyến tính
Phân tích nhất nguyên tuyến tính là tìm ra mối quan hệ bậc nhất giữa 2 biến lượng y với x
Phương trình biểu diễn tương quan có dạng: y = ao + a1x
2.2.1.1.2 Hồi quy đa nguyên tuyến tính
Phân tích đa nguyên tuyến tính là tìm ra mối quan hệ bậc nhất giữa biến lượng y với các biến lượng x1, x2, x3,…xm
Phương trình biểu diễn mối tương quan có dạng: y = a0 + a1x1 + a2x2 + …+amxm
2.2.1.2 Phân tích hồi quy phi tuyến
Một số dạng đường cong thường gặp được trình bày ở Bảng 2.1
Bảng 2.1 Một số dạng đường cong thường gặp
Dạng Công thức Đồ thị Biến đổi về đường thẳng
+c Để sai số của hàm xấp xỉ là nhỏ nhất, thông thường sai số trung bình bình phương được sử dụng khi đó
= n − Sai số trung bình bình phương đạt giá trị nhỏ nhất khi σ đạt giá trị nhỏ nhất Trong đó: σ: sai số trung bình bình phương a0, a1, a2, …,am: các tham số cần tìm Để σ đạt giá trị nhỏ nhất thì đạo hàm riêng của σ đối với từng tham số ai phải bằng 0, ta có hệ phương trình:
i = 1…m, m là bậc của đa thức
Kết quả thực hiện phép đạo hàm trên dẫn tới hệ m phương trình sau: n n n n n
Có thể viết lại dưới dạng ma trận như sau:
A={Aij} i=1…m+1, j=1…m+1; ma trận hệ số n n n n n
Nghiệm của hệ phương trình trên cho phép thu nhận các tham số của hàm cần xấp xỉ: y = a0 + a1 + a2x2 + … + amxm
Một thông số khác để đánh giá độ chặt chẽ tương quan là giá trị R 2 Nếu R 2 càng gần giá trị 1 thì mức độ tương quan càng chặt chẽ
Giá trị R 2 được tính toán như sau:
= − n Trường hợp hàm số xấp xỉ là một hàm tuyến tính nhiều biến: y = a0 + a1x1 + a2x2+ … + amxm
Một cách tổng quát có thể biểu diễn dưới dạng y = f(x1, x2, …, xm, a0, a1, a2, …, am)
Xét cho trường hợp hàm 2 biến, tương tự như trên, từ phép đạo hàm dẫn tới hệ
6 phương trình có các ma trận hệ số như sau:
Các hệ số của ma trận B có công thức sau:
Đối với các dạng đường cong thường gặp, có thể cụ thể hóa hồi qui phi tuyến thành trực tuyến (dạng đường thẳng), sau đó tiến hành tính toán theo phương pháp của hồi qui nhất nguyên tuyến tính
2.2.2 Cơ sở chọn lựa hàm số ngoại suy theo kết quả thí nghiệm nén tĩnh cọc
Việc sử dụng các hàm số ngoại suy nhằm thuận tiện trong sử dụng các thuật toán trong việc đánh giá dự báo khả năng chịu tải của cọc theo kết quả nén tĩnh cọc và ngoại suy quan hệ tải trọng và chuyển vị đầu cọc
Xem đường cong quan hệ giữa tải trọng Q và chuyển vị đầu cọc S có dạng là các hàm số phụ thuộc và các tham số, bao gồm các dạng:
với a, b là các hệ số
2.2.2.1 Phương pháp 1 (PP1): ngoại suy quan hệ tải trọng Q và chuyển vị đầu cọc
Xem đường cong quan hệ giữa tải trọng Q và chuyển vị đầu cọc S có hàm dạng:
Q =a.S b Lấy logarit tự nhiên 2 vế: lnQ = lna + blnS Đặt Q’ = lnQ; a’ = lna; S’ = lnS, nhận được quan hệ có dạng tuyến tính:
Bằng phương pháp bình phương cực tiểu, có thể rút ra:
( , ) i i min f a b = Q − −a bS → Đạo hàm từng phần theo a’ và b, nhận được:
Trừ vế theo vế, ta có:
Thay b lại phương trình (2.2), nhận được hệ số a’:
2.2.2.2 Phương pháp 2 (PP2): ngoại suy quan hệ tải trọng Q và chuyển vị đầu cọc
Xem đường cong quan hệ giữa tải trọng Q và chuyển vị đầu cọc S có hàm dạng:
1/Q = a + b/S Đặt Q’ = 1/Q; S’ = 1/S, nhận được quan hệ có dạng tuyến tính:
Bằng phương pháp bình phương cực tiểu, có thể rút ra:
( , ) i i min f a b = Q − −a bS → Đạo hàm từng phần theo a và b:
Trừ vế theo vế, ta có:
Thay b lại phương trình (2.3), nhận được hệ số a:
2.2.2.3 Phương pháp 3 (PP3): ngoại suy quan hệ tải trọng Q và chuyển vị đầu cọc
Xem đường cong quan hệ giữa tải trọng Q và chuyển vị đầu cọc S có hàm dạng: ln
Bằng phương pháp bình phương cực tiểu, có thể rút ra:
( , ) i ln i min f a b = Q − −a b S → Đạo hàm từng phần theo a và b:
2 ln 2 ln 0 ln 2 ln ln 0 i i i i i i i i i
( ) 2 ln 0 ln ln ln 0 i i i i i i na Q b S a S Q S b S
( ) 2 ln ln ln ln 0 ln ln ln 0 i i i i i i i i i na S Q S b S S na S n Q S nb S
Trừ vế theo vế , ta có
( ln i ) 2 ( ln i ) 2 i ln i i ln i 0 nb S −b S + Q S −n Q S =
Thay b lại phương trình (2.4), nhận được hệ số a: i ln i na = Q −b S
2.2.2.4 Phương pháp 4 (PP4): ngoại suy quan hệ tải trọng Q và chuyển vị đầu cọc
Xem đường cong quan hệ giữa tải trọng Q và chuyển vị đầu cọc S có hàm dạng:
Hoặc viết dưới dạng: Q aS b
S = + Bằng phương pháp bình phương cực tiểu, có thể rút ra:
Đạo hàm từng phần theo a và b:
Trừ vế theo vế, ta có:
Thay a lại phương trình (2.5), nhận được hệ số b: i i i
2.2.2.5 Phương pháp 5 (PP5): ngoại suy quan hệ tải trọng Q và chuyển vị đầu cọc
Xem đường cong quan hệ giữa tải trọng Q và chuyển vị đầu cọc S có hàm dạng:
Lấy logarit tự nhiên 2 vế, ta được phương trình: lnQ = lna + b/S Đặt Q’ = lnQ; a’ = lna; S’=1/S, nhận được quan hệ có dạng tuyến tính:
Bằng phương pháp bình phương cực tiểu, có thể rút ra:
( , ) i i min f a b = Q − −a bS → Đạo hàm từng phần theo a’ và b:
Trừ vế theo vế, ta có:
Thay b lại phương trình (2.6), nhận được hệ số a’:
2.2.2.6 Phương pháp 6 (PP6): ngoại suy quan hệ tải trọng Q và chuyển vị đầu cọc
Xem đường cong quan hệ giữa tải trọng Q và chuyển vị đầu cọc S có hàm dạng:
= +S Đặt S’=1/S, nhận được quan hệ có dạng tuyến tính:
Bằng phương pháp bình phương cực tiểu, có thể rút ra:
( , ) i i min f a b = Q − −a bS → Đạo hàm từng phần theo a và b:
Trừ vế theo vế, ta có:
Thay b lại phương trình (2.7), nhận được hệ số a:
2.2.2.7 Phương pháp 7 (PP7): ngoại suy quan hệ tải trọng Q và chuyển vị đầu cọc
Xem đường cong quan hệ giữa tải trọng Q và chuyển vị đầu cọc S có hàm dạng:
Lấy logarit tự nhiên 2 vế: lnQ = lna + bS Đặt Q’ = lnQ; a’ = lna, nhận được quan hệ có dạng tuyến tính:
Bằng phương pháp bình phương cực tiểu, có thể rút ra:
( , ) i i min f a b = Q − −a bS → Đạo hàm từng phần theo a’ và b:
Trừ vế theo vế, ta có:
Thay b lại phương trình (2.8), nhận được hệ số a’:
2.2.2.8 Phương pháp 8 (PP8): ngoại suy quan hệ tải trọng Q và chuyển vị đầu cọc
Xem đường cong quan hệ giữa tải trọng Q và chuyển vị đầu cọc S có hàm dạng:
= + Đặt Q’ = 1/Q; S’ = e -S , nhận được quan hệ có dạng tuyến tính:
Bằng phương pháp bình phương cực tiểu, có thể rút ra:
( , ) i i min f a b = Q − −a bS → Đạo hàm từng phần theo a và b:
Trừ vế theo vế, ta có:
Thay b lại phương trình (2.9), nhận được hệ số a:
Nhận xét chương
Tổng thể, có 10 phương pháp đã có và 8 phương pháp mới được đề xuất có thể áp dụng đánh giá khả năng chịu tải của cọc
Lý thuyết 10 phương pháp đã có cho phép xác định trực tiếp tải trọng giới hạn của cọc từ thí nghiệm nén tĩnh Ngoài ra, các phương pháp Chin-Kondner, Decourt, tiêu chuẩn 80% Brinch Hansen, Vander Veen được xây dựng trên cơ sở các hàm xấp xỉ theo quan hệ giữa Q – S thu nhận được thí nghiệm Việc phân tích ngược trên cơ sở các hệ số thu nhận được theo các biểu đồ quan hệ của 4 phương pháp này cho phép biểu diễn đường cong quan hệ tải trọng – độ lún, từ đó đánh giá mức độ tiệm cận kết quả thực tế cũng như khả năng áp dụng của các hàm
Ngoại suy theo 8 hàm số toán học được đề đề xuất ở Chương 2 cho phép biểu diễn đường cong quan hệ tải trọng – độ lún từ số liệu nén tĩnh thông qua phương pháp bình phương cực tiểu Qua đó, đánh giá mức độ xấp xỉ của các kết quả thu được so với số liệu thí nghiệm và từ các hệ số a, b thu nhận được khi giải phương trình giúp dự đoán tải trọng giới hạn của cọc Tuy nhiên, nhận thấy trong tất cả 8 hàm số toán học thì hình dạng đường cong mô tả theo hàm Q = ae bS (PP7) và Q = 1/(a + be -S ) (PP8) khác biệt so với dạng đường cong thí nghiệm nén tĩnh cho nên tác giả chỉ áp dụng 6 phương pháp đầu (PP1, PP2, PP3, PP4, PP5, PP6) trong việc mô tả quan hệ tải trọng – độ lún đầu cọc ở Chương 3
Tùy theo thí nghiệm nén tĩnh có xảy ra phá hoại hay không, quy trình gia tải, điều kiện địa chất…, các phương pháp áp dụng sẽ cho mức độ phù hợp khác nhau.
NGOẠI SUY QUAN HỆ TẢI TRỌNG – ĐỘ LÚN ĐẦU CỌC
Giới thiệu các dữ liệu sử dụng phân tích
- Địa điểm: Số 5, Công trường Mê Linh, Phường Bến Nghé, Q1, TPHCM
Khảo sát địa chất được thực hiện bởi Viện khoa học công nghệ phía Nam (IBST), với 5 hố khoan được khảo sát và lấy mẫu Chiều sâu khảo sát đến độ sâu 90 m Mặt bằng hố khoan và mặt cắt địa chất được thể hiện lần lượt ở Hình 3.1 và Hình 3.2
Hình 3.1 Mặt bằng bố trí hố khoan dự án Vietcombank Tower
Hình 3.2 Mặt cắt địa chất đi qua hố khoan BH1 - BH2 - BH3
Dựa vào kết quả khảo sát địa chất, địa tầng khu vực được chia thành các lớp với những đặc điểm chính sau: o Lớp 1: đất san lấp, độ sâu đáy lớp 2,5 m – 3,2 m o Lớp 2: cát bột, xám đen, rất xốp Độ sâu đáy lớp 4 m - 5,5m, chiều dày lớp 1.1 m - 2,7m Trị số N: 0 – 2 o Lớp 2a: sét pha màu nâu, rất mềm Xuất hiện ở hố khoan BH2 với độ sâu từ 4,5 m đến 5,7 m o Lớp 3a: cát pha lẫn sỏi sạn, màu nâu đỏ đốm xám, trạng thái dẻo Độ sâu đáy lớp 7,2 m - 10,3 m (ở hố khoan BH2, BH3, BH4), chiều dày lớp 1,5 m Trị số N: 5 - 7 o Lớp 3b: cát pha sét, màu xám xanh, trạng thái dẻo Độ sâu đáy lớp 6,7 m – 11 m (ở hố khoan BH1, BH3, BH5), chiều dày lớp 2,4 m - 3,8 m Trị số N: 4 – 7 o Lớp 3c: sét pha màu vàng nâu, trạng thái dẻo cứng Xuất hiện ở hố khoan BH1 với độ sâu từ 7,8 m đến 9 m Trị số N: 9 o Lớp 4: cát pha sét lẫn bụi, màu xám vàng, trạng thái rời đến chặt Độ sâu đáy lớp 34,3 m - 36,7 m, chiều dày lớp 22,6 m - 27,7 m Trị số N: 4 - 29 o Lớp 4a: sét lẫn cát, màu vàng nâu, trạng thái dẻo cứng Xuất hiện ở độ sâu 18,9 m - 20,8 m ở hố khoan BH5 và độ sâu 17,5 m - 20,1 m ở hố khoan BH4 Trị số N: 10 - 14 o Lớp 5: sét, màu nâu nhạt, vàng nâu, trạng thái cứng Độ sâu đáy lớp 49,7 m - 52,3 m, chiều dày lớp 14,4 m - 16,1 m Trị số N: 32 – 54 o Lớp 5a: cát pha sét, màu vàng, trạng thái dẻo cứng Xuất hiện ở hố khoan BH1 với độ sâu từ 49,7 m đến 53,5 m Trị số N: 32 – 37 o Lớp 6a: Sét lẫn cát, màu nâu xám, trạng thái cứng Xuất hiện ở hố khoan BH5 với độ sâu 62,2 m - 64,7 m và ở hố khoan BH2 với độ sâu 62,9 m – 64 m Trị số N: 33 - 42 o Lớp 6b: Sét, màu xanh xám thực vật, trạng thái dẻo Xuất hiện ở hố khoan BH4 với độ sâu 62,3 m - 63,7 m o Lớp 6: cát pha sét lẫn bụi, màu xanh xám, trạng thái chặt vừa đến rất chặt Trị số N: 30 - 77 (>100)
- Thông tin dự án: o Chủ đầu tư: Công ty Liên doanh TNHH Vietcombank – Bonday – Benthanh (VBB) o Khởi công 10/2013, hoàn thành 03/2015
- Quy mô dự án: o 4 tầng hầm, 35 tầng cao o Chiều cao: tính từ mặt đất đến đỉnh là 206 m, là tòa nhà cao thứ 7 Việt Nam o Diện tích sàn tầng điển hình: 3.232 m 2
- Mục đích sử dụng: Công trình là trụ sở chính của ngân hàng Vietcombank chi nhánh TPHCM và cung cấp 55.000 m 2 diện tích văn phòng hạng A cho thuê cùng các tiện ích đi kèm
- Phương án móng: cọc nhồi và cọc barrette
3.1.1.3 Thông tin cọc thí nghiệm nén tĩnh
Bảng 3.1 Thông tin cọc thí nghiệm TPB2
Loại cọc Cọc khoan nhồi
Ngày thí nghiệm 31/05/2010 Đường kính cọc, mm 1500
Sức chịu tải thiết kế của cọc, T 1400
Tải trọng thí nghiệm, T Tải trọng thiết kế x 250% = 3500
Tổng hợp biểu đồ kết quả thí nghiệm nén tĩnh cọc TPB2:
Hình 3.3 Biểu đồ quan hệ tải trọng – độ lún cọc TPB2
Hình 3.4 Biểu đồ quan hệ chuyển vị theo thời gian cọc TPB2
Hình 3.5 Biểu đồ quan hệ tải trọng – chuyển vị theo thời gian cọc TPB2
- Địa điểm: Số 360 Xa lộ Hà Nội, Phường Phước Long A, Q9, TPHCM
Khảo sát địa chất được thực hiện bởi Xí nghiệp Tư vấn xây dựng công trình giao thông, với 6 hố khoan gồm 5 hố khoan ở độ sâu 50 m và 1 hố khoan ở độ sâu 68 m được khảo sát và lấy mẫu Mặt bằng hố khoan và mặt cắt địa chất được thể hiện lần lượt ở Hình 3.6 và 3.7
Hình 3.6 Mặt bằng bố trí hố khoan dự án Metro Star
Hình 3.7 Mặt cắt địa chất đi qua 3 hố khoan H01 - H03 - H02
Dựa vào kết quả khảo sát địa chất, địa tầng khu vực được chia thành các lớp có những đặc điểm chính sau: o Lớp 1: á sét màu nâu vàng đỏ, trạng thái dẻo mềm (1a) đến nửa cứng (1b), xuất hiện sau lớp nền bê tông, chiều dày trung bình của lớp 0,63 m
➢ Lớp đất 1a: á sét màu nâu đỏ trạng thái dẻo mềm Trị số N: 6 - 7
➢ Lớp đất 1b: á sét màu nâu vàng đỏ, trạng thái dẻo cứng đến nửa cứng Trị số N: 10 – 20 o Lớp 2: á sét lẫn ít sỏi sạn, màu nâu đỏ vàng, xám trắng, trạng thái dẻo cứng đến nửa cứng Chiều dày trung bình của lớp 1,3 m Trị số N: 8 - 20 o Lớp 3: á sét màu xám trắng nâu đỏ, trạng thái dẻo cứng Xuất hiện ở hố H01 bề dày 1,2 m và ở hố H02 bề dày 1,7 m Trị số N: 9 - 10 o Lớp 4: cát thô đến mịn lẫn bột, ít sét và sỏi nhỏ màu xám trắng nâu vàng đỏ trạng thái chặt vừa (4a) đến rất chặt (4b)
➢ Lớp 4a: cát thô đến mịn lẫn bột, ít sét và sỏi nhỏ màu xám trắng nâu vàng đỏ, trạng thái chặt vừa Chiều dày trung bình lớp 34,3 m Trị số N: 11 - 30
➢ Lớp 4b: cát thô đến mịn lẫn bột, ít sét và sỏi nhỏ màu xám trắng nâu vàng đỏ, trạng thái chặt đến rất chặt, chiều dày trung bình lớp 6,4 m Trị số N: 32 – 63
➢ Lớp thấu kính: đất sét lẫn bột màu nâu đỏ vàng đốm xám trắng vàng, trạng thái nửa cứng Xuất hiện ở hố H01 bề dày 0,9 m, hố H02 bề dày 1,9 m, hố H03 bề dày 2,2 m Trị số N: 16 – 20 o Lớp 5: á sét màu nâu đỏ, trạng thái nửa cứng đến cứng Xuất hiện ở hố H01 bề dày 5,7 m và ở hố H03 bề dày 4,1 m Trị số N: 25 - 42 o Lớp 5*: Đất sét lẫn bột màu xám xanh đến nâu đỏ, trạng thái nửa cứng đến cứng Xuất hiện ở hố khoan H02 với bề dày 5,87 m Trị số N: 18 - 43 o Lớp 6: cát thô màu nâu vàng trạng thái chặt Xuất hiện ở hố khoan H01 với bề dày 0,7 m Trị số N: 45
- Thông tin dự án: o Chủ đầu tư: Tập đoàn C.T Group & Soilbuild Singapore o Thời gian dự kiến bàn giao: 05/2021
- Quy mô dự án: o 2 tháp, mỗi tháp gồm 2 tầng hầm và 30 tầng cao o Diện tích đất: 18.557,5 m 2 o Diện tích sàn xây dựng: 70.493,52 m 2
- Mục đích sử dụng: căn hộ chung cư
3.1.2.3 Thông tin cọc thí nghiệm nén tĩnh
Bảng 3.2 Thông tin cọc thí nghiệm TP01
Loại cọc Cọc khoan nhồi
Ngày thí nghiệm 22/02/2019 Đường kính cọc, mm 800
Sức chịu tải thiết kế của cọc, T 550
Tải trọng thí nghiệm, T Tải trọng thiết kế x 200% = 1100
Tổng hợp biểu đồ kết quả thí nghiệm đối với cọc TP01:
Hình 3.8 Biểu đồ quan hệ tải trọng – độ lún cọc TP01
Hình 3.9 Biểu đồ quan hệ chuyển vị theo thời gian cọc TP01
Hình 3.10 Biểu đồ quan hệ tải trọng – chuyển vị theo thời gian cọc TP01
- Địa điểm: Đại lộ Nguyễn Văn Linh, Phường Tân Thuận Tây, Q7, TPHCM
Khảo sát địa chất được thực hiện bởi Công ty Cổ phần Đầu tư và Công nghệ xây dựng Invesco, với 3 hố khoan được khảo sát và lấy mẫu Chiều sâu khảo sát đến độ sâu 100 m Mặt bằng hố khoan và mặt cắt địa chất được thể hiện lần lượt ở hình 3.11 và 3.12
Hình 3.11 Mặt bằng bố trí hố khoan dự án Lakeside Towers
Hình 3.12 Mặt cắt địa chất đi qua HK2 - HK3
Dựa vào kết quả khảo sát địa chất, địa tầng khu vực được chia thành 8 lớp có các đặc điểm chính sau: o Lớp 1A: đất san lấp, xuất hiện ngay trên mặt đất, chiều sâu bắt gặp từ trên mặt đến độ sâu trung bình là 3 m Khi thi công có thể bóc bỏ lớp này o Lớp 1: bùn sét, xen kẹp cát, cát xám màu xanh Chiều dày trung bình của lớp 20,3 m Trị số N: 0 – 2 o Lớp 2: sét, xám xanh, vàng loang lổ, trạng thái dẻo cứng – nửa cứng Xuất hiện ở dưới lớp 1, chiều dày trung bình của lớp 8,3 m Trị số N:18 o Lớp 3: cát pha, màu xám vàng, xám xanh, trạng thái dẻo Chiều dày trung bình lớp 4,7 m Trị số N: 22 o Lớp 4: sét màu nâu đỏ, xám xanh loang lổ, trạng thái dẻo cứng – nửa cứng Chiều dày trung bình của lớp 13 m Trị số N: 20 o Lớp 5: cát pha, màu tím, vàng nâu, xám xanh, loang lỗ, trạng thái dẻo Chiều dày trung bình của lớp 23,4 m Trị số N: 35 o Lớp 6: cát hạt mịn – trung, màu xám trắng loang lổ, trạng thái chặt vừa Chiều dày trung bình lớp 13,9 m Trị số N: 40 o Lớp 7: sét pha, màu xám xanh, xám trắng, lẫn ít sạn sỏi, trạng thái cứng Trị số N: 37
- Thông tin dự án: o Chủ đầu tư: Công ty Cổ phần Đầu tư Địa ốc Tiến Phát o Khởi công 09/2017, hoàn thành 02/2019
- Quy mô dự án: o 2 tầng hầm có diện tích hơn 2000 m 2 , 21 tầng cao o Chiều cao: tính từ mặt đất đến đỉnh là 72,5 m o Diện tích sàn điển hình: 1105 m 2
- Mục đích sử dụng: căn hộ chung cư kết hợp trung tâm thương mại ở tầng 1, 2
- Phương án móng: cọc nhồi
3.1.3.3 Thông tin cọc thí nghiệm nén tĩnh
Bảng 3 3 Thông tin cọc thí nghiệm TP1
Loại cọc Cọc khoan nhồi
Ngày thí nghiệm 01/2017 Đường kính cọc, mm 1500
Sức chịu tải thiết kế của cọc, T 1500
Tải trọng thí nghiệm, T Tải trọng thiết kế x 200% = 3000
Tổng hợp biểu đồ kết quả thí nghiệm đối với cọc TP1:
Hình 3.13 Biểu đồ quan hệ tải trọng – độ lún cọc TP1
Hình 3.14 Biểu đồ quan hệ chuyển vị theo thời gian cọc TP1
Hình 3.15 Biểu đồ quan hệ tải trọng – chuyển vị theo thời gian cọc TP1
Bảng 3.4 Thông tin cọc thí nghiệm TP2
Loại cọc Cọc khoan nhồi
Ngày thí nghiệm 01/2017 Đường kính cọc, mm 1200
Sức chịu tải thiết kế của cọc, T 1100
Tải trọng thí nghiệm, T Tải trọng thiết kế x 250% = 2750
Tổng hợp biểu đồ kết quả thí nghiệm đối với cọc TP2:
Hình 3.16 Biểu đồ quan hệ tải trọng – độ lún cọc TP2
Hình 3.17 Biểu đồ quan hệ chuyển vị theo thời gian cọc TP2
Hình 3.18 Biểu đồ quan hệ tải trọng – chuyển vị theo thời gian cọc TP2
- Địa điểm: Số 9-11, Tôn Đức Thắng, Phường Bến Nghé, Q1, TPHCM
Khảo sát địa chất được thực hiện bởi Công ty Cổ phần Tư vấn Xây dựng tổng hợp (Nagecco), với 3 hố khoan được khảo sát và lấy mẫu Chiều sâu khảo sát HK1 và HK2 đến 80 m, riêng HK3 đến 100 m Mặt cắt địa chất được thể hiện ở hình 3.19
Hình 3.19 Mặt cắt địa chất đi qua hố khoan HK1 - HK3
Dựa vào kết quả khảo sát địa chất, địa tầng khu vực được chia thành các lớp có các đặc điểm chính sau: o Lớp 1: đất san lấp, hỗn hợp cát, sét, bê tông Chiều dày trung bình lớp 1,8 m o Lớp 2: sét rất dẻo lẫn hữu cơ, xám đen, trạng thái chảy Chiều dày trung bình lớp 3,2 m Trị số N: 2 o Lớp 3: cát mịn, cấp phối kém lẫn bột, màu nâu vàng, xám nâu, trạng thái chặt vừa Chiều dày trung bình lớp 4,7 m Trị số N: 12 o Lớp 3a: sét dẻo, màu nâu đỏ, xám xanh, trạng thái dẻo cứng Chiều dày trung bình lớp 2,5 m Trị số N: 12 o Lớp 3b: cát lẫn nhiều sét, xám xanh, xám vàng, trạng thái chặt vừa Chiều dày trung bình lớp 1,5 m Trị số N: 13 o Lớp 4: cát mịn lẫn sét bột, xám vàng, trạng thái chặt vừa Chiều dày trung bình lớp 27,5 m Trị số N: 18 o Lớp 4a: sét rất dẻo, xám, xám xanh, trạng thái dẻo cứng Xuất hiện ở HK1, chiều dày trung bình lớp 1,4 m Trị số N: 11 o Lớp 4b: sét dẻo, xám vàng, xám xanh, trạng thái dẻo cứng Xuất hiện ở HK1, chiều dày trung bình lớp 1,3 m Trị số N: 9 o Lớp 5: sét dẻo, xám vàng, xám xanh, trạng thái cứng đến nửa cứng Chiều dày trung bình lớp 5,7 m Trị số N: 22 o Lớp 6: sét rất dẻo, xám vàng, nâu đỏ, xám xanh, trạng thái cứng Chiều dày trung bình lớp 6 m Trị số N: 42 o Lớp 7: sét dẻo, xám vàng, xám xanh, trạng thái cứng Chiều dày trung bình lớp 3,7 m Trị số N: 41 o Lớp 8: cát mịn lẫn sét, bột, xám vàng, trạng thái bột Chiều dày trung bình lớp
8 m Trị số N: 40 o Lớp 8a: cát mịn lẫn nhiều sét, xám vàng, xám xanh, trạng thái chặt đến chặt vừa Chiều dày trung bình lớp 2,3 m Trị số N: 30 o Lớp 9: cát mịn cấp phối kém lẫn bột, xám xanh, trạng thái rất chặt Chiều dày trung bình lớp 30 m Trị số N: 62 o Lớp 10: cát mịn lẫn sét, bột, xám xanh, xám trắng, rất chặt Trị số N: 77
- Thông tin dự án: o Chủ đầu tư: Công ty TNHH DV Mai Thành – Ngân hàng Techcombank o Khởi công 04/2011, hoàn thành 06/2013
- Quy mô dự án: o 2 tầng hầm, 34 tầng cao o Chiều cao thông thủy tầng điển hình: 2,55 m o Tổng diện tích sàn: 33.300 m 2 ; tổng diện tích sử dụng: 29.265 m 2
- Mục đích sử dụng: Cao ốc văn phòng cho thuê
- Phương án móng: cọc nhồi
3.1.4.3 Thông tin cọc thí nghiệm nén tĩnh
Bảng 3.5 Thông tin cọc thí nghiệm P1
Loại cọc Cọc khoan nhồi
Ngày thí nghiệm 07/09/2010 Đường kính cọc, mm 1200
Sức chịu tải thiết kế của cọc, T 900
Tải trọng thí nghiệm, T Tải trọng thiết kế x 250% = 2250
Tổng hợp biểu đồ kết quả thí nghiệm đối với cọc P1:
Hình 3.20 Biểu đồ quan hệ tải trọng – độ lún cọc P1
Hình 3.21 Biểu đồ quan hệ chuyển vị theo thời gian cọc P1
Hình 3.22 Biểu đồ quan hệ tải trọng – chuyển vị theo thời gian cọc P1
Bảng 3.6 Thông tin cọc thí nghiệm P2
Loại cọc Cọc khoan nhồi
Ngày thí nghiệm 14/09/2010 Đường kính cọc, mm 1200
Sức chịu tải thiết kế của cọc, T 900
Tải trọng thí nghiệm, T Tải trọng thiết kế x 250% = 2250
Tổng hợp biểu đồ kết quả thí nghiệm đối với cọc P2:
Hình 3.23 Biểu đồ quan hệ tải trọng – độ lún cọc P2
Hình 3.24 Biểu đồ quan hệ chuyển vị theo thời gian cọc P2
Hình 3.25 Biểu đồ quan hệ tải trọng – chuyển vị theo thời gian cọc P2
Đánh giá khả năng chịu tải và ngoại suy quan hệ tải trọng – độ lún đầu cọc theo các hàm xấp xỉ từ thông số nén tĩnh theo các phương pháp đã có
3.2.1 Khả năng chịu tải của cọc trường hợp thí nghiệm nén tĩnh đến phá hoại
Khả năng chịu tải hay tải trọng giới hạn của cọc có thể xác định thuận lợi khi kết quả thí nghiệm nén tĩnh cho đường cong quan hệ tải trọng – chuyển vị có sự thay đổi độ dốc đột ngột hay khi chuyển vị đầu cọc đạt đến giá trị 10% đường kính cọc Để đánh giá tải trọng giới hạn của cọc từ thí nghiệm nén tĩnh và phân tích ngoại suy, tác giả sử dụng dữ liệu thí nghiệm nén tĩnh cọc TPB2 dự án Vietcombank Tower và cọc TP01 dự án Metro Star Kết quả nén tĩnh ở 2 cọc (thể hiện ở Hình 3.3 và Hình 3.8) cho thấy độ dốc đường cong thay đổi đột ngột ở hai cấp tải cuối nên có thể xem cọc phá hoại Cọc TBP2 có tải trọng giới hạn lớn hơn 2450 T (chưa đến 2604 T) Giai đoạn đầu chu kỳ 2 quan hệ tải trọng – độ lún đầu cọc gần như là đường thẳng tuyến tính với hệ số góc tương đối bé, từ cấp tải trọng 2450 T đến 2604 T độ dốc đường cong thay đổi với chuyển vị tăng đột biến từ giá trị 22,05 mm lên đến 90,76 mm Từ đây, có thể nhận định cọc TPB2 đã xảy ra phá hoại giòn với 2 khả năng vật phá hoại vật liệu cọc hoặc đất nền quá cứng Ngoài ra, dựa vào chiều dài cọc (Bảng 3.1) và mặt cắt địa chất thể hiện ở Hình 3.2, cọc nằm ở lớp đất số 6 (cát pha sét lẫn bụi, trạng thái chặt vừa đến rất chặt, trị số N trung bình từ 30 - 77 búa, có trường hợp lớn hơn 100 búa) là lớp đất rất tốt nên phá hoại cọc có thể đến từ nguyên nhân thứ hai Khác với cọc TPB2, cọc TP01 có độ dốc thay đổi từ từ qua từng cấp tải trước khi xảy ra phá hoại (Hình 3.8) và có tải trọng giới hạn nằm trong khoảng từ 1045 T đến 1075
T Ngoài ra, quan hệ độ lún – thời gian ở cấp tải Q = 1075 T (Hình 3.9) còn cho thấy độ lún cọc TP01 còn tăng thêm Như vậy, đất nền dưới mũi cọc TP01 đạt trạng thái tới hạn (phá hoại) Để đánh giá chi tiết hơn giá trị tải trọng giới hạn cần thiết phân tích chi tiết theo các phương pháp Trong trường hợp này, để việc phân tích phù hợp theo các hàm số xấp xỉ, độ lún ban đầu ở chu kỳ 2 được hiệu chỉnh về gốc tọa độ
3.2.1.1 Đánh giá khả năng chịu tải của cọc nén tĩnh đến phá hoại theo các phương pháp
3.2.1.1.1 Cọc TPB2 – Dự án Vietcombank Tower
Kết quả phân tích xác định tải trọng giới hạn của cọc TPB2 xác định theo các phương pháp thể hiện từ Hình 3.26 đến Hình 3.35 kết hợp Bảng 3.7 và được tổng hợp ở Bảng 3.8 và Hình 3.36
Hình 3.26 Biểu đồ xác định Q u theo phương pháp Offset Limit cọc TPB2
Hình 3.27 Biểu đồ xác định Q u theo phương pháp Chin-Kondner cọc TBP2
Hình 3.28 Biểu đồ xác định Q u theo phương pháp De Beer cọc TPB2
Hình 3.29 Biểu đồ xác định Q u theo phương pháp Decourt cọc TPB2
Hình 3.30 Biểu đồ xác định Q u theo tiêu chuẩn 80% Brinch Hansen cọc TPB2
Hình 3.31 Biểu đồ xác định Q u theo tiêu chuẩn 90% Brinch Hansen cọc TPB2
Hình 3.32 Biểu đồ xác định Q u theo phương pháp Mazurkiewicz cọc TPB2
Ngoài ra, có thể xác định trực tiếp giá trị Qu (không cần vẽ biểu đồ) theo phương pháp Mazurkiewicz là hệ số b của đường thẳng y = ax + b thông qua phương pháp bình phương cực tiểu được thể hiện ở Bảng 3.7
Bảng 3.7 Xác định sức chịu tải giới hạn theo phương pháp Mazurkiewicz thông qua phương pháp bình phương cực tiểu
Từ đó, các hệ số a và b xác định được: n = 6 a = 4,63 b = 2888
Hình 3.33 Biểu đồ xác định Q u theo phương pháp Fuller & Hoy cọc TPB2
Hình 3.34 Biểu đồ xác định Q u theo phương pháp Bultler & Hoy cọc TPB2
Hình 3.35 Biểu đồ xác định Q u theo phương pháp Vander Veen cọc TPB2
Bảng 3.8 Tổng hợp kết quả phân tích giá trị Q u của cọc TPB2 theo các phương pháp
STT Phương pháp xác định
Sai số so với cấp tải 2450 T
Sai số so với cấp tải 2604 T
2 Theo kết quả nén tĩnh 2450 - 2604 0,0 0,0
Chú thích: KXĐ – Không xác định
Hình 3.36 Biểu đồ tổng hợp giá trị Q u của cọc TPB2 theo các phương pháp
Theo kết quả trực tiếp từ đường cong quan hệ Q - S, có thể thấy rằng tải trọng giới hạn của cọc TPB2 dao động trong khoảng 2 cấp tải cuối của chu kỳ gia tải lần 2 (tức là nhỏ hơn cấp tải trọng cuối cùng gây phá hoại), 2450 T 2604 T Từ Bảng 3.8, chỉ có phương pháp Vander Veen không xác định được giá trị tải trọng giới hạn do đường quan hệ thiết lập từ phương pháp bị thay đổi độ dốc đột ngột ở 2 cấp tải cuối, còn các phương pháp khác đều đánh giá được khả năng chịu tải của cọc
Xem tải trọng giới hạn đạt 2450 T:
▪ Phương pháp Offset Limit, De Beer và tiêu chuẩn 90% Brinch Hansen cho kết quả tiệm cận nhất với giá trị (mức độ sai lệch) tương ứng là 2525 T (3,1%),
▪ Các phương pháp còn lại cho kết quả dự đoán lớn hơn tải trọng giới hạn từ 5,9% đến 17,9%
Xem tải trọng giới hạn đạt 2604 T:
▪ Phương pháp Offset Limit, De Beer và 90% Brinch Hansen cho kết quả thấp hơn tải trọng giới hạn với mức độ sai lệch từ -3% đến -6,2%
▪ Phương pháp Fuller & Hoy, Bulter & Hoy cho kết quả tiệm cận nhất với giá trị (mức độ sai lệch) tương ứng là 2604 T (0%), 2594 T (-0,4%)
▪ Các phương pháp Chin – Kondner, Decourt, tiêu chuẩn 80% Brinch Hansen,
Mazurkiewicz cho kết quả dự đoán cao hơn tải trọng giới hạn với mức độ sai lệch trong khoảng 1,9% 10,9%
Như vậy, về tổng thể kết quả phân tích cho thấy giá trị sức chịu tải giới hạn dự báo theo các phương pháp khá tiếp cận với giá trị thực tế thí nghiệm Giá trị tải trọng giới hạn Qu theo các phương pháp Offset Limit, De Beer, tiêu chuẩn 90% Brinch Hansen và kể cả Fuller & Hoy và Bulter & Hoy đều rất phù hợp với thực tế thí nghiệm Các phương pháp Chin – Kondner, Decourt, tiêu chuẩn 80% Brinch Hansen, Mazurkiewicz dự báo giá trị Qu lớn hơn tải trọng thí nghiệm lớn nhất
3.2.1.1.2 Cọc TP01 - Dự án Metro Star
Kết quả phân tích xác định tải trọng giới hạn của cọc TP01 xác định theo các phương pháp thể hiện từ Hình 3.37 đến Hình 3.46 kết hợp Bảng 3.9 và được tổng hợp ở Bảng 3.10 và Hình 3.47
Hình 3.37 Biểu đồ xác định Q u theo phương pháp Offset Limit cọc TP01
Hình 3.38 Biểu đồ xác định Q u theo phương pháp Chin-Kondner cọc TP01
Hình 3.39 Biểu đồ xác định Q u theo phương pháp De Beer cọc TP01
Hình 3.40 Biểu đồ xác định Q u theo phương pháp Decourt cọc TP01
Hình 3.41 Biểu đồ xác định Q u theo tiêu chuẩn 80% Brinch Hansen cọc TP01
Hình 3.42 Biểu đồ xác định Q u theo tiêu chuẩn 90% Brinch Hansen cọc TP01
Hình 3.43 Biểu đồ xác định Q u theo phương pháp Mazurkiewicz cọc TP01
Ngoài ra, có thể xác định trực tiếp giá trị Qu (không cần vẽ biểu đồ) theo phương pháp Mazurkiewicz là hệ số b của đường thẳng y = ax + b thông qua phương pháp bình phương cực tiểu thể hiện ở Bảng 3.9
Bảng 3.9 Xác định sức chịu tải giới hạn theo phương pháp Mazurkiewicz thông qua phương pháp bình phương cực tiểu
Từ đó, các hệ số a và b xác định được: n = 6 a = 2,42 b = 1117
Hình 3.44 Biểu đồ xác định Q u theo phương pháp Fuller & Hoy cọc TP01
Hình 3.45 Biểu đồ xác định Q u theo phương pháp Bultler & Hoy cọc TP01
Hình 3.46 Biểu đồ xác định Q u theo phương pháp Vander Veen cọc TP01
Bảng 3.10 Tổng hợp kết quả phân tích giá trị Q u của cọc TP01 theo các phương pháp
STT Phương pháp xác định
Sai số so với cấp tải 1045 T
Sai số so với cấp tải 1075 T
Hình 3.47 Biểu đồ tổng hợp giá trị Q u của cọc TP01 theo các phương pháp
Theo kết quả trực tiếp từ đường cong quan hệ Q - S, có thể thấy rằng tải trọng giới hạn của cọc TP01 dao động trong khoảng 2 cấp tải cuối của chu kỳ gia tải lần 2,
1045 T 1075 T Kết quả thu được chỉ có phương pháp Vander Veen không xác định được giá trị tải trọng giới hạn, còn các phương pháp khác đều đánh giá được khả năng chịu tải của cọc
Xem tải trọng giới hạn đạt 1045 T:
▪ Phương pháp Offset Limit, De Beer và tiêu chuẩn 90% Brinch Hansen cho kết quả chính xác nhất với độ sai lệch tương ứng là 0,7%, -0,1% và 1,8%
▪ Các phương pháp còn lại cho kết quả dự đoán cao hơn tải trọng giới hạn từ 2,6% đến 6,9%
Xem tải trọng giới hạn đạt 1075 T:
▪ Phương pháp Offset Limit, De Beer và tiêu chuẩn 90% Brinch Hansen cho kết quả thấp hơn tải trọng giới hạn với mức độ sai lệch lần lượt là -2,2%, -2,9% và -1,1%
▪ Tiêu chuẩn 80% Brinch Hansen, Fuller & Hoy, Butler & Hoy cho kết quả dự đoán tiếp cận nhất giá trị tải trọng giới hạn với độ chính xác dao động trong khoảng -0,3% 0,3%
▪ Các phương pháp Chin – Kondner, Decourt, Mazurkiewicz cho kết quả dự đoán cao hơn tải trọng giới hạn không đáng kể với mức độ sai lệch trong khoảng 3,6% 3,8%
Nhìn chung kết quả phân tích giá trị tải trọng giới hạn cọc TP01 khá tương đồng với trường hợp phân tích cọc TPB2 , tổng thể các kết quả phân tích theo các phương pháp đều khá tiếp cận với thực tế thí nghiệm (ngoại trừ phương pháp Vander Veen không xác định) Giá trị tải trọng giới hạn Qu theo các phương pháp Offset Limit, De Beer, tiêu chuẩn 90% Brinch Hansen và kể cả Fuller & Hoy và Bulter & Hoy rất phù hợp khi cọc nén tĩnh đến phá hoại Các phương pháp Chin – Kondner, Decourt, tiêu chuẩn 80% Brinch Hansen, Mazurkiewicz dự báo giá trị Qu lớn hơn tải trọng thí nghiệm lớn nhất nhưng không đáng kể Bên cạnh đó, kết quả phân tích sức chịu tải giới hạn áp dụng cho cọc TP01 (đường cong quan hệ tải trọng – độ lún từ thí nghiệm có độ dốc thay đổi từ từ trước khi phá hoại) xấp xỉ số liệu thí nghiệm tốt hơn so với cọc TPB2 khi ngoại suy theo phương pháp 80% Brinch Hansen và Marzurkiewicz (Bảng 3.8 và 3.10)
Ngoài ra, tải trọng giới hạn từ thí nghiệm cả 2 trường hợp cọc TPB2 và TP01 đều nhỏ hơn kết quả dự tính theo hồ sơ thiết kế
3.2.1.2 Ngoại suy quan hệ tải trọng – độ lún theo các phương pháp sử dụng hàm xấp xỉ trường hợp nén tĩnh đến phá hoại
Nhằm đi sâu phân tích tính hợp lý của các phương pháp sử dụng hàm xấp xỉ cũng như đánh giá khả năng áp dụng các phương pháp này, việc phân tích ngược trên cơ sở các hệ số thu nhận được theo các biểu đồ quan hệ được thực hiện Từ các hệ số thu nhận được tiến hành thiết lập đường cong quan hệ tải trọng – độ lún để so sánh với kết quả thí nghiệm thực tế
Trong các phương pháp đã nêu, chỉ có những phương pháp Chin-Kondner, Decourt, tiêu chuẩn 80% Brinch Hansen, Vander Veen được xây dựng trên cơ sở các hàm xấp xỉ mà ở đó thể hiện mối quan hệ giữa tải trọng và độ lún, cụ thể là:
▪ Phương pháp Chin-Kondner: đường thẳng thể hiện mối quan hệ giữa tỉ số của độ lún (S) và tải trọng (Q) và độ lún (S)
▪ Phương pháp Decourt: đường thẳng thể hiện mối quan hệ giữa tỉ số của tải trọng (Q) và độ lún (S) và tải trọng (Q)
▪ Tiêu chuẩn 80% Brinch Hansen: đường thẳng thể hiện mối quan hệ giữa tỉ số căn bậc hai của độ lún (S) và tải trọng (Q) và độ lún (S)
▪ Phương pháp Vander Veen: đường thẳng thể hiện mối quan hệ giữa logarit tự nhiên của giá trị (1 - Q/Qu) và độ lún (S) Trong trường hợp nén tĩnh có đường cong quan hệ tải trọng – độ lún thay đổi độ dốc đột ngột xảy ra phá hoại, thì không áp dụng được ngoại suy hàm xấp xỉ theo phương pháp này vì giá trị Qu không xác định
Ngoại suy quan hệ tải trọng – độ lún đầu cọc và đánh giá khả năng chịu tải của cọc theo các phương pháp hàm số toán học
3.3.1 Ngoại suy quan hệ tải trọng – độ lún đầu cọc theo các phương pháp hàm số toán học theo kết quả nén tĩnh cọc đến phá hoại
Nhằm phân tích tính hợp lý của các phương pháp sử dụng hàm số toán học trong biểu diễn đường cong quan hệ tải trọng – độ lún đầu cọc theo kết quả nén tĩnh đến phá hoại, tác giả sử dụng dữ liệu thí nghiệm nén tĩnh cọc TPB2 (dự án Vietcombank Tower) và cọc TP01 (dự án Metro Star) Kết quả nén tĩnh của 2 cọc cho thấy độ dốc đường cong thay đổi đột ngột ở hai cấp tải cuối nên cọc đã phá hoại Để việc phân tích phù hợp theo các hàm số toán học, độ lún ban đầu ở chu kỳ 2 được hiệu chỉnh về gốc tọa độ
3.3.1.1 Ngoại suy quan hệ tải trọng – độ lún đầu cọc theo các phương pháp hàm số toán học theo kết quả nén tĩnh đến phá hoại
3.3.1.1.1 Cọc TPB2 - Dự án Vietcombank Tower
Biểu đồ ngoại suy theo các phương pháp hàm số toán học của cọc TPB2 thể hiện từ Hình 3.86 đến Hình 3.91 và được tổng hợp ở Hình 3.92, 3.93
Hình 3.86 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP1 cọc TBP2
Hình 3.87 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP2 cọc TBP2
Hình 3.88 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP3 cọc TBP2
Hình 3.89 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP4 cọc TBP2
Hình 3.90 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP5 cọc TBP2
Hình 3.91 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP6 cọc TBP2
Hình 3.92 Biểu đồ tổng hợp ngoại suy đường cong quan hệ Q - S theo PP1, PP2, PP3 cọc TPB2
Hình 3.93 Biểu đồ tổng hợp ngoại suy đường cong quan hệ Q - S theo PP4, PP5, PP6 cọc TPB2 Đường cong ngoại suy theo phương pháp 1 (PP1) và phương pháp 3 (PP3) tiệm cận với đường cong quan hệ tải trọng – chuyển vị ở cấp tải gần cuối của thí nghiệm, ở các cấp tải trước đó đường cong không tiệm cận tốt so với kết quả thí nghiệm Đường cong ngoại suy theo phương pháp 2 (PP2) xấp xỉ tương đối tốt so với số liệu thí nghiệm, đặc biệt ở 2 cấp tải cuối đường cong có xu hướng tiệm cận đường cong thí nghiệm Đường cong ngoại suy theo phương pháp 6 (PP6) xấp xỉ tốt so với số liệu thí nghiệm khi bỏ đi 2 cấp tải đầu tiên Trong tất cả các đường cong ngoại suy, đường cong biểu diễn theo phương pháp 5 (PP5) cho kết quả tiệm cận tốt nhất và rất phù hợp với xu hướng phát triển của đường cong thí nghiệm Đường cong ngoại suy theo phương pháp 4 (PP4) cho kết quả khá trùng khớp với đường cong thí nghiệm ở trước cấp tải 2450 T, vượt qua cấp tải này đường cong thí nghiệm thay đổi độ dốc đột ngột nên việc ngoại suy theo hàm số bậc 2 bằng phương pháp bình phương cực tiểu không còn mô tả chính xác quan hệ tải trọng – độ lún
3.3.1.1.2 Cọc TP01 - Dự án Metro Star
Biểu đồ ngoại suy theo các phương pháp hàm số toán học của cọc TP01 thể hiện từ Hình 3.94 đến Hình 3.99 và được tổng hợp ở Hình 3.100, 3.101
Hình 3.94 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP1 cọc TP01
Hình 3.95 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP2 cọc TP01
Hình 3.96 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP3 cọc TP01
Hình 3.97 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP4 cọc TP01
Hình 3.98 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP5 cọc TP01
Hình 3.99 Biểu đồ ngoại suy đường cong quan hệ Q - S theo PP6 cọc TP01
Hình 3.100 Biểu đồ tổng hợp ngoại suy đường cong quan hệ Q - S theo PP1, PP2,
Hình 3.101 Biểu đồ tổng hợp ngoại suy đường cong quan hệ Q - S theo PP4, PP5,
PP6 cọc TP01 Đường cong ngoại suy từ PP1 và PP3 cho giá trị xấp xỉ với số liệu thí nghiệm ở gần cấp tải cuối, ở các cấp tải trước đó đường cong xấp xỉ không tốt so với thực tế Đường cong ngoại suy theo PP6 xấp xỉ tốt số liệu thí nghiệm khi bỏ đi 4 cấp tải đầu tiên Trong tất cả các đường cong ngoại suy, đường cong biểu diễn theo PP2 và PP5 tiệm cận tốt nhất so với đường cong quan hệ tải trọng – chuyển vị từ thí nghiệm Đường cong ngoại suy theo PP4 xấp xỉ không tốt số liệu thí nghiệm, tuy nhiên nó cũng mô tả được khuynh hướng phát triển theo thí nghiệm ở giai đoạn trước khi cọc phá hoại
3.3.1.2 Ngoại suy quan hệ tải trọng – độ lún đầu cọc theo các phương pháp hàm số toán học dựa trên kết quả nén tĩnh không xét cấp tải trọng cuối gây phá hoại
Trong trường hợp thí nghiệm chưa đạt đến điểm phá hoại, nhằm đánh giá khả năng áp dụng của các phương pháp hàm số toán học trong việc ngoại suy đường cong quan hệ tải trọng – chuyển vị đầu cọc theo số liệu nén tĩnh và phân tích mức độ tiệm cận kết quả thí nghiệm thực tế, phân tích được tiến hành với việc lược bỏ giá trị thí nghiệm ở cấp tải gây phá hoại, chi tiết sẽ lược bỏ điểm có giá trị tải trọng thí nghiệm
2604 T của cọc TPB2 và điểm có giá trị tải trọng 1075 T của cọc TP01 Để có cái nhìn khái quát hơn trong việc áp dụng đánh giá khả năng chịu tải của cọc theo các hàm ngoại suy, giá trị tải trọng giới hạn Qu được chọn theo giá trị độ lún tới hạn đầu cọc (10%D) áp dụng cho PP1, PP2, PP3, PP5, PP6 và đề xuất giá trị Qu là đỉnh của đường cong parabol áp dụng cho PP4
3.3.1.2.1 Cọc TPB2 - Dự án Vietcombank Tower
Biểu đồ ngoại suy theo các phương pháp hàm số toán học của cọc TPB2 trên kết quả nén tĩnh lược bỏ cấp tải gây phá hoại thể hiện từ Hình 41 đến Hình 46 (Phụ lục 3) và được tổng hợp ở Bảng 3.27 và Hình 3.102, 3.103
Bảng 3.27 Tổng hợp kết quả phân tích ngoại suy sức chịu tải giới hạn của cọc TPB2 theo các hàm toán học dựa trên kết quả thí nghiệm nén tĩnh cọc không xét cấp tải cuối
Sức chịu tải giới hạn ngoại suy ở độ lún giới hạn 10% đường kính cọc
Sức chịu tải giới hạn ngoại suy ứng với đỉnh của parabol Độ sai lệch so với trường hợp sức chịu tải giới hạn là 2450 T Độ sai lệch so với trường hợp sức chịu tải giới hạn là 2604 T
Hình 3.102 Biểu đồ tổng hợp ngoại suy đường cong quan hệ Q - S theo PP1, PP2,
PP3 không xét cấp tải trọng cuối cọc TPB2
Hình 3.103 Biểu đồ tổng hợp ngoại suy đường cong quan hệ Q - S theo PP4, PP5,
PP6 không xét cấp tải trọng cuối cọc TPB2
Nhìn chung, đường cong ngoại suy theo các phương pháp đều tiệm cận tốt với đường cong quan hệ tải trọng – chuyển vị từ thí nghiệm từ cấp tải 2450 T trở về trước
Vượt qua cấp tải này thì đường cong ngoại suy cho giá trị xấp xỉ không tốt so với số liệu thí nghiệm
Khi lựa chọn giá trị sức chịu tải Qu theo độ lún tới hạn đầu cọc (150mm) thông qua việc ngoại suy, PP1 dự đoán kết quả tải trọng giới hạn quá lớn (sai số khoảng 223,9 244,3%), PP2 và PP3 cho kết quả lớn hơn số liệu thực tế khá đáng kể (chênh lệch khoảng 78,3% 101%), trong khi PP5 và PP6 cho giá trị dự đoán chấp nhận được (chênh lệch số liệu thí nghiệm khoảng 16,9% 36,1%) Ngoài ra, khi chọn lựa tải trọng giới hạn Qu là đỉnh của đường cong bậc 2, ngoại suy theo PP4 cho kết quả dự đoán khả năng chịu tải là 2645 T, khá tiệm cận với kết quả từ thí nghiệm
3.3.1.2.2 Cọc TP01 - Dự án Metro Star
Biểu đồ ngoại suy theo các phương pháp hàm số toán học của cọc TP01 trên kết quả nén tĩnh lược bỏ cấp tải gây phá hoại thể hiện từ Hình 47 đến Hình 52 (Phụ lục 3) và được tổng hợp ở Bảng 3.28 và Hình 3.104, 3.105
Bảng 3.28 Tổng hợp kết quả phân tích ngoại suy sức chịu tải giới hạn của cọc TP01 theo các hàm toán học dựa trên kết quả thí nghiệm nén tĩnh cọc không xét cấp tải cuối
Sức chịu tải giới hạn ngoại suy ở độ lún giới hạn 10% đường kính cọc
Sức chịu tải giới hạn ngoại suy ứng với đỉnh của parabol Độ sai lệch so với trường hợp sức chịu tải giới hạn là 1045 T Độ sai lệch so với trường hợp sức chịu tải giới hạn là 1075 T
Hình 3.104 Biểu đồ tổng hợp ngoại suy đường cong quan hệ Q - S theo PP1, PP2,
PP3 bỏ đi cấp tải cuối cọc TP01
Hình 3.105 Biểu đồ tổng hợp ngoại suy đường cong quan hệ Q - S theo PP4, PP5,
PP6 bỏ đi cấp tải cuối cọc TP1 Đường cong ngoại suy theo PP1 tiệm cận tốt với đường cong thí nghiệm ở trước cấp tải 1045 T, trừ một vài cấp tải đầu có sự chênh lệch số liệu thí nghiệm không đáng kể Khi vượt qua cấp tải 1045 T, việc ngoại suy theo PP1 cho kết quả chênh lệch với thực tế và dự đoán khả năng chịu tải của cọc lớn hơn kết quả thí nghiệm khoảng
Nhận xét chương
Từ kết quả, đánh giá khả năng chịu tải của cọc và ngoại suy quan hệ tải trọng - độ lún đầu cọc theo các phương pháp đã có, tổng hợp bảng kết quả tính toán và nhận thấy rằng:
Bảng 3.33 So sánh sức chịu tải giới hạn của cọc chênh lệch so với thực tế (trường hợp cọc phá hoại) và dự tính thiết kế (trường hợp cọc chưa phá hoại) xác định trực tiếp theo các phương pháp đã có
Sức chịu tải giới hạn chênh lệch so với thực tế (cọc phá hoại) và dự tính thiết kế (cọc chưa xảy ra phá hoại (%)
Cọc phá hoại lược bỏ cấp tải cuối Cọc chưa phá hoại Đường cong Q – S không có sự thay đổi độ dốc rõ ràng Đường cong Q –
S có sự thay đổi độ dốc rõ ràng Đường cong Q – S không có sự thay đổi độ dốc rõ ràng Đường cong Q –
S có sự thay đổi độ dốc rõ ràng
Offset Limit -3% 3,1% KXĐ KXĐ KXĐ KXĐ
Hansen -4,7% 1.8% KXĐ KXĐ KXĐ KXĐ
Fuller & Hoy 0,0% 6,3% KXĐ KXĐ KXĐ 0,0%
Butler & Hoy -0,4% 5,9% KXĐ KXĐ KXĐ -0,2%
Bảng 3.34 So sánh sức chịu tải giới hạn theo các phương pháp ngoại suy chênh lệch so với thực tế (trường hợp cọc phá hoại) và dự tính thiết kế (trường hợp cọc chưa xảy ra phá hoại)
Ngoại suy theo các phương pháp
Sức chịu tải giới hạn ngoại suy (ứng độ lún giới hạn 10%D) chênh lệch so với thực tế
(cọc phá hoại) và dự tính thiết kế (cọc chưa xảy ra phá hoại (%) Cọc phá hoại lược bỏ cấp tải cuối Cọc chưa phá hoại Đường cong Q – S không có sự thay đổi độ dốc rõ ràng Đường cong Q –
S có sự thay đổi độ dốc rõ ràng Đường cong Q – S không có sự thay đổi độ dốc rõ ràng Đường cong Q –
S có sự thay đổi độ dốc rõ ràng
Phương pháp Offset Limit cho giá trị sức chịu tải giới hạn tiệm cận tốt với kết quả thí nghiệm áp dụng cho trường hợp cọc nén đến phá hoại và không dự đoán được khả năng chịu tải của cọc khi thí nghiệm chưa xảy ra phá hoại
Phương pháp Chin-Kondner và Decourt luôn dự đoán sức chịu tải giới hạn khá tương đồng nhau trong mọi trường hợp và luôn lớn hơn thực tế thí nghiệm Khi cọc nén đến phá hoại, đường cong ngoại suy theo 2 phương pháp tiệm cận với đường cong thí nghiệm ở 2 cấp tải cuối xảy ra phá hoại và cho giá trị độ lún nhỏ hơn số liệu thực tế ở các cấp tải trước đó Trường hợp lược bỏ cấp tải trọng cuối của thí nghiệm đến phá hoại, đường cong ngoại suy gần như trùng với đường cong thí nghiệm ở các cấp tải trước phá hoại, và cho dự đoán sức chịu tải giới hạn chênh lệch với thực tế dao động Trường hợp cọc chưa nén đến phá hoại, đường cong ngoại suy từ 2 phương pháp tiếp cận rất tốt với đường cong quan hệ tải trọng – độ lún từ thí nghiệm và dự đoán khả năng chịu tải giới hạn lớn hơn dự tính thiết kế Tổng thể, có thể nhận thấy phương pháp Chin-Kondner và Decourt áp dụng hợp lý hơn khi thí nghiệm nén tĩnh cho đường cong quan hệ tải trọng – độ lún có độ dốc thay đổi từ từ và rõ ràng Đồng thời, việc phân tích ngược theo hàm xấp xỉ áp dụng cho 2 phương pháp cho kết quả dự báo sức chịu tải giới hạn tiếp cận số liệu thực tế hơn so với giá trị đề nghị xác định trực tiếp từ phương pháp
Phương pháp De Beer dự đoán khả năng chịu tải nhỏ hơn thực tế khi nén tĩnh cọc đến phá hoại và không phù hợp để dự đoán khả năng chịu tải của cọc trường hợp cọc chưa xảy ra phá hoại
Tiêu chuẩn 80% Brinch Hansen luôn dự đoán sức chịu tải giới hạn lớn hơn thực tế thí nghiệm và dự tính thiết kế Khi cọc nén đến phá hoại, đường cong ngoại suy theo phương pháp xấp xỉ không tốt số liệu thí nghiệm và cho kết quả độ lún nhỏ hơn thực tế ở đa số các cấp tải Trường hợp lược bỏ cấp tải trọng cuối của thí nghiệm đến phá hoại, đường cong ngoại suy tiệm cận tốt với đường cong thí nghiệm ở các cấp tải trước phá hoại, và cho dự đoán sức chịu tải giới hạn chênh lệch với thực tế dao động Trường hợp cọc chưa nén đến phá hoại, đường cong ngoại suy từ phương pháp cho giá trị độ lún xấp xỉ tốt với số liệu thực tế ở các cấp tải cuối và nhỏ hơn thực tế không đáng kể ở các cấp tải trước, đồng thời dự đoán khả năng chịu tải giới hạn lớn hơn dự tính thiết kế
Tiêu chuẩn 90% Brinch Hansen cho dự đoán khả năng chịu tải chênh lệch số liệu thí nghiệm dao động -4,7% 1,8% áp dụng khi cọc thử tĩnh đến phá hoại Trường hợp cọc chưa phá hoại, phương pháp không áp dụng được để dự đoán khả năng chịu tải của cọc
Phương pháp Mazurkiewicz cho thấy sự ổn định cũng như phù hợp trong đánh giá khả năng chịu tải của cọc kể cả cọc thí nghiệm đến phá hoại hay chưa phá hoại.
Phương pháp Fuller & Hoy và Bulter & Hoy cho kết quả dự đoán khả năng chịu tải khá trùng khớp với kết quả thí nghiệm trường hợp cọc nén đến phá hoại Trường hợp cọc chưa xảy ra phá hoại, khả năng áp dụng của 2 phương pháp trên rất thấp vì chúng chỉ phù hợp để đánh giá khả năng chịu tải một khi đường cong quan hệ tải trọng – độ lún phải có sự thay đổi độ dốc tương đối lớn
Phương pháp Vander Veen không đánh giá được khả năng chịu tải của cọc trường hợp đường cong nén tĩnh thay đổi độ dốc đột ngột Nhưng phương pháp này phù hợp để đánh giá sức chịu tải giới hạn khi cọc chưa phá hoại Ngoài ra, đường cong ngoại suy theo phương pháp Vander Veen tiệm cận rất tốt với đường cong thí nghiệm trường hợp cọc chưa phá hoại và gần như trùng khớp với đường cong thí nghiệm ở các cấp tải trước khi xảy ra phá hoại ứng với trường hợp cọc nén tĩnh đến phá hoại
Căn cứ kết quả ngoại suy quan hệ tải trọng độ lún – đầu cọc theo các phương pháp hàm số toán học và áp dụng trong đánh giá khả năng chịu tải của cọc, bảng tổng hợp tính toán và một số nhận xét rút ra như sau:
Bảng 3.35 So sánh sức chịu tải giới hạn ngoại suy theo các phương pháp hàm số toán học chênh lệch so với thực tế (trường hợp cọc phá hoại) và dự tính thiết kế (trường hợp cọc chưa xảy ra phá hoại)
Ngoại suy theo các phương pháp hàm toán học
Sức chịu tải giới hạn ngoại suy (ứng độ lún giới hạn 10%D hoặc đỉnh parabol) chênh lệch so với thực tế (cọc phá hoại) và dự tính thiết kế (cọc chưa xảy ra phá hoại (%) Cọc phá hoại lược bỏ cấp tải cuối Cọc chưa phá hoại Đường cong Q – S không có sự thay đổi độ dốc rõ ràng Đường cong Q – S có sự thay đổi độ dốc rõ ràng Đường cong Q – S không có sự thay đổi độ dốc rõ ràng Đường cong Q – S có sự thay đổi độ dốc rõ ràng PP1: Q = aS b 223,9% 244,3% 42,7% 46,8% 116,2% 135,9% 56,7% 66,3%