HướngdẫnĐềsô3 Câu I: 2) Giả sử 3 2 3 2 3 1 3 1 A a a a B b b b ( ; ), ( ; ) (a b) Vì tiếp tuyến của (C) tại A và B song song suy ra y a y b ( ) ( ) a b a b ( )( 2) 0 a b 2 0 b = 2 – a a 1 (vì a b). AB b a b b a a 2 2 3 2 3 2 2 ( ) ( 3 1 3 1) = a a a 6 4 2 4( 1) 24( 1) 40( 1) AB = 4 2 a a a 6 4 2 4( 1) 24( 1) 40( 1) = 32 a b a b 3 1 1 3 A(3; 1) và B(–1; –3) Câu II: 1) (1) x x x ( 3) 1 4 x = 3; x = 3 2 3 2) (2) x x sin 2 sin 3 2 x k k Z a x l l Z b 5 2 ( ) ( ) 18 3 5 2 ( ) ( ) 6 Vì 0 2 x ; nên x= 5 18 . Câu III: Đặt x = –t f x dx f t dt f t dt f x dx 2 2 2 2 2 2 2 2 f x dx f x f x dx xdx 2 2 2 4 2 2 2 2 ( ) ( ) ( ) cos x x x 4 3 1 1 cos cos2 cos4 8 2 8 I 3 16 . Câu IV: a V AH AK AO 3 1 2 , . 6 27 Câu V: Sử dụng bất đẳng thức Cô–si: 2 a ab c ab c ab c ab c ab abc a a a a a b c 1+b c b c 2 2 2 (1 ) (1) 2 4 4 4 2 1 Dấu = xảy ra khi và chỉ khi b = c = 1 2 bc d b bc d bc d bc d bc bcd b b b b b c d 1+c d c d 2 2 2 1 (2) 2 4 4 4 2 1 2 cd a c cd a cd a cd a cd cda c c c c c d a 1+d a d a 2 2 2 1 (3) 2 4 4 4 2 1 2 da b d da b da b da b da dab d d d d d a b 1+a b a b 2 2 2 1 (4) 2 4 4 4 2 1 Từ (1), (2), (3), (4) suy ra: a b c d ab bc cd da abc bcd cda dab b c c d d a a b 2 2 2 2 4 4 4 1 1 1 1 Mặt khác: a c b d ab bc cd da a c b d 2 4 2 . Dấu "=" xảy ra a+c = b+d . Hướng dẫn Đề sô 3 Câu I: 2) Giả sử 3 2 3 2 3 1 3 1 A a a a B b b b ( ; ), ( ; ) (a b) Vì tiếp tuyến của. A (3; 1) và B(–1; 3) Câu II: 1) (1) x x x ( 3) 1 4 x = 3; x = 3 2 3 2) (2) x x sin 2 sin 3 2 x k k Z a x l l Z b 5 2 ( ) ( ) 18 3 5 2. a b b a a 2 2 3 2 3 2 2 ( ) ( 3 1 3 1) = a a a 6 4 2 4( 1) 24( 1) 40( 1) AB = 4 2 a a a 6 4 2 4( 1) 24( 1) 40( 1) = 32 a b a b 3 1 1 3