We use the effective or average values of stress, strain and moduli when referring to lamina behavior... 2D Stress-Strain Relation of an Unidirectional Lamina... Lamina Stiffness Matrix
Trang 1Lamina Stress-Strain Relationships
Dr Ly Hung Anh
Department of Aerospace Engineering – Faculty of Transportation Engineering
Trang 2Stress Components
3 , 2 , 1 j
First subscript refers to direction of outer normal
Second subscript refers to the direction in which the stress acts
Trang 4 Corresponding to each stress
component, there is a strain component,
eij describing the deformation at a
point.
Normal strains describe the extension
per unit length.
Shear strains describe distortional
deformation.
Trang 5STRESSES STRAINS
Tensor
Notation
Contracted Notation
Tensor Notation
Contracted Notation
Trang 6Stresses and strains are related
to each other The most general
form of this relationship is:
Trang 72121 2113
2132 2112
2131 2123
2133 2122
2111
1321 1313
1332 1312
1331 1323
1333 1322
1311
3221 3213
3232 3212
3231 3223
3233 3222
3211
1221 1213
1232 1212
1231 1223
1233 1222
1211
3121 3113
3132 3112
3131 3123
3133 3122
3111
2321 2313
2332 2312
2331 2323
2333 2322
2311
3321 3313
3332 3312
3331 3323
3333 3322
3311
2221 2213
2232 2212
2231 2223
2233 2222
2211
1121 1113
1132 1112
1131 1123
1133 1122
C C
C C
C C
C
C C
C C
C C
C C
C
C C
C C
C C
C C
C
C C
C C
C C
C C
C
C C
C C
C C
C C
C
C C
C C
C C
C C
C
C C
C C
C C
C C
C
C C
C C
C C
C C
C
C C
C C
C C
C C
C
Linear Elastic Material
Trang 89 Stresses x 9 Strains =
81 Components in relationship
Trang 9j i
j i
ji ij
ji ij
e
e
s
s
and
Symmetry
ijlk ijkl
jikl ijkl
C C
C C
Trang 10 σ C ε
6 , ,
2 , 1 j
, i
C ij j
i
e
s
or
Hooke’s Law (Stiffness)
Contracted Notation
Trang 1166 65
64 63
62 61
56 55
54 53
52 51
46 45
44 43
42 41
36 35
34 33
32 31
26 25
24 23
22 21
16 15
14 13
12 11
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
Hooke’s Law
Trang 12 ε S σ
6 , ,
2 , 1 j
, i
S ij j
i
s
e
or
Hooke’s Law (Compliance)
Contracted Notation
Trang 13 S C 1
Inverse Relationship
[S] and [C] are symmetric matrices!
Trang 142 , 1 i
V
dV
dV dV
V
i V
i i
V
i V
V
i i
Average Stresses and Strains
Trang 15
e s
e
s
Trang 1656 55
46 45
44
36 35
34 33
26 25
24 23
22
16 15
14 13
12 11
SYM
C C
C
C C
C C
C C
C C
C
C C
C C
C C
Trang 17Orthotropic Material: 9 Constants
Three planes of symmetry
Trang 1855 44
33
23 22
13 12
SYM
0 0
C
0 0
0 C
0 0
0 C
C
0 0
0 C
C C
Trang 19Transversely Isotropic Material
Three planes of symmetry 2 and 3 directions the same
Trang 2023 22
22
23 22
12 12
SYM
0
0 2
C C
0 0
0 C
0 0
0 C
C
0 0
0 C
C C
Trang 2112 11
12 11
12 11
11
12 11
12 12
0 2
C
C SYM
0
0 2
C C
0 0
0 C
0 0
0 C
C
0 0
0 C
C C
Trang 22Material Nonzero Terms Independent terms 3D
Trang 233D Stress-Strain Relation
of an Orthotropic Material
in term of nine engineering
constants
Trang 24Uniaxial Load in Fiber Direction
1
s
Trang 2513 23
12
1
1 13
1 13 3
1
1 12
1 12 2
1
1 1
e
e
e
e
n
e
s n
e
n
e
s
e
or
E E E
Resulting Strains
Trang 26Transverse Load
2
Trang 2713 23
12
2
2 31
2 31 3
2
2 21
2 21 1
2
2 2
e
e
e
e
n
e
s n
e
n
e
s
e
or
E E E
Resulting Strains
Trang 2812 s s
s
s
Shear Load
Trang 290 G
5 4
13 23
3 2
1
12
6 6
12
e
e
e
e
s
e
or
Resulting Strains
Trang 3031 21
32 12
Trang 31Young's moduli in and directions
Poisson's ratios (extension-extension coupling)
Shear moduli in ,and directions
ji
ij ν ν
C
S
: Symmetry to
Trang 32 S C 1
Inverse Relationship
[S] and [C] are symmetric matrices!
Trang 3431 21 32 13 12 23 13
32 12 31 23 21 13 23
Trang 35
E G
Trang 362D Stress-Strain Relation of
an Unidirectional Lamina
Trang 37Plane Stress assumption
Trang 39 e S s
Compliance
Stiffness
s Q e
Trang 40Lamina Stiffness Matrix
Trang 42Some Typical Properties
Trang 43Graphite /Epoxy 19.0 1.5 1.0 0.22
AS/3501
Graphite /Epoxy 20.0 1.3 1.0 0.3 p-100/ERL 1962
Pitch Graphite /Epoxy 68.0 0.9 0.81 0.31 Kevlar ® 49 /934
Aramid/Epoxy 11.0 0.8 0.33 0.34 Scotchply ® 1002
E-glass/Epoxy 5.6 1.2 0.6 0.26 Boron/5505
Boron/Epoxy 29.6 2.678 0.81 0.23 Spectra ® 900/826
Polyethylene/Epoxy 4.45 0.51 0.21 0.32
Trang 44Are Carbon and Graphite the same?
“No, they are different Carbon Fibers have 93-95% carbon content, while graphite has more than 99% carbon content Also, carbon fibers are produced at 2400oF (1316oC), while Graphite Fibers are typically produced in excess of 3400oF (1900oC).”
Trang 452D Stress-Strain Relation of an Angle Unidirectional Lamina
Trang 46Generally Angle Lamina
1 y
x
2
x,y: Global axes1,2: Local axes
Trang 47Generally Angle Lamina
x,y: Global axes1,2: Local axes
Trang 481
y 2
Trang 49 sin cos 0
cos sin
cos sin
0 cos
sin 2
sin cos
2 2
12
2 1
12
2 2
2 1
s
s
s
s
s
s
s
s
dA F
dA
dA dA
dA F
xy y
x x
Trang 51Transformation in Matrix Form
2 2
2 2
2 2
xy
y
x
sin cos
sin cos
sin cos
sin cos
2 cos
sin
sin cos
2 sin
cos
Local-Global relationship
Trang 52Condensed Matrix Form
Trang 53y
x
T T
12 2 1
12 2
1 1
or
Trang 542 2
2 2
2 2
2 2
1
2 2
2 2
cs c
s
cs s
c
T
s c
cs cs
cs c
s
cs s
c
T
Trang 55cs cs
cs 2 c
s
cs 2 s
c
2
2
1 1
y x
12 2 1
2 2
2 2
2 2
xy y x
Trang 56Stress and Strain
Trang 58Lamina Stiffness Matrix
Trang 66General Stress-Strain Behavior
Trang 6866 26
16
26 22
12
16 12
11
xy y x
Q Q
Q
Q Q
Q
Q Q
Q
in global axes
Trang 702 2
66 12
22 11
66
3 66
12 22
3 66
12 11
26
3 66
12 22
3 66
12 11
16
sin cos
2 2
sin cos
2
sin cos
2
sin cos
2
sin cos
2
Q Q
Q Q
Q
Q Q
Q
Q Q
Q Q
Q Q
Q
Q Q
Q Q
See: Page 91, “Mechanics of Composite Materials”, Autar K.Kaw
Trang 7166 26
16
26 22
12
16 12
S
S S
S
S S
S
in global axes
“Transformed Reduced Compliance Matrix”
Trang 73
1
Q S
Trang 7466 12
4 22
4 11
22
4 4
12
2 2
66 22
11 12
2 2
66 12
4 22
4 11
11
cos sin
2 cos
sin
cos sin
sin cos
cos sin
2 sin
cos
S S
S S
S
S S
S S
S
S S
S S
S
Trang 752 2
66 12
22 11
66
3 66
12 22
3 66
12 11
26
3 66
12 22
3 66
12 11
16
sin cos
sin cos
4 2
2 2
sin cos
2 2
sin cos
2 2
sin cos
2 2
sin cos
2 2
S
S S
S S
S
S S
S
S S
S S
S S
S
S S
S S
Trang 76See: Example 2.5/ Page 92
“Mechanics of Composite
Materials”, Autar K.Kaw
Trang 77xy y y
y xy xy
xy x x
x xy
y
yx x
xy
xy y
x
G E
S G
E S
E E
S
G
S E
S E
S
, ,
26
, ,
16
12
66 22
11
1 1
Trang 78Engineering Constants
xy y
x xy
S S
S S
,26
,11
Trang 79Coefficients of Mutual Influence
0
xy xy
x xy
, x
xy , y xy
, x
t
all for
plane.
xy the in
stress shear
by caused
direction y
or
x the in
stretching
ze Characteri
kind first
the of
influence mutual
of ts Coefficien
and
Trang 80x x
xy x
,
xy
y , xy x
,
xy
s
se
all for
plane.
xy the in
stress normal
by caused
plane xy
the in
shearing zes
Characteri
kind second
the of
influence mutual
of ts Coefficien
and
Coefficients of Mutual Influence
Trang 814 2
2 2 1
12 12
4 1
4 2
2 2 1
12 12
4 1
1 2
1 1
1
1 2
1 1
1
c E
c
s E
G
s E E
s E
c
s E
G
c E E
2 2 12 2
1
4 4
1 12
11
42
221
11
11
s
c G
c
s G
E E
E G
c
s G
E E
s
c E
Trang 82Engineering Constants
y , xy y
xy xy
, y x
, xy x
xy xy
,
x
3 12
1
12 2
3 12
1
12 1
y y
,
xy
3 12
1
12 2
3 12
1
12 1
x x
,
xy
E
G E
G
sc G
1 E
2 E
2 c
s G
1 E
2 E
2 E
c
s G
1 E
2 E
2 sc
G
1 E
2 E
2 E
Trang 830 20 40 60 80 100
120
140
Ex Ey Gxy
E1
E2
Trang 84Problem 1 Determine the stiffness matrix of a Laminate
Determine the stiffness matrix for a 45/-45/+45] symmetric angle-ply laminate consisting of 0.25 mm thick unidirectional
[+45/-AS/3501 graphite epoxy lamina
Trang 85Determine the stiffness matrix of a Laminate
solution
-1 Find the value of the “reduced stiffness matrix” [Q] for
each ply using its four elastic moduli E11, E22, G12
2 Find the value of the “transformed reduced stiffness
matrix” for each ply by using the [Q] and the angle
of each ply
Q
Trang 86y x
Exploded view of a [+45/-45/-45/+45] symmetric laminate
Trang 870.0196 ν
E ν
0.3 ν
GPa 6.9
G
GPa 9.0
E
GPa 138.0
E
: Properties Material
12
2 21
12 12 2 1
Trang 88
12 21
2 12
2 12 22
11
12 21
12
21 12
2 2
12 22
11
11 22
21 12
1 2
12 22
11
22 11
G
1 Q
1
E S
S S
S Q
Q
1
E S
S S
S Q
1
E S
S S
S Q
n n
Trang 89 GPa
6.9 0
0
0 9.05
2.72
0 2.72
138.8 Q
Trang 90
θ cos Q
θ sin Q
Q
θ cos θ
sin Q
θ sin θ
cos Q
4 Q
Q Q
θ cos θ
sin Q
2 Q
2
θ sin Q
θ cos Q
Q
4 22
4 11
22
4 4
12
2 2
66 22
11 12
2 2
66 12
4 22
4 11
Trang 91Q 2 Q
2 Q
Q Q
sinθ θ
cos Q
2 Q
Q
θ sin cosθ
Q 2 Q
Q Q
θ sin cosθ
Q 2 Q
Q
sinθ θ
cos Q
2 Q
Q Q
4 4
66
2
2 66
12 22
11 66
3 66
12 22
3 66
12 11
26
3 66
12 22
3 66
12 11
Trang 92+45o GPa
35.6 32.44
32.44
32.44 45.22
31.42
32.44 31.42
Trang 93Autar K Kaw, Mechanics of Composite Materials, CRC Press, 2006
2.2; 2.3; 2.6; 2.9; 2.10;
2.11; 2.15; 2.16; 2.17; 2.20; 2.21