1. Trang chủ
  2. » Luận Văn - Báo Cáo

Môn Toán Cbq.doc

9 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 2,15 MB

Nội dung

TRƯỜNG THPT CAO BÁ QUÁT ĐỀ THAM KHẢO THI THPTQG 2019 CÂU 1 Thể tích khối lập phương có cạnh 2a bằng A 38a B 39a C 3a D 36a CÂU 2 Cho hàm số  y f x có bảng biến thiên như sau Điểm cực tiểu của hàm s[.]

TRƯỜNG THPT CAO BÁ QUÁT ĐỀ THAM KHẢO THI THPTQG 2019 CÂU Thể tích khối lập phương có cạnh 2a A 8a CÂU B 9a C a3 D 6a Cho hàm số y  f  x  có bảng biến thiên sau Điểm cực tiểu hàm số cho A D  Trong không gian Oxyz , cho hai điểm A   1;1;  1 B  4;  3;  Véctơ AB có tọa độ CÂU A  5;  4;3 CÂU đây? B C B  4;  2;3 C  3;5;1 D  3; 4;1 Cho hàm số y  f  x  có đồ thị hình vẽ bên Hàm số cho đồng biến khoảng y 1 O 1 x 2 A  0;1 CÂU B   ;1 C   1;1 D   1;0  Với a , b c ba số thực dương tùy ý, log  a b c  A 3log a  log b  log c B 2log a  3log b  log c C  log a  3log b  log c  D log a  3log b  log c CÂU Cho f  x  dx  A  19 CÂU A 1 g  x  dx 5  f  x   g  x   dx B 12 C  D Thể tích khối cầu đường kính 4a 24 a B 4 a C 2 a D 8 a CÂU Tập nghiệm phương trình log  x  x   1 A  0 B  0;1 C   1;0 D   1 CÂU Trong không gian Oxyz , mặt phẳng  Oxz  có phương trình C y 0 B x  z 0 A x 0 D z 0 2x CÂU 10 Họ nguyên hàm hàm số f  x  e  x  sin x 2x x x e  x  cos x  C D e x   cos x  C A 2e  x  cos x  C B e  x  cos x  C C 2 x 1 x 1 y  z    qua điểm sau đây? 1 B M   1;  2;   C P   1; 2;3  D N   2;1;   CÂU 11 Trong không gian Oxyz , đường thẳng d : A Q  2;  1;  CÂU 12 Với k n hai số nguyên dương tùy ý thỏa mãn k n , mệnh đề đúng? n! n! n! k ! n  k  ! k k k A An  B Cn  C An  D Ank  k ! n  k  !  n k! (n  k )! n! x điểm có hồnh độ x 2 x 1 1 A k 1 B k  C k  D k  3 CÂU 14 Cho số phức z thỏa mãn   3i  z 2  2i Tính z CÂU 13 Tính hệ số góc k tiếp tuyến đồ thị hàm số y  B z  A z  CÂU 15 Tìm tập xác định hàm số f  x   C z  25 D z 5  sin x ln  x   A  2; 4 B  2; 4 \  3 C  2;  D  2;   \  3 CÂU 16 Trong không gian với hệ tọa độ Oxyz, phương trình phương trình mặt cầu có tâm A  1; 2;  3 bán kính R 4 2 B  x  1   y     z  3 4 2 D  x  1   y     z  3 4 A  x  1   y     z  3 16 C  x  1   y     z  3 16 2 2 2 x 1 x2  x A B C CÂU 18 Cho hàm số y  f  x  có bảng biến thiên hình bên CÂU 17 Tìm số tiệm cận đứng ngang đồ thị hàm số y  Mệnh đề sau đúng? A yCT 5 B yCT 2 C yCT 1 D D yCT  CÂU 19 Trên mặt phẳng tọa độ, điểm N điểm biểu diễn số phức z (như hình vẽ) Điểm hình điểm biểu diễn số phức z A Điểm M B Điểm N C Điểm P D Điểm Q CÂU 20 Cho hình chóp S.ABC có SA   ABC  , tam giác ABC vuông B Mệnh đề sai? A  SAC    SBC  B  SAB    SBC  C  SAB    ABC  D  SAC    ABC  CÂU 21 Cho hàm số y x a , y  xb , y  x c khoảng  0;  có đồ thị hình bên Mệnh đề đúng? A a  b  c B a  c  b C b  a  c D c  a  b CÂU 22 Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : x y z   cắt mặt phẳng tọa 2 độ Oxz điểm M  a; b; c  Tính giá trị biểu thức P a  b  c 11 A P  B P  C P  2 2 CÂU 23 Tìm tập nghiệm S bất phương trình log  x  x    D P  A S R B S  1;  C S   ;1 D S   2;1 CÂU 24 Diện tích phần hình phẳng gạch chéo hình vẽ bên tính theo cơng thức A  x  x   dx B 3 C   x 3  x   dx 3  x   dx D   x   dx 3 CÂU 25 Cho khối nón có độ dài đường sinh 3a bán kính đáy a Thể tích khối nón cho  a3 2 3 A a B a C a D 3 3 CÂU 26 Cho hàm số y  f  x  có bảng biến thiên sau x −∞ -1 +∞ y +∞ 12 Tổng số tiệm cận ngang tiệm cận đứng đồ thị hàm số cho A B C D CÂU 27 Cho khối chóp tứ giác có tất cạnh a Thể tích khối chóp cho 2a 2a 3 3 A a B a C D 6 3 CÂU 28 Hàm số f  x  log  x  x  f ( x) log ( x  x) có đạo hàm A f ( x)  C ln x  3x B f ( x )  3 x f ( x )   x  ln x  3x D ( x  x ) ln f ( x )  3x   x  3x  ln CÂU 29 Cho hàm số y  f  x  có bảng biến thiên sau Số nghiệm phương trình f ( x)  0 A B C.4 D CÂU 30 Cho hình chóp S ABCD có đáy hình thang vng A, B với AB = BC = a , AD = a , SA vng góc với mp(ABCD) SA = a Góc hai mặt phẳng (ABCD) (SCD) A 300 B 450 C 600 D 900 x CÂU 31 Tổng tất nghiệm phương trình log (5  x ) 1  x log    2  x A B C D CÂU 32 Một khối đồ chơi gồm hai khối trụ  H1  ,  H  xếp chồng lên nhau, có bán kính đáy chiều cao tương ứng r1 , h1 , r2 , h2 thỏa mãn r2  r1 , h2 3h1 (tham khảo hình vẽ) Biết thể tích tồn khối đồ chơi 40  cm  , thể tích khối trụ  H1  A 24  cm  B 15  cm  C 30(cm ) CÂU 33 Họ nguyên hàm hàm số f ( x)  x(1  e x ) D 10  cm  x2  xe x  e x  C A B x  xe x  e x  C C x  xe x  e x  C x2  xe x  e x  C D  CÂU 34 Cho hình chóp S ABCD có đáy hình thoi cạnh a , BAD 60 , SA a SA vng góc với mặt phẳng đáy Khoảng cách từ B đến mặt phẳng  SCD  A a 21 B a 15 C a 21 D a 15 CÂU 35 Trong không gian với hệ tọa độ Oxyz , cho hai điểm A   1; 2;3 B  1;  2;1 Viết Phương trình mặt phẳng (Q) song song với trục Oz đường thẳng AB cho (Q) cách điểm M   1;5;3 khoảng A (Q) : x  y  0 , x  y  12 0 C (Q): x  y  12 0 B (Q): x  y  0 D x  y  0 CÂU 36 Có giá trị nguyên tham số m   1;5 để hàm số y  x  x  mx  đồng biến khoảng   ;   ? A B C D CÂU 37 Xét số phức z thỏa mãn  z  2i  z  số ảo Biết tập hợp tất điểm biễu diễn z đường tròn, tâm đường trịn có tọa độ A  1;  1 B  1;1 C   1;1 D   1;  1  CÂU 38 Cho hàm số f  x  thỏa mãn A I  12   x 1 f '  x  dx 10 f  1  f   2 B I 8 C I 12 Tính I  f  x  dx D I  CÂU 39 Cho hàm số y  f  x  Biết hàm số y  f '  x  có đồ thị hình vẽ bên Hàm số y  f   x  đồng biến khoảng: A  0;1 B   1;0  C  2;3 D   2;  1 CÂU 40 Có hai dãy ghế đối diện nhau, dãy có ba ghế Xếp ngẫu nhiên , gồm nam nữ, ngồi vào hai dãy ghế cho ghế có học sinh ngồi Xác suất để học sinh nam ngồi đối diện với học sinh nữ B C D 20 10 CÂU 41 Trong không gian với hệ tọa độ Oxyz cho mặt cầu ( S ) : ( x  2)  ( y  3)  ( z  4) 2 điểm A(1; 2;3) Xét điểm M thuộc (S) cho đường thẳng AM tiếp xúc với (S) , M thuộc mặt phẳng có phương trình : A x  y  x  15 0 B x  y  x  15 0 C x  y  z  0 D x  y  z  0 z 1  Tìm giá trị lớn biểu thức P  z  i  z   7i CÂU 42 Cho số phức z thỏa mãn z  3i A 10 B 20 C D A CÂU 43 Có số phức z thỏa mãn B A z 1 z i 1 1 ? i z 2z C D CÂU 44 Cho hàm số y  f  x  liên tục  có đồ thị hình y vẽ Tập hợp tất giá trị thực tham số m để phương trình    f  cos x  m  có nghiệm thuộc khoảng   ;   2 21O 1 x A  1;3 B   1;3 C  1;3 D   1;3 CÂU 45 Một người vay ngân hang 40 triệu đồng để mua xe với lãi suất 0,85% tháng hợp đồng thỏa thuận trả 500 ngàn đồng tháng Sau năm mức lãi suất ngân hang điều chỉnh lên 1,15% tháng người vay muốn nhanh chóng hết nợ nên thỏa thuận trả triệu 500 ngàn đồng tháng (trừ tháng cuối) Hỏi phải lâu người trả đức nợ A 31 tháng B 43 tháng C 42 tháng D 30 tháng  x 2  t  CÂU 46 Trong không gian Oxyz , cho đường thẳng d :  y 1  mt (t  R ) mặt cầu  z 1  3t   S  : x2  y2  z2  x  y  z  13 0 Có giá trị nguyên m để d cắt (S) hai điểm phân biệt: A B C D CÂU 47 Bổ dọc dưa hấu ta thiết diện hình elip có trục lớn 28cm, trục nhỏ 25cm Biết 1000cm3 dưa hấu làm cốc sinh tố với giá 20000 đồng Hỏi dưa hấu thu tiền từ việt bán nước sinh tố? (Biết bề dày võ dưa khơng đáng kể, kết qui trịn) A 183.000 đồng B 180.000 đồng C 185.000 đồng D 190.000 đồng CÂU 48 Trong mặt phẳng phức tập hợp điểm biểu diễn số phức z đường thẳng AB hình vẽ Tính giá trị nhỏ z A B 13 C D 13 CÂU 49 Có giá trị nguyên tham số m    2018; 2018 để phương trình x   m   x   m  1 x  x có nghiệm là: A 2016 B 2010 C 2012 CÂU 50 Cho hàm số y  f  x  có đồ thị y  f '  x  hình vẽ Xét hàm 3 số g  x   f  x   x  x  x  2018 Mệnh đề đúng? g  x  g   1 A   3;1 g  x  g  1 B   3;1 g  x  g   3 C   3;1 D g  x     3;1 g   3  g  1 -Hết -ĐÁP ÁN D 2014 1 A 11 C 21 B 31 A 41 D C 12 C 22 A 32 C 42 B A 13 B 23 D 33 D 43 C D 14 C 24 C 34 A 44 A B 15 D 25 A 35 A 45 B A 16 A 26 C 36 B 46 D A 17 B 27 A 37 D 47 A C 18 C 28 D 38 D 48 D C 19 C 29 C 39 B 49 C 10 B 20 A 30 B 40 A 50 A HƯỚNG DẪN GIẢI Câu 43.Có số phức z thỏa mãn B A z 1 z i 1 1 ? i z 2z C Lời giải D Chọn B Gọi z x  yi  x; y     z 1   z 1    z   1   z  x   x  y  z   i  z   z   i    2 4 x  y   y   z  i   z  Câu 44 Cho hàm số y  f  x  liên tục  có đồ thị hình vẽ Tập hợp tất giá trị thực    tham số m để phương trình f  cos x  m  có nghiệm thuộc khoảng   ;   2 y 21O 1 A  1;3 B   1;3 x C  1;3 Lời giải D   1;3 Chọn D Đặt t cos x Với x   0;   t  ( 1;0]    Do phương trình f  cos x  m  có nghiệm thuộc khoảng   ;  phương trình  2 f  t  m  có nghiệm thuộc nửa khoảng ( 1; 0] Quan sát đồ thị ta suy điều kiện tham số m m    1;1 Câu 45 Môt người vay ngân hang 40 triệu đồng để mua xe với lãi suất 0,85% tháng hợp đồng thỏa thuận trả 500 ngàn đồng tháng Sau năm mức lãi suất ngân hang điều chỉnh lên 1,15% tháng người vay muốn nhanh chóng hết nợ nên thỏa thuận trả triệu 500 ngàn đồng tháng (trừ tháng cuối) Hỏi phải lâu người trả đức nợ A 31 tháng B 43 tháng C 42 tháng D 30 tháng Lời giải Chọn B 12 12 (1  0,85%)  37987647, 49  A Số tiền người trả sau năm là: 40.10 (1  0,85%)  5.10 0,85% n Sau đó, thời gian trả đủ tiền nhân hang là: A(1  1,15%)  5.10 (1  1,15%) n  0  n 30,105 1,15% Vậy người cần 12+31=43 tháng  x 2  t  Câu 46 Trong không gian Oxyz , cho đường thẳng d :  y 1  mt (t  R) mặt cầu  z 1  3t  2  S  : x  y  z  x  y  z  13 0 Có giá trị nguyên m để d cắt (S) hai điểm phân biệt: A B C D Lời giải Chọn D  S  : x  y  z  x  y  z  13 0  ( x  1)  ( y  3)2  ( z  2) 1 D cắt hai điểm phân biệt phương trình sau có nghiệm phân biệt ((2  t )  1)  ((1  mt)  3)  ((1  3t )  2) 1  ( m  5)t  2(4m  5)t  20 0  '  4m  40m  75 15  '    4m2  40m  75    m  Vậy m={3,4,5,6,7} chọn D 2 Câu 47 Bổ dọc dưa hấu ta thiết diện hình elip có trục lớn 28cm, trục nhỏ 25cm Biết 1000cm3 dưa hấu làm cốc sinh tố với giá 20000 đồng Hỏi dưa hấu thu tiền từ việt bán nước sinh tố? (Biết bề dày võ dưa khơng đáng kể, kết qui trịn) A 183.000 đồng B 180.000 đồng C 185.000 đồng D 190.000 đồng Lời giải Chọn A x2 y2 1 GS thiết diện nằm trục Oxy, tâm O trùng với tâm thiết điện Suy Elip:  14 12,52 Thể tích dưa thể tích quay Elip quanh trục Ox 14 x2 8750  V   12,52 (1  ) dx  14  14 8750 20000 183259 183000 đ Số tiền thu bằng: CÂU 48: Phương trình đường thẳng AB : x  y  0 ; z d  O, AB   13 Câu 49: Số giá trị nguyên tham số m    2018; 2018 để phương trình x   m   x   m  1 x  4x có nghiệm là: A 2016 B 2010 C 2012 Hướng dẫn giải D 2014 Đáp án C Điều kiện: x 0 Dễ thấy x 0 khơng nghiệm phương trình x2  x2  Xét x  0, chia vế phương trình cho x ta được:   m  1  m  0 (*) x x x2  4x  2  t   2;   , phương trình (*)  t   m  1 t  m  0 x x t2  t  Vì t 2  t  0 nên phương trình (*)  t  t  m  t  1  m  t Đặt t  Xét hàm số f  t   t  2t  t2  t  f  t  7  2;   , có f '  t   suy min 2;   t  1 t f  t  7 Khi đó, để phương trình m f  t  có nghiệm  m min 2;  Kết hợp với m    2018; 2018 m   suy có tất 2012 giá trị nguyên m Câu 50: Cho hàm số y f  x  có đồ thị y f '  x  hình vẽ Xét hàm số 3 g  x  f  x   x  x  x  2018 Mệnh đề đúng? A g  x  g   1 B g  x  g  1   3;1   3;1 g  x  g   3 C   3;1 g   3  g  1   3;1 Hướng dẫn giải D g  x   Đáp án A Ta có 3 3 x  x  x  2018  g '  x  f '  x   x  x  2  f '   1  g'   1 0   Căn vào đồ thị y f '  x  ta có  f '  1 1  g'  1 0    f '    3 g'    0 3 Ngoài ra, vẽ đồ thị  P  hàm số y x  x  hệ trục tọa 2 độ hình vẽ bên (đường nét đứt), ta thấy  P  qua điểm g  x  f  x    33  với đỉnh I   ;    16    3;3 ,   1;   ,  1;1 Rõ ràng 3  Trên khoảng   1;1 f '  x   x  x  , nên g'  x   x    1;1 2 3  Trên khoảng   3;  1 f '  x   x  x  , nên g '  x   x    3;  1 2 Từ nhận định trên, ta có bảng biến thiên hàm y g '  x    3;1 sau: x g’(x) g(x) g  x  g   1 Vậy   3;1 3 1  +

Ngày đăng: 18/10/2023, 21:20

w