Transverse shear stresses xz and yz vanish on plate surfaces defined by z = t/2 and z = -t/2 Basic Assumptions... Symmetric Cross-Ply Laminate... Problem 1 Determine the stiffness matr
Trang 1Classical Lamination Theory
Dr Ly Hung Anh
Department of Aerospace Engineering – Faculty of Transportation Engineering
Trang 3Basic Assumptions
1 Each ply (or layer or lamina) is in
state of plane stress
2 Interlaminar stresses are ignored
3 Lamina are perfectly bonded to each
other
a. No interfacial slip
b. No interfacial shear deformation
Trang 4x
Coordinate system and stress resultants
for a laminated plate
Basic Assumptions
Trang 51. Plate consists of orthotropic laminae
bonded together Principal material axes of laminae oriented along arbitrary directions
w.r.t x-y axes
2. Thickness of the plate, t, is much smaller
than lengths along edges, a and b
3. Displacement u,v, and w are small
compared to thickness, t
Basic Assumptions
Trang 64 In-plane strains, x , y , and xy are
small compared to unity
5 Transverse shear strains, xz and yz
are negligible (=0)
6 Tangential displacement, u and v are
linear functions of the z coordinate
7 Transverse normal strain, z are negligible
(=0)
Basic Assumptions
Trang 78 Each ply obeys Hooke’s law
9 The plate thickness t is constant
10 Transverse shear stresses xz and yz
vanish on plate surfaces defined by z = t/2 and z = -t/2
Basic Assumptions
Trang 8Middle Surface
1 2 3
k N
z
k
z
1 k
z
Laminate Geometry and ply numbering system
Trang 9y , x F
z y
, x v
v
y , x F
z y
, x u
u
0
2 0
1 0
Trang 10in surface
middle of
nt displaceme
direction
x in
surface
middle of
nt displaceme
z w w
y , x v
y , x u
0 0
Trang 12xy
0 xy xy
y
0 y y
x
0 x x
z x
v y
u
z y
v
z x
Trang 13Mid-plane Strains
x
v y
u y v x u
0
0 0
xy
0 0
y
0 0
Trang 14y x
w 2
y w x w
2 xy
2
2 y
2
2 x
Trang 15(in global axes)
Q
(6)
Trang 16The curvatures (the ’s) are
hard to measure We seek to
express stresses in terms of
loads and moments.
Trang 17t
k 1 2
z N
k 1 z
z N
from distance
layer k
of surface inner
to surface middle
from distance
laminate k
in stress
thickness laminate
t
: Where
th th
k x
z z
Trang 18k 1
z N
x 11 k x x 12 k y y 16 k xy xy
k 1 z
z N
x 11 k x 12 k y 16 k xy
z N
Trang 19t 2
Trang 20t 2
Trang 21Stress Resultants
Similar Results for
N y N xy M y and M xy
Trang 22Complete Set of Equations
0 xy
0 y
0 x
66 26
16
26 22
12
16 12
11
66 26
16
26 22
12
16 12
11
66 26
16
26 22
12
16 12
11
66 26
16
26 22
12
16 12
11
κ κ κ γ ε ε
D D
D
D D
D
D D
D
B B
B
B B
B
B B
B
B B
B
B B
B
B B
B
A A
A
A A
A
A A
A
M M M N N N
xy y x xy y x
B A
M N
(10)
Trang 23Extensional Stiffnesses Matrix [A]
k ij
k ij
ij
z z
Q
dz Q
Trang 24Bending Stiffnesses Matrix [D]
k ij
k ij ij
z z
Q
dz z
Q D
t
t
1
3 1 3
2
3 1
2
2
Trang 25“Coupling” Stiffnesses Matrix [B]
k ij
k ij ij
z z
Q
zdz Q
2
2 1
2
2
Trang 26Classifying Laminates
1 Symmetric
2 Antisymmetric
3 Quasi-Isotropic
Trang 27Both geometric and material properties are symmetric about the mid-plane
Types of symmetric laminates include
angle-ply and cross-ply laminates No
bending-extensional coupling, Bij=0
Symmetric Laminate
Trang 28-Same thickness -Same Materials -Same Orientation
Help to simplify the computing!!!
Trang 30Symmetric Cross-Ply Laminate
Trang 32Problem 1 Determine the stiffness matrix of a Laminate
Determine the stiffness matrix for a 45/-45/+45] symmetric angle-ply laminate consisting of 0.25 mm thick unidirectional
[+45/-AS/3501 graphite epoxy laminate.
Trang 33Determine the stiffness matrix of a Laminate
solution
-1 Find the value of the reduced stiffness matrix [Q] for
each ply using its four elastic moduli E11, E22, G12
2 Find the value of the “transformed reduced stiffness
matrix” for each ply by using the [Q] and the angle
of each ply
3 Find the coordinate of the top and bottom surface, zi,
i=1…n of each ply
4 Find the three stiffness matrices [A], [B] and [D] using
the results obtained from step 2 and 3
Q
Trang 350.0196 ν
E ν
0.3 ν
GPa 6.9
G
GPa 9.0
E
GPa 138.0
E
: Properties Material
12
2 21
Trang 36
12 66
66
21 12
2 12
2 12 22
11
12 21
12
21 12
2 2
12 22
11
11 22
21 12
1 2
12 22
11
22 11
G S
1 Q
1
E S
S S
S Q
Q
1
E S
S S
S Q
1
E S
S S
S Q
Trang 37 GPa
6.9 0
0
0 9.05
2.72
0 2.72
138.8 Q
Trang 38θ sin Q
Q
θ cos θ
sin Q
θ sin θ
cos Q
4 Q
Q Q
θ cos θ
sin Q
2 Q
2
θ sin Q
θ cos Q
Q
2 2
66 12
4 22
4 11
22
4 4
12
2 2
66 22
11 12
2 2
66 12
4 22
4 11
Trang 39Q 2 Q
2 Q
Q Q
sinθ θ
cos Q
2 Q
Q
θ sin cosθ
Q 2 Q
Q Q
θ sin cosθ
Q 2 Q
Q
sinθ θ
cos Q
2 Q
Q Q
4 4
66
2 2
66 12
22 11
66
3 66
12 22
3 66
12 11
26
3 66
12 22
3 66
12 11
Trang 40 GPa
35.6 32.44
32.44
32.44 45.22
31.42
32.44 31.42
45.22 Q
Trang 42mm 0.50
z
mm 0.250
z
mm 0.0
z
mm 0.250
z
mm 0.50
z
43210
Trang 433 k k
ij
2 k
ij ij
N
1 k
2 1 k
2 k k
ij k
ij ij
N
1 k
1 k k
k ij k
ij ij
z z
Q 3
1 dz
z Q
D
z z
Q 2
1 zdz
Q B
z z
Q dz
Q A
2 t
2 t
2 t
2 t
2 t
Step 4
Trang 4497 2 03 2 03 2
03 2 77 3 62 2
03 2 62 2 77 3 D
mm GPa
0 0 0
0 0 0
0 0 0 B
mm GPa
6 35 0
0
0 22
45 42
31
0 42
31 22
45 A
Trang 45Antisymmetric Laminates
Plies of identical material and thickness at equal positive and negative distances
from middle surface Orientation is
antisymmetric, that is if at distance +z
the orientation is then at distance -z the
orientation is -.
Trang 47o 45
o 45
o 45
o 45
o 45
o 45
o 45
o 45
o 45
Antisymmetric Angle-Ply Laminate
o 45
Trang 48Antisymmetric Angle-Ply Laminate
Trang 49Determine the stiffness matrix for a
[-45/+45/-45/+45] anti-symmetric ply laminate consisting of 0.25 mm thick unidirectional AS/3501 graphite epoxy
angle-laminae.
Trang 50y x
Exploded view of a [-45/+45/-45/+45] antisymmetric laminate
Trang 510196
0 E
3 0
GPa 9
6 G
GPa 0
9 E
GPa 0
138 E
12
2 21
Trang 520 77
3 62 2
0 62
2 77 3
0 055
4 055 4
055 4 0
0
055 4 0
0
6 35 0
0
0 22
45 42
31
0 42
31 22
45
mm GPa
D
mm GPa
B mm
GPa A
Trang 53One example:
Angle between adjacent laminae = /N where N is the number of lamina
Trang 5410 /
70
60 /
0 / 60
Trang 550 E
.
6
G
GPa 0
.
9
E
GPa 0
138
E
12 1
A
12 11
Trang 56Laminate Compliances
Inverse of stiffness relationship!
Trang 57B A
M
N
Trang 58
1 0
[B*]: coupling compliance matrix
[D*] : bending compliance matrix [C*] = [B*]T
(11)
Trang 59Analyze a laminated composite
subjected to the applied forces and
moments
Problem 2
Trang 601 Find the three stiffness matrices [A], [B] and [D] (problem 1)
2 Knowing the applied forces {N} and moments {M}, finding the mid-plane
strains and curvatures (by using Eqs (11))
3 Knowing the location of each ply, find the global strains in each (by using
Eqs (3))
4 Find the global stresses in each ply by using the stress-strain relationship
in global axes
5 Find the local strains, the local stresses in each ply ; Use the failure criteria
to study the strength of the laminate (“first ply failure” theory)
xy
0 xy xy
y
0 y y
x
0 x x
z x
v y u
z y
v
z x
Trang 61The [-45/+45/-45/+45] antisymmetric angle-ply laminate consisting of 0.25 mm thick unidirectional AS/3501 graphite epoxy laminae.
The laminate is subjected to a single axial force per unit
associated with the x and y axes in each lamina.
Step 1 – Step 4
Trang 620 77
3 62 2
0 62
2 77 3 D
mm GPa
0 055
4 055 4
055 4 0
0
055 4 0
0 B
mm GPa
6 35 0
0
0 22
45 42
31
0 42
31 22
45 A
Trang 63001430
0
002193
0
y x
0 xy
0 y
0 x
Step 2
Trang 64Global strains in each ply
xy
0 xy xy
y
0 y y
x
0 x x
z z z
mm 50
0 z
mm 250
0 z
mm 0
0 z
mm 250
0 z
mm 50
0 z
4 3 2 1 0
Trang 66Location (mm) x y xy
-0.50 0.002193 -0.00143 0.000521-0.25 0.002193 -0.00143 0.000261
0.25 0.002193 -0.00143 -0.0002610.50 0.002193 -0.00143 -0.000521
Strains
Step 3
Trang 67
MPa 2
6
7 12
3 37
000521
0
001430
0
002193
0
6 35 44
32 44
32
44 32 22
45 42
31
44 32 42
31 22
45
Q
y x xy
y x
1 2 3 4
Step 4
Trang 69In-plane and flexural modulus of
a symmetric laminate
Trang 70In-plane Engineering Constants
Trang 71Engineering Constants
Trang 7211
1 E
modulus
12 xy
11
A A
Trang 73Flexural Engineering Constants
Symmetric laminate, bending loads only
Trang 75fx 3
11
12 E
t D
Flexural Engineering Constants
Effective Flexural longitudinal modulus
22
12 E