1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Mechanics of aircraft materials 6 lamina theory cdio

93 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Mechanics of Aircraft Materials: Lamina Stress-Strain Relationships
Tác giả Dr. Ly Hung Anh
Trường học Department of Aerospace Engineering – Faculty of Transportation Engineering
Chuyên ngành Aerospace Engineering
Thể loại Lecture Notes
Định dạng
Số trang 93
Dung lượng 1,08 MB

Nội dung

We use the effective or average values of stress, strain and moduli when referring to lamina behavior... 2D Stress-Strain Relation of an Unidirectional Lamina... Lamina Stiffness Matrix

Trang 1

Lamina Stress-Strain Relationships

Dr Ly Hung Anh

Department of Aerospace Engineering – Faculty of Transportation Engineering

Trang 2

Stress Components

3 , 2 , 1 j

First subscript refers to direction of outer normal

Second subscript refers to the direction in which the stress acts

Trang 4

 Corresponding to each stress

component, there is a strain component,

eij describing the deformation at a

point.

 Normal strains describe the extension

per unit length.

 Shear strains describe distortional

deformation.

Trang 5

STRESSES STRAINS

Tensor

Notation

Contracted Notation

Tensor Notation

Contracted Notation

Trang 6

Stresses and strains are related

to each other The most general

form of this relationship is:

Trang 7

2121 2113

2132 2112

2131 2123

2133 2122

2111

1321 1313

1332 1312

1331 1323

1333 1322

1311

3221 3213

3232 3212

3231 3223

3233 3222

3211

1221 1213

1232 1212

1231 1223

1233 1222

1211

3121 3113

3132 3112

3131 3123

3133 3122

3111

2321 2313

2332 2312

2331 2323

2333 2322

2311

3321 3313

3332 3312

3331 3323

3333 3322

3311

2221 2213

2232 2212

2231 2223

2233 2222

2211

1121 1113

1132 1112

1131 1123

1133 1122

C C

C C

C C

C

C C

C C

C C

C C

C

C C

C C

C C

C C

C

C C

C C

C C

C C

C

C C

C C

C C

C C

C

C C

C C

C C

C C

C

C C

C C

C C

C C

C

C C

C C

C C

C C

C

C C

C C

C C

C C

C

Linear Elastic Material

Trang 8

9 Stresses x 9 Strains =

81 Components in relationship

Trang 9

j i

j i

ji ij

ji ij

 e

 e

 s

 s

and

Symmetry

ijlk ijkl

jikl ijkl

C C

C C

Trang 10

  σ   C   ε

6 , ,

2 , 1 j

, i

C ij j

i

 e

 s

or

Hooke’s Law (Stiffness)

Contracted Notation

Trang 11

66 65

64 63

62 61

56 55

54 53

52 51

46 45

44 43

42 41

36 35

34 33

32 31

26 25

24 23

22 21

16 15

14 13

12 11

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

Hooke’s Law

Trang 12

  ε   S   σ

6 , ,

2 , 1 j

, i

S ij j

i

 s

 e

or

Hooke’s Law (Compliance)

Contracted Notation

Trang 13

    SC1

Inverse Relationship

[S] and [C] are symmetric matrices!

Trang 14

2 , 1 i

V

dV

dV dV

V

i V

i i

V

i V

V

i i

Average Stresses and Strains

Trang 15

     

  e      s

e

 s

Trang 16

56 55

46 45

44

36 35

34 33

26 25

24 23

22

16 15

14 13

12 11

SYM

C C

C

C C

C C

C C

C C

C

C C

C C

C C

Trang 17

Orthotropic Material: 9 Constants

Three planes of symmetry

Trang 18

55 44

33

23 22

13 12

SYM

0 0

C

0 0

0 C

0 0

0 C

C

0 0

0 C

C C

Trang 19

Transversely Isotropic Material

Three planes of symmetry 2 and 3 directions the same

Trang 20

23 22

22

23 22

12 12

SYM

0

0 2

C C

0 0

0 C

0 0

0 C

C

0 0

0 C

C C

Trang 21

12 11

12 11

12 11

11

12 11

12 12

0 2

C

C SYM

0

0 2

C C

0 0

0 C

0 0

0 C

C

0 0

0 C

C C

Trang 22

Material Nonzero Terms Independent terms 3D

Trang 23

3D Stress-Strain Relation

of an Orthotropic Material

in term of nine engineering

constants

Trang 24

Uniaxial Load in Fiber Direction

1

s

Trang 25

13 23

12

1

1 13

1 13 3

1

1 12

1 12 2

1

1 1

 e

 e

 e

 e

n

 e

s n

 e

n

 e

s

 e

or

E E E

Resulting Strains

Trang 26

Transverse Load

2

Trang 27

13 23

12

2

2 31

2 31 3

2

2 21

2 21 1

2

2 2

 e

 e

 e

 e

n

 e

s n

 e

n

 e

s

 e

or

E E E

Resulting Strains

Trang 28

12  s s

s

 s

Shear Load

Trang 29

0 G

5 4

13 23

3 2

1

12

6 6

12

 e

 e

 e

 e

s

 e

or

Resulting Strains

Trang 30

31 21

32 12

Trang 31

Young's moduli in and directions

Poisson's ratios (extension-extension coupling)

Shear moduli in ,and directions

   

ji

ij ν ν

C

S  

: Symmetry to

Trang 32

    SC1

Inverse Relationship

[S] and [C] are symmetric matrices!

Trang 34

31 21 32 13 12 23 13

32 12 31 23 21 13 23

Trang 35

 

E G

Trang 36

2D Stress-Strain Relation of

an Unidirectional Lamina

Trang 37

Plane Stress assumption

Trang 39

  e    S   s

Compliance

Stiffness

  s    Q   e

Trang 40

Lamina Stiffness Matrix

Trang 42

Some Typical Properties

Trang 43

Graphite /Epoxy 19.0 1.5 1.0 0.22

AS/3501

Graphite /Epoxy 20.0 1.3 1.0 0.3 p-100/ERL 1962

Pitch Graphite /Epoxy 68.0 0.9 0.81 0.31 Kevlar ® 49 /934

Aramid/Epoxy 11.0 0.8 0.33 0.34 Scotchply ® 1002

E-glass/Epoxy 5.6 1.2 0.6 0.26 Boron/5505

Boron/Epoxy 29.6 2.678 0.81 0.23 Spectra ® 900/826

Polyethylene/Epoxy 4.45 0.51 0.21 0.32

Trang 44

Are Carbon and Graphite the same?

“No, they are different Carbon Fibers have 93-95% carbon content, while graphite has more than 99% carbon content Also, carbon fibers are produced at 2400oF (1316oC), while Graphite Fibers are typically produced in excess of 3400oF (1900oC).”

Trang 45

2D Stress-Strain Relation of an Angle Unidirectional Lamina

Trang 46

Generally Angle Lamina

1 y

x

2

x,y: Global axes1,2: Local axes

Trang 47

Generally Angle Lamina

x,y: Global axes1,2: Local axes

Trang 48

1

y 2

Trang 49

 sin cos  0

cos sin

cos sin

0 cos

sin 2

sin cos

2 2

12

2 1

12

2 2

2 1

 s

 s

 s

 s

 s

 s

 s

 s

dA F

dA

dA dA

dA F

xy y

x x

Trang 51

Transformation in Matrix Form

2 2

2 2

2 2

xy

y

x

sin cos

sin cos

sin cos

sin cos

2 cos

sin

sin cos

2 sin

cos

Local-Global relationship

Trang 52

Condensed Matrix Form

Trang 53

y

x

T T

12 2 1

12 2

1 1

or

Trang 54

2 2

2 2

2 2

2 2

1

2 2

2 2

cs c

s

cs s

c

T

s c

cs cs

cs c

s

cs s

c

T

Trang 55

cs cs

cs 2 c

s

cs 2 s

c

2

2

1 1

y x

12 2 1

2 2

2 2

2 2

xy y x

Trang 56

Stress and Strain

Trang 58

Lamina Stiffness Matrix

Trang 66

General Stress-Strain Behavior

Trang 68

66 26

16

26 22

12

16 12

11

xy y x

Q Q

Q

Q Q

Q

Q Q

Q

in global axes

Trang 70

2 2

66 12

22 11

66

3 66

12 22

3 66

12 11

26

3 66

12 22

3 66

12 11

16

sin cos

2 2

sin cos

2

sin cos

2

sin cos

2

sin cos

2

Q Q

Q Q

Q

Q Q

Q

Q Q

Q Q

Q Q

Q

Q Q

Q Q

See: Page 91, “Mechanics of Composite Materials”, Autar K.Kaw

Trang 71

66 26

16

26 22

12

16 12

S

S S

S

S S

S

in global axes

“Transformed Reduced Compliance Matrix”

Trang 73

   

1

Q S

Trang 74

66 12

4 22

4 11

22

4 4

12

2 2

66 22

11 12

2 2

66 12

4 22

4 11

11

cos sin

2 cos

sin

cos sin

sin cos

cos sin

2 sin

cos

S S

S S

S

S S

S S

S

S S

S S

S

Trang 75

2 2

66 12

22 11

66

3 66

12 22

3 66

12 11

26

3 66

12 22

3 66

12 11

16

sin cos

sin cos

4 2

2 2

sin cos

2 2

sin cos

2 2

sin cos

2 2

sin cos

2 2

S

S S

S S

S

S S

S

S S

S S

S S

S

S S

S S

Trang 76

See: Example 2.5/ Page 92

“Mechanics of Composite

Materials”, Autar K.Kaw

Trang 77

xy y y

y xy xy

xy x x

x xy

y

yx x

xy

xy y

x

G E

S G

E S

E E

S

G

S E

S E

S

, ,

26

, ,

16

12

66 22

11

1 1

Trang 78

Engineering Constants

xy y

x xy

S S

S S

,26

,11

Trang 79

Coefficients of Mutual Influence

0

xy xy

x xy

, x

xy , y xy

, x

t

all for

plane.

xy the in

stress shear

by caused

direction y

or

x the in

stretching

ze Characteri

kind first

the of

influence mutual

of ts Coefficien

and

Trang 80

x x

xy x

,

xy

y , xy x

,

xy

s

se

all for

plane.

xy the in

stress normal

by caused

plane xy

the in

shearing zes

Characteri

kind second

the of

influence mutual

of ts Coefficien

and

Coefficients of Mutual Influence

Trang 81

4 2

2 2 1

12 12

4 1

4 2

2 2 1

12 12

4 1

1 2

1 1

1

1 2

1 1

1

c E

c

s E

G

s E E

s E

c

s E

G

c E E

2 2 12 2

1

4 4

1 12

11

42

221

11

11

s

c G

c

s G

E E

E G

c

s G

E E

s

c E

Trang 82

Engineering Constants

y , xy y

xy xy

, y x

, xy x

xy xy

,

x

3 12

1

12 2

3 12

1

12 1

y y

,

xy

3 12

1

12 2

3 12

1

12 1

x x

,

xy

E

G E

G

sc G

1 E

2 E

2 c

s G

1 E

2 E

2 E

c

s G

1 E

2 E

2 sc

G

1 E

2 E

2 E

Trang 83

0 20 40 60 80 100

120

140

Ex Ey Gxy

E1

E2

Trang 84

Problem 1 Determine the stiffness matrix of a Laminate

Determine the stiffness matrix for a 45/-45/+45] symmetric angle-ply laminate consisting of 0.25 mm thick unidirectional

[+45/-AS/3501 graphite epoxy lamina

Trang 85

Determine the stiffness matrix of a Laminate

solution

-1 Find the value of the “reduced stiffness matrix” [Q] for

each ply using its four elastic moduli E11, E22, G12

2 Find the value of the “transformed reduced stiffness

matrix” for each ply by using the [Q] and the angle

of each ply

Q

 

 

Trang 86

y x

Exploded view of a [+45/-45/-45/+45] symmetric laminate

Trang 87

0.0196 ν

E ν

0.3 ν

GPa 6.9

G

GPa 9.0

E

GPa 138.0

E

: Properties Material

12

2 21

12 12 2 1

Trang 88

   

   12 21

2 12

2 12 22

11

12 21

12

21 12

2 2

12 22

11

11 22

21 12

1 2

12 22

11

22 11

G

1 Q

1

E S

S S

S Q

Q

1

E S

S S

S Q

1

E S

S S

S Q

n n

Trang 89

  GPa

6.9 0

0

0 9.05

2.72

0 2.72

138.8 Q

Trang 90

 

 

 

θ cos Q

θ sin Q

Q

θ cos θ

sin Q

θ sin θ

cos Q

4 Q

Q Q

θ cos θ

sin Q

2 Q

2

θ sin Q

θ cos Q

Q

4 22

4 11

22

4 4

12

2 2

66 22

11 12

2 2

66 12

4 22

4 11

Trang 91

Q 2 Q

2 Q

Q Q

sinθ θ

cos Q

2 Q

Q

θ sin cosθ

Q 2 Q

Q Q

θ sin cosθ

Q 2 Q

Q

sinθ θ

cos Q

2 Q

Q Q

4 4

66

2

2 66

12 22

11 66

3 66

12 22

3 66

12 11

26

3 66

12 22

3 66

12 11

Trang 92

+45o   GPa

35.6 32.44

32.44

32.44 45.22

31.42

32.44 31.42

Trang 93

Autar K Kaw, Mechanics of Composite Materials, CRC Press, 2006

2.2; 2.3; 2.6; 2.9; 2.10;

2.11; 2.15; 2.16; 2.17; 2.20; 2.21

Ngày đăng: 29/03/2024, 22:22

w