1. Trang chủ
  2. » Luận Văn - Báo Cáo

effect of various factors on the process of yogurt product supplemented with soymilk

98 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

EFFECT OF VARIOUS FACTORS ON THE PROCESS OF YOGURT PRODUCT SUPPLEMENTED WITH SOYMILK... Thesis title: Effect of various factors on the process of yogurt product supplemented with soymilk

Trang 1

MINISTRY OF EDUCATION AND TRAINING

HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION FACULTY FOR HIGH QUALITY TRAINING

LECTURER: DANG THI NGOC DUNG

STUDENT: NGUYEN VU DUC HOAI NGUYEN HUYNH GIA HUY

S K L 0 1 2 5 3 0

Trang 2

EFFECT OF VARIOUS FACTORS ON THE PROCESS OF YOGURT PRODUCT

SUPPLEMENTED WITH SOYMILK

Trang 3

GRADUATION THESIS ASSIGNMENT

Student name: Nguyễn Vũ Đức Hoài Student ID: 19116052

Student name: Nguyễn Huỳnh Gia Huy Student ID: 19116016

Supervisor: Đặng Thị Ngọc Dung M.Eng Email: dzungdang@hcmute.edu.vn Date of assignment: 28/08/2023 Date of submission: 22/01/2024

1 Thesis title: Effect of various factors on the process of yogurt product supplemented with soymilk

Ho Chi Minh city, 22nd January 2024

Trang 4

ii

ACKNOWLEDGEMENT

First of all, we would like to thank the professors, lecturers and staff of Ho Chi Minh City University of Education and Technology in general and the University of Chemical and Food Technology in particular for guiding, supporting and creating conditions for us throughout our time studying and training at school We have received a lot of useful knowledge from the school as well as the teachers, which will be an important knowledge base for us later in life

We would like to express our special gratitude to Ms Đặng Thị Ngọc Dung, lecturer of the Department of Food Science and Technology at Ho Chi Minh City University of Pedagogy and Technology, who has guided, taught as well as supporting our team during the implementation of our graduate thesis In addition, we would like to extend our appreciation to MS Hồ Thị Thu Trang, who supervises the laboratories and workshops in the Faculty of Chemical and Food Technology at the Ho Chi Minh University of Technology and Education She has humbly supplied us with a plethora of aid in the form of tools, machinery, and equipment We would like to express our genuine gratitude to all those who assisted us in accomplishing our thesis project during our academic pursuits

Our lack of experience, ignorance, and time constraints may lead to errors in our thesis We humbly seek your forgiveness and constructive feedback to improve ourselves We extend our sincerest salutations to the Faculty of Chemical and Food Technology We extend our sincerest wishes for enduring well-being and success

Sincerely thanks

Nguyễn Vũ Đức Hoài and Nguyễn Huỳnh Gia Huy

Trang 5

iii

Trang 6

iv

Trang 7

v

Trang 8

vi

Trang 9

vii

Trang 10

viii

Trang 11

ix

Trang 12

x

Trang 13

xi

Trang 14

xii

Trang 15

xiii

Trang 16

xiv

Trang 17

xv

Table of Contents

ACKNOWLEDGEMENT ii

LIST OF FIGURES xix

LIST OF TABLES xxi

CHAPTER 2: LITERATURE REVIEW 5

2.1 Overview about yogurt 5

Trang 18

CHAPTER 3: MATERIALS AND RESEARCH METHOD 21

3.1 Materials, chemicals, and equipment 21

3.1.1 Materials 21

3.1.2 Chemicals 25

3.1.3 Tools and Equipment 25

3.2 Research scheme and production of Yogurt subjoin Soymilk 26

Trang 19

xvii

3.4.4 Rheological measurement 32

3.4.5 Method for enumeration of Lactic Acid Bacteria (LAB) 34

3.4.6 Texture profile analysis (TPA) 34

3.4.7 Fourier – Transform Infrared Spectroscopy (FT-IR) 35

3.4.8 Scanning Electron Microscopy – SEM 35

CHAPTER 4: RESULTS AND DISCUSSION 37

4.1 Chemical composition of samples 37

4.2 Effects of soymilk ratio on the qualities of set yogurt supplemented with soymilk during fermentation 37

4.2.1 Changes of pH and titratable acidity of set yogurt supplemented with soymilk 374.2.2 Rheology measurment 39

4.2.3 Enumerating of L delbrueckii ssp bulgaricus in set yogurt supplemented with soymilk during fermentation 42

4.2.4 Textural characteristics of set yogurt supplemented with soymilk 43

4.3 Effects of sucrose content on the qualities of set yogurt during fermentation 44

4.3.1 Changes of pH and titratable acidity of set yogurt during fermentation 44

Trang 20

APPENDIX 1: COA of skim milk powder 68

APPENDIX 2: COA of starter culture 69

APPENDIX 3: Statistical results of experiments 70

Trang 21

xix

LIST OF FIGURES

Figure 2 1 Various type of yogurt product 6

Figure 2 2 The central processing steps in the manufacture of set yogurt 9

Figure 2 3 Xanthan Gum 14

Figure 2 4 Variety of Soymilk Products 16

Figure 3 1 Skim milk powder 21

Figure 3 2 Xuan Hong’s Soybean 22

Figure 3 3 Flow Chart of Soymilk Processing 23

Figure 3 4 Hansen Company Starter Culture 24

Figure 3 5 Bien Hoa Join Stock Company Sugar 25

Figure 3 6 Research scheme 26

Figure 3 7 Yogurt supplemented with Soymilk processing 27

Figure 3 8 Rheology analyzer 33

Figure 3 9 Texture Analyzer CT3 35

Figure 4 1 Changes of pH of set yogurt supplemented with soymilk during fermentation 38

Figure 4 2 Changes of titratable acidity (oT) of set yogurt supplemented with soy milk during fermentation 39

Figure 4 3 Changes of shear rate & shear stress of set yogurt with supplemented soymilk at 1st cycle (left) and 2nd cycle (right) 40

Figure 4 4 Changes in texture characteristics of set yogurt supplemented with soymilk content and control yogurt 43

Figure 4 5 Changes in texture characteristics of set yogurt supplemented with 0.1% xanthan gum and control yogurt 44

Trang 22

Figure 4 9 Changes of pH of set yogurt with different incubation temperature 49

Figure 4 10 Changes of pH of set yogurt with different incubation temperature 50

Figure 4 11 Changes of shear rate & shear stress of yogurt with incubation temperature at 1st cycle (left) and 2nd cycle (right) 51

Figure 4 12 SEM image of the microstructure of CY (top) and SY_75 (bottom) gels at different magnifications respectively of 1.00k×, 2.00k× and 5.00k× 54

Figure 4 13 FT-IR spectra of CY sample (top) and SY_75 (bottom) 55

Trang 23

Table 2 3 Compositions of soymilk, bovine milk, and human milk (Odo, 2003) 17

Table 4 1 Chemical composition of samples 37

Table 4 2 Herschel – Bulkley model equations of yogurt samples supplemented with soymilk 41

Table 4 3 The number of L delbrueckii ssp bulgaricus in control yogurt and yogurt

supplemented with soymilk 42

Table 4 4 Herschel – Bulkley model equations of yogurt samples supplemented with soymilk 47

Table 4 5 The number of L delbrueckii ssp bulgaricus in control yourt and yogurt with

addition of different sucrose content 48

Table 4 6 Herschel – Bulkley model equations of yogurt samples with different incubation temperature 52

Table 4 7 The number of L delbrueckii ssp bulgaricus in control yogurt and yogurt

incubating at different temperature 53

Table 4 8 Mode of vibration from the FTIR-ATR spectra with previous result from (Parvarei et al., 2021) 56

Table 4 9 The peaks of FT-IR spectra and functional groups of CY and SY_75 57

Trang 24

xxii

ABSTRACT

Dairy products are commonly preferred due to their simple composition, high nutritional value, and therapeutic capabilities Milk and fermented dairy products play a crucial role in a traditional diet, providing abundant nutrients and regulating several physiological systems (Puniya, 2016) In relation to the just-passed epidemic, there has been an increase in public awareness regarding the beneficial effects of consuming yogurt on one's health Therefore, in order to meet consumer needs, customers have placed considerable emphasis on plant-based products due to dietary restrictions and vegetarianism, in addition to providing a diverse selection of flavors and packaging alternatives("Yogurt Market– Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028," 2024) The beneficial effect of soy protein on reducing cholesterol levels, a risk factor for heart disease, has resulted in an increase in the sales of soymilk and the incorporation of soy in food products(Snyder & Wilson, 2003) Therefore, the research

topic “Effect of various factors on the process of yogurt product supplemented with

soymilk” was carried out to a) Determine the impact of adding soymilk to yogurt on the overall quality of the final product and b) Provide the technological parameters for the experimental production of set yogurt-added soymilk

The analytical results showed that the soymilk concentrations had a major impact on the rate of lactic acid production and the rate of pH reduction The results of the rheological analysis of yogurt samples showed that the production of yogurt supplemented with soymilk had lower viscosity and shear stress than the control samples The Lactic Acid Bacteria (LAB) counts of yogurt samples supplemented with soymilk was high and significant increased compared to control samples Additionally, the sucrose content and incubation temperature also affected the yogurt fermentation The shear stress and apparent viscosity of yogurt samples with various incubating temperature were increase when increasing incubation temperature When compared to control yogurt, the yogurt sample with addition xanthan gum leads to increase firmness or hardness

Trang 25

xxiii

LIST OF ABBREVIATIONS

Abbreviation Definition

CY: Yogurt control sample

SY_25` Yogurt sample supplemented with 25% soymilk concentration

SY_50 Yogurt sample supplemented with 50% soymilk concentration

SY_75 Yogurt sample supplemented with 75% soymilk concentration

YS_0 Yogurt sample without addition of sucrose content

YS_5 Yogurt sample with addition of 5% sucrose content

YS_15 Yogurt sample with addition of 15% sucrose content

TY_37 Yogurt sample incubated at 37oC

TY_40 Yogurt sample incubated at 40oC

TY_46 Yogurt sample incubated at 46oC

XY_0.1 Yogurt control sample with addition of 0.1% xanthan gum

LAB Lactic acid bacteria

Trang 27

1

CHAPTER 1 INTRODUCTION1.1.Posing the problem

Dairy products are often favored for their uncomplicated composition, elevated nutritional content, and medicinal properties Milk and fermented dairy products are integral to a traditional diet, offering ample nutrients and regulating diverse physiological functions (Puniya, 2016) The production of yogurt has experienced a growth rate of more than 4% from 1995 to 2019 Consequently, there has been a consistent rise in yogurt consumption over the previous decade Yogurt contains more significant quantities of protein, vitamin B2, vitamin B12, calcium, magnesium, potassium, and zinc than milk Yogurt offers further health advantages beyond simply providing nutrients due to its inclusion of distinctive bioactive components and living and active cultures (Cifelli et al., 2020)

According to (Connect, 2024), research published in Jan 2024, the global economy is recovering, and the growth of the yogurt industry in 2021 is expected to undergo substantial changes compared to the previous year Based on their most recent assessment, the worldwide Yogurt market is projected to reach a size of USD million in 2022, compared to USD 68720 million in 2021, representing a change of % between the two years, and reach USD 88830 million by 2028, with a compound annual growth rate (CAGR) of 3.7% throughout the forecast period

Amidst the recent epidemic, there has been a rise in consumer consciousness regarding the positive impact of consuming yogurt on one's health Hence, to cater to the demands of consumers, in addition to offering a wide range of tastes and packaging options, customers have had a significant focus on plant-based products due to dietary restrictions and vegetarianism Plant-based yogurts made from soy, almond, coconut, and oats have become popular among customers who want alternatives to dairy products ("Yogurt Market– Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028," 2024)

Soymilk is devoid of lactose, rendering it an appropriate option for people with lactose intolerance Furthermore, it possesses a high content of protein and minerals This option is appropriate for plant-based yogurt products because of its low levels of

Trang 28

2

cholesterol and carbs (Odo, 2003) Using Bifidobacterium spp in the soymilk fermentation process can effectively mitigate the undesirable beany taste and the presence of oligosaccharides The distinctive taste of soymilk is due to the presence of volatile chemicals, including n-pentanal and n-hexanal, which occur naturally in soymilk The consumption of oligosaccharides, specifically stachyose and raffinose found in soymilk, can result in the production of CO2 and methane In turn, gut microorganisms can cause flatulence during the metabolic process of these oligosaccharides (Shah, 2017)

Soy yogurt is produced through the fermentation of soymilk using only L

delbrueckii ssp bulgaricus Soy yogurt can be fortified by adding cow's milk or skim milk

powder to soymilk, with a maximum concentration of 3% Adding these ingredients typically enhances the taste and creates a firm and smooth texture (Shah, 2017) Conducting research and determining the proportion of soy milk to cow's milk in creating soymilk-enriched yogurt is crucial The article (Šertović et al., 2019) examined the proportion of soy milk to whole milk in creating yogurt enriched with soy milk It fermented using a combination of yogurt culture strains, namely Lactobacillus (L bulgaricus) delbrueckii subsp bulgaricus, Streptococcus thermophilus (Str thermophilus), and Lactobacillus acidophilus Hence, we choose to undertake a research endeavor to examine the proportion of soy milk to reconstituted milk derived from skimmed milk powder, along with several other influential parameters

Trang 29

3

• The starter bacterial mixture comprised of two strains of Lactobacillus (L

bulgaricus) delbrueckii subsp bulgaricus, and Streptococcus thermophilus (Str thermophilus) of Hansen Company (Denmark) and imported by Brenntag Vietnam

Company, which is situated at 120 Hoang Hoa Tham Street, Ward 7, Binh Thanh District, Ho Chi Minh City

• Commercial Xanthan Gum

• Sugar from TTC – Bien Hoa Join Stock Company

• Set yogurt samples with different ratios of added soy milk to reconstituted milk, sugar content, and incubation temperature

Research scope

The research was conducted at the laboratory of the Food Technology Major, Faculty of Chemical and Food, Ho Chi Minh City University of Technology and Education, at a laboratory scale

1.4.Research content

The project “Effect of various factors on the process of yogurt product

supplemented with soy milk” includes the following content:

• Effect of soymilk concentrations on the qualities of set yogurt

• Study the effects of sucrose content and incubation temperature on the qualities of set yogurt and choose the optimum range for this study

• Evaluate the chemical composition (fat, protein) and microbial criteria of set yogurt supplemented with soymilk

1.5.Scientific and practical values Scientific values

The utilization of the production process of yogurt from skim milk powder

combined with soymilk is a helpful point of reference for academic research and study at universities

The project's novelty is in the exclusive utilization of skim milk and the incorporation of soy milk to enhance the texture of yogurt products

Trang 30

The production technique of this product can be applied to small-scale or scale production, allowing for a wider variety of legume-based milk to be added to yogurt to improve its nutrition and texture

large-1.6.Report layout

This graduation thesis comprises 5 chapter • Chapter 1: Introduction

• Chapter 2: Literature review

• Chapter 3: Material and research methods • Chapter 4: Result and discussion

• Chapter 5: Conclusion and recommendations

Trang 31

The therapeutic properties of foods are achieved mainly by fermentation, which induces physicochemical alterations in the food matrix, resulting in increased nutritional value and improved health benefits (Shiby & Mishra, 2013) The term "fermentation" originated from the Latin word "fervere" and was subsequently described by Louis Pasteur as "life without air." This is a metabolic process that obtains energy from organic compounds without the assistance of any external factors (Shah, 2017) During fermentation, the introduced microorganisms release several beneficial metabolites and break down the complex components of food (such as carbs, proteins, and lipids) into simpler forms that are bioactive, easily digestible, and meet nutritional requirements (Shiby & Mishra, 2013)

Yogurt is a type of milk that has undergone fermentation using a combination of "Streptococcus thermophilus" and "Lactobacillus delbrueckii ssp bulgaricus cultures" (Shah, 2017) These cultures utilize lactose fermentation in milk, producing lactic acid, which leads to the curdling and formation of yogurt It can be augmented with fruits to intensify the taste The beneficial properties of yogurt having living and active cultures are extensively demonstrated in enhancing health (Puniya, 2016)

In addition to the typical yogurt starter bacteria, S thermophilus (ST) and L

delbrueckii ssp bulgaricus (LB), various other adjunct bacteria have been utilized in the

manufacture of yogurt over the past few decades Additional often employed bacteria in yogurt manufacturing include Lactobacillus helveticus, Lactobacillus casei, Lactobacillus

Trang 32

The term "yogurt" is thought to have originated from the Turks in the 8th century, initially appearing as "yoghurut." Therefore, it is presumed that the Turkish nomads in Asia were the ones who produced yogurt The invasion of Mongols, Tartars, and other Asian kings to Russia and Europe is thought to have been disseminating yogurt and fermented milk to other regions globally (Shah, 2017)

Yogurt has gained significant popularity and is now a staple in the diets of people in Europe, Australia, and various other regions worldwide Commercial yogurt and fermented milk production is now widespread in most significant nations Many localities still adhere to traditional methods of yogurt manufacture for everyday consumption (Shah, 2017)

Trang 33

7

2.1.3 Classification

Yogurt can be categorized into two groups: regular culture yogurt and bio- or

probiotic yogurt Conventional yogurt is produced through the action of L delbrueckii ssp

bulgaricus and S thermophilus bacteria These bacteria can enhance the beneficial

microorganisms found in yogurt, which contribute to the overall health of the digestive system On the other hand, bio-yogurts are made with specific strains of bifidobacteria and L acidophilus, which offer various health advantages Bio-yogurt is highly favored due to its mild, creamy taste and lower acidity It enhanced digestion and fostered optimal health In addition to this categorization, the yogurt products offered in the market come in diverse flavors, textures, and forms that cater to a wide range of tastes and meal times These can be ingested as either a light meal, a sweet treat, or a component of a larger dish Yogurt can be classified based on its physical and chemical properties and the range of tastes added to it (Banerjee et al., 2017)

• BASED ON THE CHEMICAL COMPOSITION OF THE PRODUCT

Yogurt can be classified into three categories based on its fat level The first type is low-fat yogurt, created from partially skimmed milk The second type is non-fat yogurt, manufactured from fully skimmed milk The third type is standard yogurt, generated from full-fat milk (Banerjee et al., 2017)

• BASED ON THE PHYSICAL NATURE OF THE PRODUCT

Yogurt can be categorized as solid, semi-solid, or fluid based on physical properties Yogurts that have a firm consistency undergo incubation and are cooled while still in their final packing Stirred yogurt and fluid or drinking yogurt, which has a semi-solid state and a fluid character, is made by incubating the mixture in a tank and then breaking it up by stirring before cooling and packaging (Banerjee et al., 2017)

• BASED ON THE FLAVOR OF THE PRODUCT

Incorporating different flavors would satisfy the consumer's preferences and result in a diverse range of items Flavors can be included either prior to or after the homogenization process Yogurts can be classified into three categories: plain yogurt, fruit yogurt, and flavored yogurt, depending on the specific taste that is added to them Yogurt is offered in various tastes, including apple, apricot, black cherry, black currant, blueberry, lemon, mandarin, raspberry, strawberry, peach,

Trang 34

8

cereal, vegetables, chocolate, vanilla, caramel, and ginger Typically, flavors are incorporated into yogurt during the production process to augment the variety of tastes and intensify the sweetness of the yogurt (Banerjee et al., 2017)

2.1.4 Nutritional value

Dairy products serve as a solid basis for the creation of health-enhancing components that can be used in the production of functional foods and dietary supplements Fermented foods provide strong detoxifying properties, enabling them to extract various heavy metals from the body In addition, fermented foods that are enhanced with probiotics include a wealth of vital nutrients such as vitamins B12, B6, K2, biotin, protein, essential amino acids, and fatty acids that satisfy the body's requirements (Puniya, 2016)

Probiotics are food or supplements that contain concentrated strains of living bacteria When consumed in specific amounts, they provide health advantages that go beyond basic nutrition Probiotics and their related components enhance the appeal of cultured dairy products by providing unique functional qualities(Shah, 2017) A multitude of probiotics generate a diverse range of antimicrobial compounds, such as lactic acid, acetic acid, formic acid, propionic acid, ethanol, diacetyl, acetaldehyde, reutericycline, reuterin, fatty acids, and bacteriocins, which possess inhibitory effects on infections.(Puniya, 2016)

2.1.5 Manufacture of yogurt

The primary stages of yogurt production encompass milk standardization (adjusting fat and protein levels), homogenization, heat treatment of milk, incubation/fermentation, cooling, and storing.(Lee & Lucey, 2010)

Trang 35

Addition of starter culture

Trang 36

• Pasteurization

Before adding cultures, the milk used in yogurt production is subjected to heat treatment The typical temperature/time combinations employed in batch heat treatments within the yogurt business are either 85°C for 30 minutes or 90-95°C for 5 minutes Alternatively, high temperatures, such as 100°C to 130°C for 4 to 16 seconds or ultra-heat temperature (UHT) at 140°C for 4 to 16 seconds, can also be used Milk is subjected to heat treatment to eliminate undesirable microbes, reducing competition for the starter culture (Lee & Lucey, 2010)

• Fermentation process

After the heat treatment, the milk base is cooled to the incubation temperature required to develop the starter culture The ideal temperature range is approximately 40-45°C Bacterial fermentation metabolizes lactose into lactic acid, resulting in a decrease in the pH of milk When milk undergoes acidification, the pH level drops from 6.7 to ≤4.6 The gelation process occurs within the pH range of 5.2 to 5.4 for milk undergoing a high-heat treatment (Lee & Lucey, 2010)

• Cooling

Once yogurts have achieved the proper pH level, often about 4.6, they are partially chilled to approximately 20°C At this point, fruit or flavoring ingredients can be added Yogurt products are frequently subjected to blast chilling, rapidly lowering their temperature to below 10°C (Lee & Lucey, 2010)

Trang 37

11

2.2 Raw material 2.2.1 Milk

Mammals produce milk to provide food to their offspring However, for numerous generations, it has also been a significant component of the human diet for infants and as a regular part of daily nutrition in many communities Since ancient times, humans have consumed milk obtained from domesticated animals as a source of nourishment (Matalas et al., 2001)

Milk contains essential bioactive components such as energy, water, carbohydrates, fats, proteins, vitamins, minerals, and minor biological proteins and enzymes These components contribute to the nutritional value of milk, making it a nutritious and complete food With a water content of around 87%, it serves as a valuable dietary source of hydration Carbohydrates, specifically lactose, glucose, and galactose, are the main energy source in milk Milk is a source of essential fatty acids, including linoleic and linolenic acids, which cannot be naturally generated by the body and must be obtained from fermentation or dietary supplementation It contains substantial casein and whey proteins (Puniya, 2016)

Milk provides all the body's essential amino acids, including vitamins A, D, E, K, riboflavin, niacin, pantothenic acid, and folate Milk contains many minerals, such as calcium, copper, iron, manganese, magnesium, phosphorus, sodium, and zinc, which play distinct roles in the body, including enzyme functioning, bone building, water balance management, and oxygen delivery Additional proteins and enzymes in milk that are nutritionally significant include lactoferrin and lactoperoxidase (Puniya, 2016)

Trang 38

12

Table 2 1 Chemical Composition of Milk of the Main Milk-Producing Animal

(Matalas et al., 2001) 2.2.2 Skim milk powder

Highly perishable milk can be stored for future use by eliminating water through drying techniques such as spray drying and roller drying This process prevents the growth of bacteria and inhibits enzymatic processes In addition, milk powders are commonly utilized for their simplicity in transportation, handling, processing, and product compositions However, they are vulnerable to various alterations, including moisture absorption, softening, browning, compaction, collapse, or caking (Pugliese et al., 2017)

Trang 39

13

Skimmed milk, also known as skim milk, is produced by completely separating the cream, often called milk fat, from whole milk Occasionally, a portion equivalent to half of the cream is extracted, producing semi-skimmed milk Skim milk powder (SMP) and other dehydrated dairy components should ideally possess a pristine, sugary, and agreeable flavor devoid of taste imperfections (O'Sullivan, 2017) The FDA regulation mandates a minimum content of 8.25% non-fat milk solids Nevertheless, the yogurt industry utilizes a maximum of 12% Solids-Not-Fat (SNF) in the yogurt mixture to produce a dense and creamy texture resembling custard The milk fat levels are regulated to conform to a standard The milk fat level in a non-fat yogurt mix does not exceed 0.5% (Chandan, 2014)

2.2.3 Stabilizer

(%)

Pectin (low methoxy for yogurt) 0.08 - 0.20

Pectin (high methoxy for yogurt

Trang 40

14

batches Stabilizers create gel structures in water, reducing the amount of free water available for syneresis Furthermore, specific stabilizers form complexes with casein, resulting in increased viscosity and enhanced defense against syneresis (Shah, 2017)

The discovery of xanthan gum dates back to the 1960s, and it was subsequently introduced into commercial use throughout the 1970s Xanthan is a microbial polysaccharide that is released by the bacterium Xanthomonas campestris It is manufactured in large quantities through aerobic fermentation for use in the food and pharmaceutical sectors Xanthan exhibits elevated viscosity even at low concentrations, rendering it an exceptional food addition for syrup, stabilizing, and thickening Xanthan is a stabilizer in most liquid and semiliquid foods and imparts structural integrity to many dairy products The FDA has approved Xanthan for many years as a permissible ingredient, and it has been extensively utilized in the food sector (Nasrollahzadeh et al., 2021)

Figure 2 3 Xanthan Gum 2.2.4 Soy bean

The soybean, scientifically known as Glycine max (L.) Merrill is an ancient crop from China and among the Far East's oldest cultivated plants The Chinese and other Oriental cultures, such as the Japanese, Korean, and Southeast Asians, have relied on beans in different forms for ages as a significant source of nutritional protein and oil Due to its enormous protein yield per unit of land, soybeans have earned several names such as "yellow jewel," "great treasure," "nature's miracle protein," and "meat of the field." Some

Ngày đăng: 07/06/2024, 16:19

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w