1. Trang chủ
  2. » Giáo án - Bài giảng

B2 3 trắc nghiệm (bản giáo viên)

55 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 55
Dung lượng 2,61 MB

Nội dung

C H Ư Ơ N CHUYÊN ĐỀ III – TOÁN – 11 – GIỚI HẠN – HÀM SỐ LIÊN TỤC III GIỚI HẠN HÀM SỐ LIÊN TỤC BÀI 2: GIỚI HẠN CỦA HÀM SỐ DẠNG GIỚI HẠN HỮU HẠN Câu 1: Cho giới hạn: lim f  x  2 lim g  x  3 lim  f  x   g  x   ; x  x0 , hỏi x  x0 x  x0 A Ta có Câu 2: x  x0 lim  x  x  1 B lim  x  x  1 0 x Tính giới hạn L lim x Ta có Câu 4: Giá trị x  x0  C  Lời giải D C L  Lời giải D L 1 C Lời giải D C Lời giải D B L 0 x x  x0 x x 3 A L   L lim x  x0 x A Câu 3: D lim  f  x   g  x    lim f  x   lim g  x  3 lim f  x   lim g  x  x  x0 Giá trị Ta có: C  Lời giải B x  3  0 x 3 33 lim  3x  x  1 x bằng: B A  lim  x  x  1 3.12  2.1  2 x Câu 5: Giới hạn A lim  x  x   x  bằng? B Page Sưu tầm biên soạn CHUYÊN ĐỀ III – TOÁN – 11 – GIỚI HẠN – HÀM SỐ LIÊN TỤC lim  x  x     1    1  9 Ta có Câu 6: x  x  2x  x 1 bằng? lim x Giới hạn B A C D Lời giải Ta có: Câu 7: lim x x  2x  12  2.1   1 x 1 1 Tính giới hạn lim x x2 x  ta kết A B C D C D  Lời giải Dễ thấy Câu 8: lim x lim x  x x2 22  4 x 2 A  B Lời giải lim x    1 x Câu 9: lim x x 1 x  A  B C D   Lời giải lim x x 1  x2 x  x  2020 2x  Câu 10: Tính x lim A B   C  D 2019 Lời giải lim x x3  x  2020 13  2.12  2020  2019 2x  2.1  Page Sưu tầm biên soạn CHUYÊN ĐỀ III – TOÁN – 11 – GIỚI HẠN – HÀM SỐ LIÊN TỤC x 1  x2  2x  Câu 11: x   lim A B C D Lời giải Ta có lim x   x2  2x  x  A 2 3 1 x 1 x  x  x  A  lim Câu 12: Tìm giới hạn   B   D C  Lời giải Ta có: Với x  ; x  x  0      x 1  x  x  x    2    2  A  lim Nên Câu 13: Giới hạn sau có kết  ? lim A x Ta có x  x  1  x  1 lim 2 B x x  x  1 lim C Lời giải x  x  x  1 lim D x x 1  x  1 0, x 1 Do để giới hạn  giới hạn tử phải dương lim Vậy Câu 14: Cho x x 1  x  1  lim f  x   x A Tính lim  f  x   x  1 x B C 11 D Lời giải Ta có lim  f  x   x  1 9 x Page Sưu tầm biên soạn CHUYÊN ĐỀ III – TOÁN – 11 – GIỚI HẠN – HÀM SỐ LIÊN TỤC DẠNG GIỚI HẠN MỘT BÊN Câu 15: Cho hàm số đoạn A  a; b  y  f  x  a; b  Điều kiện cần đủ để hàm số liên tục liên tục khoảng là? lim f  x   f  a  x  a lim f  x   f  b  x b x  a  a; b  , khoảng lim f  x   f  b  B lim f  x   f  a  x  a lim f  x   f  b  x  b lim f  x   f  a  lim f  x   f  b  D x  a  x  b Lời giải a; b  a; b  Hàm số f xác định đoạn  gọi liên tục đoạn  liên tục C lim f  x   f  a  x b đồng thời lim f  x   f  a  x a lim f  x   f  b  x b Câu 16: Trong mệnh đề sau, mệnh đề sai? A lim x  x lim x  0 Ta có: B lim x   x lim C x  Lời giải  x5 D lim x  x  lim x 0 x x  0 x  Vậy đáp án A Suy đáp án B sai Các đáp án C D Giải thích tương tự đáp án A Câu 17: Trong bốn giới hạn sau đây, giới hạn   ?  3x  A x   x  lim B lim x  3x  x lim C x  Lời giải  3x  x  3x  D x    x  lim  3x   3x   lim  Dễ thấy x   x  ; x   x  lim Vì lim   x    2; lim  x   0; x   0, x  x x nên lim x  3x    x Câu 18: Trong giới hạn đây, giới hạn l +Ơ ? A lim- x đ4 2x - 4- x B ( ) C lim - x +2 x +3 x đ+Ơ lim x đ- ¥ x +x +1 x-1 D lim x ®4+ 2x - 4- x Lời giải Xét lim x ®4- Ta có 2x - 4- x lim ( x - 1) =7 >0 lim- ( - x) =0 , x ®4 - x >0 với x

Ngày đăng: 29/10/2023, 17:41

w