1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tìm hiểu một số phương pháp thám mã hệ mật RSA ứng dụng trong bảo mật dữ liệu

28 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Tìm hiểu một số phương pháp thám mã hệ mật RSA ứng dụng trong bảo mật dữ liệu
Tác giả Lờ Văn Trung
Người hướng dẫn Tiến sĩ Nguyễn Ngọc Cương
Trường học Học viện Công nghệ Bưu chính Viễn thông
Chuyên ngành Khoa học máy tính
Thể loại Luận văn Thạc sĩ
Năm xuất bản 2015
Thành phố Hà Nội
Định dạng
Số trang 28
Dung lượng 5,53 MB

Nội dung

Trong đó, hệ mật mã khóa công khai RSA được phát triển và ứng dụng phổ biến trong thương mại điện tử, sử dungtrong tạo khóa và xác thực của mail, truy cập từ xa; là hạt nhân của hệ thống

Trang 1

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

Lê Văn Trung

TÌM HIẾU MOT SO PHƯƠNG PHÁP THÁM MÃ HE MAT RSA UNG DUNG

TRONG BAO MAT DU LIEU

Chuyén nganh: Khoa hoc may tinh

Mã số: 60.48.01.01

TÓM TẮT LUẬN VĂN THẠC SĨ

HÀ NỘI - 2015

Trang 2

Luận văn được hoàn thành tại:

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

Người hướng dẫn khoa học: Tiến sĩ Nguyễn Ngọc Cương

Phản biện Ï: C00000 201212 ng ng n nh nh nh na

Phản biện 2: 000202212 2n n2 ng HT ng nh nh cv nà căn

Luận văn sẽ được bảo vệ trước Hội đồng chấm luận văn thạc sĩ tại Học viện Công nghệ Bưu chính Viễn thông

Vào lúc: giỜ ngày thang năm

Có thể tìm hiểu luận văn tại:

- Thư viện của Học viện Công nghệ Bưu chính Viễn thông

Trang 3

MỞ ĐẦU

Trong thời đại hiện nay, công nghệ thông tin có vai trò quan trọng đối với tất cả các lĩnhvực của đời sông xã hội Cùng với sự phát triển nó là tốc độ phát triển mạnh mẽ của Internet vacác phần mềm ứng dụng, càng làm tăng nguy cơ bị đánh cắp thông tin Do đó, bài toán đảm bảo

an ninh mạng, bảo mật dữ liệu trở nên cấp bách và cần thiết cần được giải quyết.

Có nhiều phương pháp khác nhau dé đảm cho thông tin được an toàn Song sử dụng các

hệ mật mã dé bảo mật dir liệu là một phương pháp được sử dụng phô biến Day là một phương

pháp đảm bảo tính riêng tư và cung cấp cơ chế xác thực của dữ liệu số Trong đó, hệ mật mã

khóa công khai RSA được phát triển và ứng dụng phổ biến trong thương mại điện tử, sử dungtrong tạo khóa và xác thực của mail, truy cập từ xa; là hạt nhân của hệ thống thanh toán điện tử,

và được ứng dụng trong lĩnh vực nơi mà an toàn thông tin được đòi hỏi.

Chính vì RSA được sử dụng phổ biến và có độ an toàn cao, mà đã có nhiều sự quantâm, các cuộc tấn công nhằm phá vỡ sự an toan của nó Vì vậy việc đánh giá độ an toàn của

của hệ mật RSA là cần thiết Trong thực thế, có một số phương pháp khác nhau để đánh giá

độ an toàn của RSA, như Entropy của Shannon, nhưng phương pháp phân tích trực tiếp bản

mã khi không có khóa mã trong tay ma người ta thường gọi là thám mã (Cryptanalysis) là

tốt nhất và trực quan nhất

Hiện nay, thám mã cũng đã được công khai hóa và là một lĩnh vực được quan tâm

nghiên cứu; đã có một số công trình khoa học nghiên cứu về vấn đề này, tuy nhiên việc đưa

ra hệ quy trình thám mã và chương trình thám mã vẫn ở mức độ hẹp và khó khăn trong ứng

dụng thực tế.

Xuất phát từ thực tế đó, để góp phần tăng độ an toàn cho các hệ mật mã hiện đại nhằmbảo vệ an ninh thông tin trong tình hình mới, em chọn và nghiên cứu đề tài “Tim hiểu một sốphương pháp thám mã hệ mật RSA ứng dung trong bảo mật dữ liệu ”, dựa trên kết quả chứngminh công thức tính số điểm bất động cấp n của hệ mật RSA đề đưa ra một số yêu cầu về chọntham số, số mũ mã hóa dé chống thám mã hệ RSA Đây là yếu tố cơ bản tạo nên sự an toàncho hệ RSA trước tấn công mã hóa liên tiếp

Trong khuôn khổ đề tài được giao, luận văn được trình bày trong 4 chương Có phần mởđầu, phần kết luận, mục lục, tài liệu tham khảo Các nội dung cơ bản được trình bày như sau:

Trang 4

Chương 1: “Tổng quan về mã hóa công khai mã thám”, chương này tập trung trình

bày các khái niệm mã hóa, các hệ mật mã, quá trình mã hóa và giải mã hệ mật RSA, thám

mã và quy trình đề tiến hành thám mã

Chương 2: “Các phương pháp thám mã RSA”, chương này tìm hiểu về độ an toàn

của hệ mật mã, một số điểm yếu của hệ mật RSA, tìm hiểu một số phương pháp thắm mã

như: các tấn công cơ bản - modul chung, tấn công số vào số mũ công khai hoặc số mũ bímật nhỏ, giao thức công chứng, Qua đó đánh giá kết quả của các phương pháp thám mã;

mô tả bài toán và đưa ra thuật toán thám mã đối với hệ mật RSA sử dụng modul chung

Chương 3: “Điểm bat động cấp n của hệ mật RSA và ứng dụng trong bảo mật dữ

liệu” Chương này bao gồm phép chứng minh công thức tính số điểm bất động cấp n của hệRSA và từ công thức trên giải thích một yêu cầu về tham số p, q, đưa ra cách chọn số mũ mãhoá d, e không an toàn có thé lợi dung dé tan công thám mã

Chương 4: “Tu nghiệm chương trình thảm mã hệ mật RSA sử dụng modul n

chung” Trên cơ sở lý thuyết đã được trình bay ở các chương trước, đặc biệt ở Chương 2 dé

xây dựng và cài đặt chương trình thử nghiệm thám mã hệ mật mã RSA sử dụng thuật toán

thám mã đối với hệ mật RSA sử dụng modul chung

Trang 5

CHƯƠNG 1 - TONG QUAN VE MÃ HOA CÔNG KHAI

MÃ THÁM

1.1 Giới thiệu

Mật mã đã được con người sử dụng từ lâu đời Các hình thức mật mã sơ khai đã được

tìm thấy khoảng bốn nghìn năm trước trong nền văn minh Ai Cập cổ dai Trải qua hàngnghìn năm lịch sử, mật mã đã được sử dụng rộng rãi ở khắp nơi trên thế giới dé giữ bi mattrong việc giao lưu thông tin trong nhiều lĩnh vực hoạt động giữa con người và các quốc gia,

đặc biệt trong các lĩnh vực quân sự, chính tri, ngoại giao Đề thực hiện được một phép mật

mã, ta còn cần có một thuật toan biến bản rõ cùng với khóa mật mã thành bản mã và mộtthuật toán ngược lại biến bản mã cùng với khóa mật mã thành bản rõ Các thuật toán đó

được gọi tương ứng là thuật toán lập mã và thuật toán giải mã Trong thực tiễn, có những

hoạt động ngược lại với hoạt động bảo mật là khám phá bí mật từ các bản mã “lây trộm”

được, hoạt động này thường được gọi là phá khóa hay mã thám.

1.2 Các khái niệm cơ bản

1.2.1 Mật mã

Mật mã (Cryptology) là tập hợp mọi phương pháp (hoặc quy tắc) biến đổi nào đónhằm chuyên các thông báo (message) dưới dạng nhận thức được nội dung (như chữ viết,tiếng nói, hình vẽ, hình ảnh ) thành dạng bí mật mà những người ngoài cuộc không hiểu

được nội dung nếu họ không biết được phương pháp (hoặc quy tắc) biến đổi nó [2, tr.6]

Trang 6

1.2.5 Mã hóa

Mã hóa (Encryption) là quá trình biến đổi thông tin từ dạng ban đầu (dạng tườngminh) thành thông điệp dang ấn tàng với mục dich giữ bí mật thông tin đó

1.2.6 Giải mã

Giải mã (Decryption) là quá trình ngược lại với mã hóa, khôi phục lại những thông tin

dạng ban đầu từ thông tin ở dạng đã được mã hóa

+ Đối với mỗi keK có một quy tắc mã ex: P -> C và một quy tắc giải mã tương ứng

deD Mỗi ex: P -> C và dụ: C -> P là những hàm mà: dx(ex(x)) = x với mọi bản rõ xeP.

Hệ mật mã hiện đại cần đáp ứng được những yêu cầu sau:

- Tính bảo mật (Confidentiality).

- Tinh xác thực (Authentication).

- Tính toàn ven (Integrity).

- Tính không thể chối bỏ (Non-repudation)

Trang 7

cũng biết), khóa giải mã d được gọi là khóa bí mật hay khóa riêng Hệ mật này phải đảm bảo

an toàn để không có khả năng tính được d từ e

1.4 Tiêu chuẩn đánh giá hệ mật mã

Đề đánh giá một hệ mật mã người ta thường đánh giá thông qua các tính chất sau: độ antoàn, tốc độ mã và giải mã, phân phối khóa

1.5 Hệ mật mã RSA

Hệ mật mã RSA do Rivest, Shamir và Adleman tìm ra, đã được công bó lần đầu tiên

vào thang 8 năm 1977 trên tạp chi Scientific American Hệ mật mã RSA được sử dụng rộng

rãi trong thực tiễn đặc biệt cho mục đích bảo mật và xác thực đữ liệu số Tính bảo mật và an

toàn của chúng được bảo dam bang độ phức tạp của một bài toán số học nổi tiếng là bài toán

phân tích số thành các thừa số nguyên tố Hệ mật mã RSA được mô tả như sau:

gcd(e,Ø(n)) =1, trong đó Ø(») =(4—1).(p—1) và tính số d sao cho ed = 1(mod ¢(n))

Mỗi cặp khóa k =(k',k"), với k’=(n, e) va k”= d sẽ là một cặp khóa của hệ mật mã

RSA cụ thé cho một người tham gia

Như vậy, sơ đồ chung của hệ mật mã RSA được định nghĩa bởi danh sách (1.1),

trong đó:

P=C=Z,, trong đó n là một số Blun, tức là tích của hai số nguyên tố;

K ={k=(k'k"):k'=(n,e),k"=d,ged(e,g(n))=1ed =1(mod(đ(n)))}:

E và P được xác định bởi:

Trang 8

E(k',x)=x° modn, Vx € P D(K",y)= y“ modn, Vy €C

Dé chứng tỏ định nghĩa trên là hop thức, ta phải chứng minh rang với mọi cặp khóak=(kk"), và VxeP, ta đều có D(k",E(k',x))=x

Tính n = p.q

'

Tính ¢(n) = (p-1)(q-1)

| Khóa công khai |

Chon e ngẫu nhiên k’=fen} , °

0<e<(n),e#¢(n) C=M mod n

|

l Khóa bí mật

Tính l

d=e 'mod ¢(n) | # =sm — | M=C! modn

Hình 1.2: Sơ đồ biểu diễn thuật toán mã hóa RSA

1.5.3 Độ an toàn của hệ mật RSA

Độ an toàn của hệ RSA được dựa trên giả thiết ex(x) = x mod ø là hàm một chiều

Cách tan công dé thay nhất đối với hệ mật mã này là thám mã có gắng phân tích n ra cácthừa số nguyên tố

Vì thế dé hệ RSA được coi là an toàn thì nhất thiết n = p.g phải là một số đủ lớn déviệc phân tích nó sẽ không có khả năng về mặt tính toán

1.6 Thám mã

1.6.1 Khai niệm

Thám mã là quá trình khôi phục lại bản rõ hoặc khóa khi chỉ có bản mã tương ứng cho

trước (không biết khóa và quy tắc mã/dịch) gọi là thám mã Người làm công tác thám mã được

gọi là người mã thám (Cryptanalysis) hay gọi là mã thám viên [2, tr.9].

Đề thám mã được các bản mã truyền thống, người thám mã phải nghiên cứu các đặc trưng

cơ bản của bản rõ: Tần số (Frequency), Sự trùng lặp, Văn phong (Quy luật hành văn trongvăn bản), Quy luật tình huống

Trang 9

1.6.2 Quy trình tiễn hành thám mã

Khi nhận được bản mã, người thắm mã cần thực hiện một số bước cơ bản sau:

Bước 1: Phan loại ban mã

Sau khi nhận được một số bức điện mã, các nhà phân tích mật mã phân loại nhữngbức điện mã theo loại mã pháp, loại khóa mã.

Giả sử đã xác định được mã pháp tại bước thứ 2 trên đây, nay chuyên sang nghiên

cứu, phân tích bản mã (thám mã) Bước này cũng có hai công đoạn:

- Thám mã trực tiếp: Thám mã thủ công, Thám mã có sự trợ giúp của máy tính

- Xây dựng phương pháp thám mã: phương pháp phân tích, phương pháp “từ phỏng chừng”.

1.7 Kết luận

Ở chương này trình bay những khái niệm cơ bản về hai hệ mật mã đối xứng và mật mã

công khai, đặc biệt trình bày về quá trình lập mã và giải mã của hệ mật mã RSA, những kiếnthức cơ bản về thám mã và các bước tiễn hành thám mã Nội dung trình bày ở Chương 1 là cơ

sở lý thuyết co bản dé vận dụng vào Chương 2, Chương 3 và Chương 4 trong luận văn

Trang 10

8CHUONG 2: CAC PHUONG PHAP THAM MA RSA

2.1 Độ an toàn của hệ mat mã

Tính an toàn của một hệ thống mật mã phụ thuộc vào độ khó cua bai toán thám mã

khi sử dụng hệ mật đó.

2.1.1 An toàn vô điều kiện

Hệ an toàn vô điều kiện, nếu độ bat định về bản rõ sau khi người thám mã có được cảthông tin (về bản mã) bằng độ bat định về bản rõ trước đó

2.1.2 An toàn được chứng minh

Một hệ thống mật mã được xem là có độ an toàn được chứng minh nếu ta có thểchứng minh được bài toán thám mã đối với hệ thống đó “khó tương đương” với một bàitoán khó đã biết

2.1.3 An toàn tính toán

Hệ mật mã được xem là an toàn về mặt tính toán, nếu mọi phương pháp thám mã đã

biết đều đòi hỏi một nguồn năng lực tính toán vượt quá mọi khả năng (kê cả phương tiện

thiết bị máy móc) tính toán của một người thám mã

2.2 Các dạng thám mã

2.2.1 Tham mã dạng 1: Tìm cách xác định khóa bí mật

Trường hợp 1: Thám mã chỉ biết bản mãNgười thám mã chỉ biết các bản mã ci= ex(m), ,ex(m;) mà không biết bản rõ tương ứng

với những ban mã đó cũng như khóa giải mã Anh ta có gắng tìm khóa giải mã, nếu không cùng

can tim các bản rõ mi mo mi

Giải pháp phòng tránh: Chon số nguyên tố p, q lớn, dé việc phân tích n thành tích haithừa số nguyên tố là khó có thé thực hiện được trong thời gian thực

Trường hợp 2: Thám mã khi các cặp rõ/mã đã biết

Người thám mã biết các bản mã c,c; c, như trên, nhưng cũng biết các bản rõ tương ứngmm, m, Anh ta cô gang tìm khóa giải mã d, nếu không thì cố gắng phỏng đoán bản rõ m,,, từ

bản mã mới c,,, =e, (m,.,) đã được mã hóa cùng với khóa b.

Giải pháp phòng tránh: Sử dụng khóa khác nhau ở mỗi lần mã hóa

Trường hợp 3: Thám mã với bản rõ lựa chọnNgười thám mã được quyên truy nhập tạm thời cơ chế mã hóa, nên có thé chọn cácban rõ mm, m, và có được các bản mã tương Ứng c, =e, (m,).c; =e, (m,) c, =e,(m,), từ đó

Trang 11

anh ta sẽ phỏng đoán khóa giải mã d và có thé tìm được bản rõ m,,, từ một vài bản mã mới

Ca, =e, (m,,,) đã được mã hóa bởi khóa lập mã e.

Giải pháp phòng tránh: Sử dụng khóa khác nhau ở mỗi lần mã hóa

Trường hợp 4: Thám mã với bản mã lựa chọn

Người thám mã được quyền truy cập tạm thời vào cơ chế giải mã, nên từ các bản mã

c,c; c, anh ta nhận được các bản rõ tương ứng mm, m, Từ đó anh ta phỏng đoán khóa giải

mã d và có thé tìm được bản rõ m,,, từ một vài bản mã mới c,,, =e, (m,,,) cũng được mã hóa

Giả sử có hai người tham gia A và B cùng sử dụng một modul chung n trong khóa

công khai riêng của minh, chang hạn A chọn khóa công khai (n, e) và giữ khóa bí mật d, B

chọn khóa công khai (n, a) và giữ khóa bí mật b Một người tham gia thứ ba C gửi một văn

bản cần bảo mật x đến cả A và B thì dùng các khóa công khai nói trên để gửi đến A bản mật

mã y = x° mod n và gửi đến B ban mật mã z = x* mod n Ta sẽ chứng tỏ rằng, một ngườithám mã O có thể dựa vào những thông tin n, e, a, y, z trên đường công khai mà phát hiện ra

bản rõ x như sau:

(i) Tính c = £† mod a,

(1) Sau đó tính h = (ce -1)/a,

(iii) Và ta được x = y° (z')! mod n.

Thực vay theo định nghĩa trên, ce - 7 chia hết cho a,va tiếp theo ta có:

yo (zty! mod n = x (x4(ee- Dy! mod n = x°° (x**- )-! mod n = x ( bản rõ cần tìm)

Như vậy, trong trường hợp này việc truyền tin bảo mật không còn an toàn nữa

Giải pháp phòng tránh: Dùng modul n khác nhau cho mỗi người tham gia.

Lợi dụng tính nhân của hàm lập mã

Ta chú ý rằng hàm lập mã f(x) = x° mod n có tính nhân (multiplicative property), nghĩa làfxy) = fx) fy) Dựa vào tính chat đó, ta thay rằng nếu y là bản mã từ bản rõ x, thì y = y.w° mod

n sẽ là bản mật mã của bản rõ xu Do đó, khi lấy được bản mật mã y, dé phát hiện ban rõ x

người thám mã có thê chọn ngau nhiên một sô u roi tạo ra bản mã y, và nêu người thám mã có

Trang 12

2.3 Một số điểm yếu sử dụng để thám mã hệ mật RSA

Tinh bao mật của RSA chủ yếu dựa vào việc giữ bí mật số mũ giải mã d và các thừa

sé Dp, q của n Tuy nhiên, điều kiện an toàn trên của một hệ mật mã chỉ là điều kiện chung

Trong thực tế khi thiết kế một giao thức hay một kênh bí mật có sử dụng hệ mật RSA vẫntồn tại nhiều điểm yếu, những điểm yếu đó đã được thám mã lợi dụng nhằm phá hủy giao

thức, kênh bí mật, pha vỡ tính an toàn của hệ mật.

trong hơn đó là nếu đối phương biết d thì không chỉ phải thay số mũ giải mã khác mà còn phải

chọn modul n khác, vì khi đó đối phương cũng có thê biết p, g, do đó biết cách tìm khóa giải mã

d bat kỳ, nêu khóa lập mã van giữ modul n, n = p.g

2.3.3 Giao thức công chứng

Giao thức công chứng là giao thức được thiết kế cho một văn bản sau khi A ký lên người

đó, người khác có thé xác thực được rằng văn bản này thực sự được ký bởi A (nó cũng giống

như việc công chứng của công chứng viên ký chữ ký của mình lên bản công chứng).

2.3.4 Giao thức số mũ công khai nhỏ

Một tình huống sử dụng RSA khác nhằm giảm thời gian mã hóa hoặc kiểm thử chữ ký

là ding số mũ mã hóa nhỏ Cách này hay được sử dụng trên mạng có yêu cầu truyền thông lớn

Trong giao thức này mỗi người dùng chọn hai số nguyên tố lớn p, gq và công bố mãkhóa công khai <ø¿, e> của mình Chúng ta quan tâm đến trường hợp khi các số mũ mã hóae¡ là giống nhau và là một số nguyên nhỏ Với một vài ứng dụng, điều đó khá hấp dẫn vì

ứng dụng với số mũ nhỏ sẽ có thé thực hiện đơn giản và nhanh hơn Tuy nhiên tinh chat này

sẽ làm cho giao thức that bại nếu một người mã hóa cùng một văn ban bằng số mũ e; và gửi

cho nhiêu người.

Trang 13

2.3.5 Giao thức số mũ bí mật nhỏ

Đề giảm thời gian giải mã (hoặc thời gian sinh chữ ký), người ta muốn sử dụng mộtgiá trị đ nhỏ hơn là giá trị đ ngẫu nhiên Vì việc mũ hóa theo modul mat một khoảng thờigian tuyến tính với log›đ, nên số mũ d nhỏ có thé nâng hiệu quả thực thi nhanh ít nhất 10 lần(đối với modul 1024 bit) Tuy nhiên, M.Wiener [17] chỉ ra rằng một số mũ giải mã d nhỏ sẽdẫn đến sập toàn bộ hệ thống mã

Định lý M.Wiener: Cho n = p.g với q < p < 2q Giả sử d <n Biết <n, e> với ed

= I (mod ¢(7)) thì có thể khôi phục d một cách hiệu quả

2.3.6 Trường hợp các tham số p-1 và q-1 có các ước nguyên tô nhỏ

Trong khi xây dựng hệ mật mã RSA, nếu ta bất cân trong việc chọn các tham số pva

q dé p-1 hoặc q-1 có ước nguyên tố nhỏ thì hệ mật mã trở nên mắt an toàn

Giải pháp khắc phục: Ta có thé dé dàng xây dựng hệ mật RSA với module n = p.q

hạn chế được việc phân tích theo phương pháp này

2.4 Mô tả bài toán thám mã hệ mật RSA sử dụng modul chung

Khi trong hệ thống có k người đăng ký sử dụng RSA, để việc quản lý, phân phối

khóa được đơn giản, trung tâm sẽ sinh ra 2 số nguyên tổ p, g; tính số modul ø = p.g; sinh racác cặp khóa mã hóa/ giải mã {e;, đ,} sau đó cấp cho người đăng ký thứ i trong hệ thống bí

mật d; tương ứng, cùng các thông tin công khai bao gồm số modul n và một danh sách đầy

đủ khóa công khai {e;} (¡=1 k).

Bat kỳ người nào có thông tin công khai này đều có thé mã hóa văn bản M dé gửi chongười đăng ký thứ i bằng cách sử dụng thuật toán mã hóa RSA với khóa mã e¡

Y =M“ modn tồi gửi Y Hoặc người đăng ký thứ i có thé ký một văn bản M bằng cáchtính chữ ký S,=M“% modn Bat cứ ai cũng có thé xác thực rằng M được ký bởi người đăng

ky thứ i bằng cách tính S“ modn và so sánh với M

Tuy nhiên, việc sử dụng số modul chung dẫn đến một số điểm yếu của giao thức

2.5 Thuật toán thám mã giao thức modul n chung

2.5.1 Thám mã dựa trên các số mũ mã hóa nguyên tô cùng nhau

Như Simmons[18] chi ra, nếu một văn bản được gửi tới hơn một người đăng ký có các

sô mũ mã hóa nguyên tô cùng nhau thì đôi phương có thê giải mã được văn bản mà không cân

Trang 14

biết khóa giải mã Để chứng minh điều này, hãy xem kết quả của việc mã hóa văn bản M gửi

cho 2 người có khóa công khai tương ứng với e; va e;:

Y,= M ” modn

Y,=M” modn

Vì e; va ej là 2 số nguyên tố cùng nhau, nên có thé tìm được các số nguyên r và sbăng thuật toán Euclid, thỏa: re; + se; = 1

Rõ rang, hoặc r hoặc s phải là số âm và trong trường hợp nay ta giả sử r<0 và vié r = -.lrl

Nếu Yj hay Yj không nguyên tô cùng nhau với ø, ta hãy sử dụng thuật toán Euclid tìm ướcchung lớn nhất của nó với n Ước số chung lớn nhất này chính là một trong hai thừa số nguyên tố

của modul chung n Khi lộ p, g, hệ mật mã coi như đã bị phá vỡ.

Nếu Yj và Yj nguyên tố cùng nhau với n, ta hãy sử dụng thuật toán Euclid dé tìm

nghịch đảo của Yj mod n Phép tinh sau chỉ ra cách văn bản bị khám phá:

tr tr] <Low T[M J aoe i j cá man

Bởi vậy giao thức này thất bại trong việc đảm bảo bí mật văn bản M gửi tới các thànhviên có khóa công khai là những số nguyên tố cùng nhau

Việc sử dụng số modul chung cũng làm cho giao thức này dé bị thám mã khi sử dụng

phương pháp xác suất đề phân tích tìm ra thừa số modul, hoặc sử dụng thuật toán tất định đểtính toán số mũ giải mã mà không cần số modul

2.5.2 Phân tích số modul n bằng cách tìm căn bậc hai không tam thường của I mod n

Ý tưởng cơ bản của kiểu thám mã thứ hai là phân tích số modul ø bằng cách tìm căn

bậc hai không tầm thường của 1 mod n Nghia là tìm một số b thỏa mãn:

b? =lmodn

bz+lmodn 1<b<m-I

Một người trong cuộc có thé bẻ hệ mật mã trong giao thức này với xác xuất rất cao,

Ngày đăng: 04/04/2024, 09:27

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w