1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64

82 824 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 82
Dung lượng 6,08 MB

Nội dung

MỤC LỤC 4.2 Khoảng cách Hamming 71 LỜI NÓI ĐẦU Cùng với sự phát triển của phần cứng máy tính cơ sở hạ tầng về mạng máy tính đã tạo thuận lợi cho chúng ta trao đổi thông tin qua mạng một cách nhanh chóng chính xác, thông tin trao đổi ở đây có thể trên rất nhiều lĩnh vực, ví dụ như thương mại điện tử, tin tức thời sự, hay là thư điện tử giữa hai người hay nhóm người với nhau, Các dạng thông tin trao đổi có thể là công khai, ví dụ như các thông tin quảng cáo, tin tức thời sự nhưng cũng có những vấn đề cần có sự bảo mật không thể cho đối tượng thứ ba biết, ví dụ như các thông tin về bí mật quốc gia, bí mật quân sự, hay những bí mật của cá nhân, Vấn đề đặt ra là chúng ta phải xây dựng các phương pháp các thuật toán hoá phục vụ cho bảo mật thông tin. Vấn đề hoá bảo mật thông tin đã được nhiều quốc gia, các tổ chức, công ty có liên quan tới ngành công nghệ thông tin nghiên cứu. Đặc biệt đi đầu là Hoa Kỳ, họ đã bắt tay nghiên cứu xây dựng các thuật toán hoá rất sớm. Năm 1972, Viện tiêu chuẩn công nghệ quốc gia Hoa Kỳ (National Institute of Standar and Technology - NIST) đã đặt ra yêu cầu xây dựng thuật toán hoá bảo mật thông tin với yêu cầu là dễ thực hiện, sử dụng rộng rãi trong nhiều lĩnh vực mức độ bảo mật cao. Năm 1974, IBM giới thiệu thuật toán hoá Lucifer, thuật toán này đã đáp ứng hầu hết các yêu cầu của Viện tiêu chuẩn công nghệ quốc gia Hoa Kỳ (NIST). Sau đó vào năm 1976, Lucifer được NIST công nhận là chuẩn quốc Hoa Kỳ được đổi tên thành Data Encryption Standard (DES). DES là thuật toán hoá bảo mật được sử dụng rộng rãi nhất trên thế giới, ở thời điểm DES ra đời người ta đã tính toán rằng việc phá được 1 DES là rất khó khăn, đòi hỏi chi phí hàng triệu USD khoảng thời gia rất nhiều năm. Cùng với sự phát triển của các loại máy tính, mạng máy tính có tốc độ tính toán rất cao, khoá DES có thể bị phá trong một khoảng thời gian ngày càng ngắn chi phí ngày càng thấp. Dù vậy việc này vẫn vượt xa khả năng của các hacker thông thường. Tuy nhiên đã có rất nhiều nghiên cứu nhằm cải thiện kế thừa khoá DES, trong phần đồ án của mình em xin trình bày một thuật toán hoá mới đóthuật toán CRYPT(D) 64. Thuật toán mới được thiết kế dựa trên các tiêu chuẩn sau: Kiểu thuật toán hóa: khối, độ dài của khối dữ liệu được hóa: 64 bít, độ dài của khóa bí mật: 128, 256 bít. Giải pháp để xây dựng thuật toán mật ở đây sẽ dựa trên các toán tử biến đổi điều khiển được - là một trong các giải pháp mới để xây dựng các loại thỏa mãn tốt hơn các yêu cầu thực tiễn. Với giải pháp này, thuật toán sẽ được xây dựng trên cơ sở kết hợp mạng chuyển vị - thay thế điều khiển được với mạng chuyển vị - thay thế cố định, các mạng chuyển vị - thay thế điều khiển được sẽ được xây dựng dựa trên các toán tử điều khiển được có kích thước tối thiểu để phù hợp cho việc cài đặt trên các VLSI như ASIC/FPGA. Thuật toán mới được xây dựng lựa chọn phương án sử dụng các toán tử phụ thuộc vào cả khoá dữ liệu được biến đổi. Trong phần triển khai cài đặt ứng dụng em sẽ tập trung vào phần đánh giá các đặc trưng thống của thuật toán. Quá trình thực hiện nghiên cứu các đặc trưng thống của thuật toán hoá CRYPT(D) 64 em xin chân thành cảm ơn thầy giáo hướng dẫn đã hướng dẫn, chỉ bảo tận tình giúp em hoàn thành đồ án. 2 Chưong 1 GIỚI THIỆU TỔNG QUAN VỀ HÓA CÁC HỆ CÁC PHƯƠNG PHÁP HÓA 1.1 Giới thiệu tổng quan. Mật là môn khoa học nhiên cứu về các vấn đề truyền thông tin liên lạc độ mật của nó. Đối tượng cơ bản của mật là tạo ra một khả năng liên lạc trên một kênh thông tin mật cho hai người sử dụng A(Alice) B(Bob) sao cho đối phương O(Oscar) không thể hiểu được thông tin truyền đi. Kênh liên lạc này có thể là một đường dây điện thoại hoặc là mạng máy tính hoặc mạng internet. Thông tin A muốn gửi cho B gọi là bản rõ có thể là một văn bản, hình ảnh, chương trình,… A sẽ hóa bản rõ bằng một khóa phương pháp đã được thống nhất trước khi gửi bản đi trên kênh. O có thể thu được bản trên kênh truyền nhưng không thể xác định được nội dung bản đó nhưng B(người biết khóa ) có thể giải thu được bản rõ. Các phương pháp hóa giải tương ứng có từ rất lâu trong lịch sử. Người Hy Lạp cổ đã biết sử dụng phương pháp Skytale để hóa giải mã. Phương pháp hóa Vigenere đã có từ bốn thế kỷ nay. Rất lâu trước khi có sự trợ giúp của máy tính chúng ta cũng đã biết sử dụng công cụ máy móc để hỗ trợ cho việc hóa giải mã(chẳng hạn như sử dụng phương pháp Turing Grill do Carcado phát minh). Công việc hóa giải đối với các phương pháp cổ điển là tương đối dễ dàng khi có khóa. Nhưng trên vai trò người ăn trộm thông tin (thám mã) không có khóa, đó là một công việc rất khó. Nó đòi hỏi người thám phải có kiến thức về xác suất, có các số liệu thống đặc biệt phải có kinh nghiệm trong công việc. Tuy vậy ngày nay với sự hỗ trợ của 3 máy tính công việc thám trở nên nhẹ nhàng hơn đối với các hệ mật cổ điển. Tuy nhiên các phương pháp cổ điển vẫn được nghiên cứu(mã háo, giải mã, thám mã) bởi lịch sử lâu đời của các phương pháp này một số người vẫn sử dụng chúng. Nhưng có thể nói hiện nay các phương pháp cổ điển rất ít người sử dụng, người ta đã đưa ra nhiều phương pháp hóa mới ví dụ như hệ công khai, hóa DES, Dưới đây là mô hình chung của mật mã. Hình 1.1. Mô hình chung của mật 1.2 Các hệ các phương pháp hóa 1.2.1 Hệ cổ điển hóa công khai Tổng quát hóa theo toán học chúng ta có Một hệ mật là một bộ năm (P,C,K,E,D) thỏa mãn các điều kiện sau: 1. P là một tập hưữ hạn các bản rõ cụ thể. 2. C là một tập hữu hạn các bản rõ có thể. 3. K(không gian khóa) là tập hữu hạn các khóa có thể. 4. Đối với mỗi k ∈ K có một quy tắc e k : P  C một quy tắc giải tương ứng d k ∈ D. Mỗi e k : P  d k : C  P là những hàm mã: D k (e k (x))=x với mọi bản rõ x ∈ P  dịch vòng( shift cipher) Giả sử P=C=K=Z 26 với 0 ≤ k ≤ 25 ta có: e k (x)=(x+k) mod 26 4 d k (x)=(y-k) mod 26 Trong đó Z 26 là 26 chữ cái trong bảng chữ cái tiếng anh. x,y ∈ Z 26  thay thế Cho P=C=Z 26 . K chứa mọi hoán vị có thể của 26 ký hiệu 0,1,…,25 với mỗi phép hoán vị π ∈ K, ta có: e π (x)= π (x) d π (y)= π 1− (y) Trong đó 1− π là hoán vị ngược của π .  Mật Affine Cho P=C=Z 26 giả sử P={(a,b) ∈ Z 26 x Z 26 : UCLN(a,26)=1} Với k = (a,b) ∈ K, ta có: e k (x)=(ax +b) mod 26 d k (x)=a -1 (y-b) mod 26 Trong đó (x,y) ∈ Z 26 .  Mật Vigenère Cho m là một số nguyên dương cố định. Có P=C=K=(Z 26 ) m . Với khóa K=(k 1 ,k 2 ,…,k m ) ta có e k (x 1 ,x 2 ,…x m )=(x 1 +k 1 ,x 2 +k 2 ,…,x m +k m ) d k (y 1 ,y 2 ,…,y m )=(y 1 -k 1 ,y 2 -k 2 ,…,y m -k m ) Trong đó tất cả các phép toán thực hiện trong Z 26 .  Mật Hill Cho m là một số nguyên dương cố định. Cho P=C=(Z 26 ) m cho K={ma trận khả nghịch cấp mxm trên Z 26 }. Với một khóa k ∈ K ta có: e k (x)=xk d k (y)=yk -1 5 Tất cả các phép toán đều thực hiện trong Z 26 .  hoán vị Cho m là một số nguyên xác định nào đó. P=C=(Z 26 ) m cho K gồm tất cả các hoán vị của {1,2,…,m}. Đối một khóa π (tức là một hoán vị) ta xác định. e π (x 1 , . . . , x m ) = (x π (1) , . . . , x π (m) ) d π (x 1 , . . . , x m ) = (y π -1 (1) , . . . , y π -1 (m) ) Trong đó 1− π là hoán vị ngược của π .  Mật dòng Mật dòng là bộ (P,C,K,L,F,E,D) thỏa mãn các điều kiện sau: 1. P là một tập hữu hạn các bản rõ có thể. 2. C là một tập hữu hạn các bản có thể. 3. K là tập hữu hạn các khóa có thể(không gian khóa). 4. L là tập hữu hạn các bộ chữ của dòng khóa. 5. F=(f 1 f 2 …) là bộ tạo dòng khóa. Với i ≥ 1 f i : K × P i-1  L 6. Với mỗi z ∈ L có một quy tắc e z ∈ E một quy tắc giải tương ứng d z ∈ D. e z : P  C d z : C  P là các hàm thỏa mãn d z (e z (x))=x với mọi bản rõ x ∈ P. Mật khóa tự sinh. Cho P=C=K=L=Z 26 , z 1 =k z i =x i-1 (i ≥ 2) với 0 ≤≤ z 25 ta xác định e z (x) = x + z mod 26 d z (y) = y - z mod 26 (x,y ∈ Z 26 )  hóa công khai Mật hóa khóa công khai là một dạng mật hóa cho phép người sử dụng trao đổi các thông tin mật không cần phải trao đổi các khóa 6 chung bí mật trước đó. Điều này được thực hiện bằng cách sử dụng một cặp khóa có quan hệ toán học với nhau là khóa công khai khóa cá nhân (hay khóa bí mật). Thuật ngữ mật hóa khóa bất đối xứng thường được dùng đồng nghĩa với mật hóa khóa công khai mặc dù hai khái niệm không hoàn toàn tương đương. Có những thuật toán mật khóa bất đối xứng không có tính chất khóa công khai bí mật như đề cập ở trên cả hai khóa (cho hóa giải mã) đều cần phải giữ bí mật. Trong mật hóa khóa công khai, khóa cá nhân phải được giữ bí mật trong khi khóa công khai được phổ biến công khai. Trong 2 khóa, một dùng để hóa khóa còn lại dùng để giải mã. Điều quan trọng đối với hệ thống là không thể tìm ra khóa bí mật nếu chỉ biết khóa công khai. Phương pháp hoá công khai (Public Key Cryptography) đã giải quyết được vấn đề của phương pháp hoá khoá bí mật là sử dụng hai khoá publickey privatekey. Phương pháp này còn được gọi là hoá bất đối xứng (Asymmetric Cryptography) vì trong hệ sử dụng khoá hoá E k khoá giải D k khác nhau (E k # D k ). Trong đó , E k được sử dụng để hoá nên có thể được công bố, nhưng khoá giải D k phải được giữ bí mật. Nó sử dụng hai khoá khác nhau để hoá giải dữ liệu. Phương pháp này sử dụng thuật toán hoá RSA (tên ba nhà phát minh ra nó: Ron Rivest, Adi Shamir Leonard Adleman) thuật toán Diffie Hellman. Ngoài ra còn có một số thuật toán khác như hệ thống mật Paillier, hóa đường cong elliptic, ElGamal. Hệ thống mật hóa khóa công khai có thể sử dụng với các mục đích: • hóa: giữ bí mật thông tin chỉ có người có khóa bí mật mới giải được. 7 • Tạo chữ ký số(DSS): cho phép kiểm tra một văn bản có phải đã được tạo với một khóa bí mật nào đó hay không. • Thỏa thuận khóa: cho phép thiết lập khóa dùng để trao đổi thông tin mật giữa 2 bên. Các phương pháp hóa này khai thác những ánh xạ f việc thực hiện ánh xạ ngược f –1 rất khó so với việc thực hiện ánh xạ f. Chỉ khi biết được khóa riêng K thì mới có thể thực hiện được ánh xạ ngược f –1 . Thông thường, các kỹ thuật mật hóa khóa công khai đòi hỏi khối lượng tính toán nhiều hơn các kỹ thuật hóa khóa đối xứng nhưng những lợi điểm chúng mang lại khiến cho chúng được áp dụng trong nhiều ứng dụng. Trên thực tế vào năm 1972 Viện tiêu chuẩn công nghệ quốc gia Hoa kỳ (National Institute of Standards and Technology-NIST) đặt ra yêu cầu xây dựng một thuật toán hoá bảo mật thông tin với yêu cầu là dễ thực hiện, sử dụng được rộng rãi trong nhiều lĩnh vực mức độ bảo mật cao. Năm 1974, IBM giới thiệu thuật toán Lucifer, thuật toán này đáp ứng hầu hết các yêu cầu của NIST. Sau một số sửa đổi, năm 1976, Lucifer được NIST công nhận là chuẩn quốc gia Hoa kỳ được đổi tên thành Data Encryption Standard (DES). DES là thuật toán hoá bảo mật được sử dụng rộng rãi nhất trên thế giới, thậm chí, đối với nhiều ngưòi DES hoá bảo mật là đồng nghĩa với nhau. ở thời điểm DES ra đời người ta đã tính toán rằng việc phá được khoá DES là rất khó khăn, nó đòi hỏi chi phí hàng chục triệu USD tiêu tốn khoảng thời gian rất nhiều năm. Cùng với sự phát triển của các loại máy tính mạng máy tính có tốc độ tính toán rất cao, khoá DES có thể bị phá trong khoảng thời gian ngày càng ngắn với chi phí ngày càng thấp. Dù vậy việc này vẫn vượt xa khả năng của các hacker thông thường hoá DES 8 vẫn tiếp tục tồn tại trong nhiều lĩnh vực như ngân hàng, thương mại, thông tin nhiều năm nữa đặc biệt với sự ra đời của thế hệ DES mới-"Triple DES". Yêu cầu đặt ra nếu muốn bảo mật tốt hơn là phải tìm được một thuật toán sao cho việc thực hiện không quá phức tạp nhưng xác suất tìm ra chìa khoá bằng cách thử tất cả các trường hợp (brute-force) là rất nhỏ (số lần thử phải rất lớn). Trong phần tiếp theo em xin giới thiệu tổng quát nhất về phương pháp hóa DES. 1.2.2 hóa DES Về mặt khái niệm, thông thường thuật toán hoá DES là thuật toán mở, nghĩa là mọi người đều biết thuật toán này. DES là thuật toán hóa khối: nó xử lý từng khối thông tin của bản rõ có độ dài xác định biến đổi theo những quá trình phức tạp để trở thành khối thông tin của bản độ dài không thay đổi. Trong trường hợp của DES, độ dài mỗi khối là 64 bit. DES cũng sử dụng khóa để cá biệt hóa quá trình chuyển đổi. Nhờ vậy, chỉ khi biết khóa mới có thể giải được văn bản mã. Khóa dùng trong DES có độ dài toàn bộ là 64 bit. Tuy nhiên chỉ có 56 bit thực sự được sử dụng; 8 bit còn lại chỉ dùng cho việc kiểm tra. Vì thế, độ dài thực tế của khóa chỉ là 56 bit, nghĩa là số lần thử tối đa để tìm được chìa khoá lên đến 2^56, trung bình là 2^55 = 36.028.797.018.963.968 lần, một con số rất lớn!. Tổng thể Cấu trúc tổng thể của thuật toán được thể hiện ở hình 1.2: có 16 chu trình giống nhau trong quá trình xử lý. Ngoài ra còn có hai lần hoán vị đầu cuối (Initial and final permutation - IP & EP). Hai quá trình này có tính chất đối nhau (Trong quá trình hóa thì IP trước EP, khi giải thì ngược lại). IP EP không có vai trò xét về mật học việc sử dụng chúng chỉ có ý nghĩa đáp ứng cho quá trình đưa thông tin vào lấy thông tin ra từ các 9 khối phần cứng có từ thập niên 1970. Trước khi đi vào 16 chu trình chính, khối thông tin 64 bit được tách làm hai phần 32 bit mỗi phần sẽ được xử lý tuần tự (quá trình này còn được gọi là mạng Feistel). Hình 1. 2 Cấu trúc thuật toán Feistel dùng trong DES Cấu trúc của thuật toán (mạng Feistel) đảm bảo rằng quá trình hóa giải diễn ra tương tự. Điểm khác nhau chỉ ở chỗ các khóa con được sử dụng theo trình tự ngược nhau. Điều này giúp cho việc thực hiện thuật toán trở nên đơn giản, đặc biệt là khi thực hiện bằng phần cứng. Ký hiệu sau: ⊕ thể hiện phép toán XOR. Hàm F làm biến đổi một nửa của khối đang xử lý với một khóa con. Đầu ra sau hàm F được kết hợp với nửa còn lại của khối hai phần được tráo đổi để xử lý trong chu trình kế tiếp. Sau chu trình cuối cùng thì 2 nửa không bị tráo đổi; đây là đặc điểm của cấu trúc Feistel khiến cho quá trình hóa giải trở nên giống nhau. 10 [...]... theo 13 cũng là phần chính của đồ án em sẽ tập trung vào trình bày cơ sở lý thuyết, phương pháp xây dựng phương pháp đánh giá các đặc trưng thống của thuật toán hóa Crypt(D) 64 Chương 2 CƠ SỞ LÝ THUYẾT CÁC KHÁI NIỆM LIÊN QUAN TỚI XÂY DỰNG CRYPT(D) 64 2.1 Đặt vấn đề Thuật toán mới CRYPT(D)- 64 được thiết kế cho việc hoá các khối dữ liệu có độ dài 64- bit, sử dụng khoá mật 128-bit 256-bit,... ứng dụng của các loại hóa CRYPT(D) thì chúng ta sẽ sử dụng cả hai loại hộp S thuận nghịch sẽ được xét cụ thể trong chương 3 Bảng 2.1 Đặc tả của hộp thay thế 4x4 S0, ,S7 Bảng 2.2 Đặc tả của hộp thay thế 4x4 S0-1, ,S7-1 17 Trong các ứng dụng của các thuật toán hóa mới CRYPT(D) thì các hoán vị có thể được ký hiệu là I, tùy vào ứng dụng của các thuật toán hóa ta có thể có nhiều hoán vị I khác... (hộp-S) hộp hoán vị (hộp-P) để tạo ra các bản khối Hộp S hộp P biến đổi các khối con của các bít đầu vào thành các bit đầu ra Đócác hoạt động của các lệnh chuyển đổi được thực hiện từ phần cứng giống như các phép XOR hay các phép xoay giữa 14 các bít Khóa được đưa vào trong mỗi vòng thường nhận trong mỗi vòng khóa của lớp Trong một vài thiết kế thì các S-box phụ thuộc vào các khóa Mối... được CSPN, các phần tử điều khiển CE là gì, thế nào là mạng chuyển vị cố định SPN? 2.2 Mạng chuyển vị - thay thế cố định Trong kỹ thuật hóa mạng chuyển vị cố định (substitutionpermutation network SPN) là một dãy các liên kết toán học sử dụng trong các thuật toán hóa khối giống như AES(Rijndael) Các mạng sẽ đưa một khối của các bản gốc khóa là yếu tố đầu vào, áp dụng liên tục các "vòng"... permutation) P n/m Với n là số bit đầu vào, n là bit đầu ra, m là số bit điều khiển Hộp P n/m được xây dựng nhờ sử dụng các phần tử điều khiển được cơ sở P2/1, hoặc P2/2 Nhưng trong 18 phạm vi ngiên cứu đánh gia các đặc trưng thống của thuật toán Crypt(D) 64 thì sẽ đi sâu vào nghiên cứu các hộp P n/m được xây dựng từ các phần tử điều khiển được cơ sở P2/1, hay có thể gọi P2/1 là các hộp bộ phận cấu thành của... bit làm đầu vào, cho đầu ra là hai bit, sử dụng một bít làm điều khiển giá trị của các bit đầu ra Trên phương diện toán học thì đầu ra được biểu diễn là các hàm ba biến phụ thuộc vào giá trị đầu vào giá trị của các bít điều khiển phép toán sử dụng ở đây chính là phép XOR sẽ được trình bày cụ thể hơn trong các phần tiếp theo Còn việc tích hợp trên phần cứng tương ứng là sử dụng các mạch XOR... sơ đồ) khiến cho các khóa con sử dụng các bit khác nhau của khóa chính; mỗi bit được sử dụng trung bình khoảng 14 lần trong tổng số 16 khóa con Quá trình tạo khóa con khi thực hiện giải cũng diễn ra tương tự nhưng các khóa con được tạo theo thứ tự ngược lại Ngoài ra sau mỗi chu trình, khóa sẽ được dịch phải thay vì dịch trái như khi hóaCác chế độ của DES: Thuật toán DES hoá đoạn tin 64. .. trong phần xây dựng thuật toán CRYPT(D) 64 Các thuộc tính của hộp S Các nguyên tắc thiết kế của tám hộp S được đưa vào lớp ‘Classified information(Tin tức bí mật)’ ở Mỹ NSA đã tiết lộ 3 thuộc tính của các hộp S, những thuộc tính này bảo đảm tính xáo chộn khuyếch tán của thuật toán 1 Các bít vào (input bit) luôn phụ thuộc không tuyến tính vào các bít ra (output bit) 2 Sửa đổi ở một bit vào làm thay đổi... khóa vòng(nhận được từ khóa với một số hoạt động đơn giản ví dụ như dùng hộp S hộp P)được kết hợp với một số phép toán đặc trưng như XOR Một hộp S hay một hộp P đơn thuần không có hiệu quả hóa: một hộp S có thể thông qua như một sự thay thế các khối trong khi hộp P có thể coi như là một sự hoán vị của các khối Tuy nhiên để thiết kế một mạng hoán vị thay thế tốt( SPN) các vòng lặp các S-box các. .. số luợng bít đầu ra các bít ở đầu ra phụ thuộc các bít ở đầu vào Hình 2.1 Một ví dụ cụ thể về SPN Một hộp P là một hoán vị của tất cả các bít, nó nhận tất cả các bít đầu ra của các hộp S sao đó hoán vị chúng chuyển thành các bít đầu vào của 15 các hộp S ở vòng tiếp theo Một hộp P tốt phải có thuộc tính các bít đầu ra của hộp S có khả năng được phân bố ở một số bít đầu vào của các hộp S vòng tiếp . dựng và phương pháp đánh giá các đặc trưng thống kê của thuật toán mã hóa Crypt(D) 64. Chương 2 CƠ SỞ LÝ THUYẾT VÀ CÁC KHÁI NIỆM LIÊN QUAN TỚI XÂY DỰNG CRYPT(D) 64 2.1 Đặt vấn đề Thuật toán mới. bày một thuật toán mã hoá mới đó là thuật toán CRYPT(D) 64. Thuật toán mới được thiết kế dựa trên các tiêu chuẩn sau: Kiểu thuật toán mã hóa: Mã khối, độ dài của khối dữ liệu được mã hóa: 64 bít,. và dữ liệu được biến đổi. Trong phần triển khai cài đặt ứng dụng em sẽ tập trung vào phần đánh giá các đặc trưng thống kê của thuật toán. Quá trình thực hiện nghiên cứu các đặc trưng thống kê

Ngày đăng: 19/06/2014, 21:04

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[4] Nikolay A.Moldovyan, Alaxander A.Moldovyan “ DATA – DRIVEN BLOCK CIPHERS FOR FAST TELECOMMUNICATION SYSTEMS”Auerbach Publiccation Sách, tạp chí
Tiêu đề: DATA – DRIVEN BLOCK CIPHERS FOR FAST TELECOMMUNICATION SYSTEMS
[5] “NESSIE. New European Schemes for Signatures, Integrity, and Encryption”, https://www.cosic.esat.kuleuven.ac.be/nessie/ Sách, tạp chí
Tiêu đề: NESSIE. New European Schemes for Signatures, Integrity, and Encryption”
[1] Nguyễn Hoàng Cường -Tài liệu điện tử về mã hoá , Vietebooks Khác
[2] Nguyễn Lê Cường Tài liệu điện tử mã hoá DES , Tạp chí Công nghệ thông tin và Truyền thông Khác
[3] Lưu Hồng Dũng, Nguyễn Hiếu Minh / Nghiên cứu xây dựng thuật toán mật mã tốc độ cao // Tạp chí Khoa học và Kỹ thuật, số 116, III – 2006, Học viện KTQS Khác
[6] Và một số trang Web giới thiệu về mã hoá và bảo mật thông tin Khác

HÌNH ẢNH LIÊN QUAN

Hình 1. 2 Cấu trúc thuật toán Feistel dùng trong DES - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 1. 2 Cấu trúc thuật toán Feistel dùng trong DES (Trang 10)
Hình 1. 3 a- Hàm F dùng trong DES. b- Quá trình tạo khóa con trong DES - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 1. 3 a- Hàm F dùng trong DES. b- Quá trình tạo khóa con trong DES (Trang 11)
Hình 2.1 Một ví dụ cụ thể về SPN - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.1 Một ví dụ cụ thể về SPN (Trang 15)
Hình 2.2. Cấu trúc của hộp chuyển vị điều khiển được - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.2. Cấu trúc của hộp chuyển vị điều khiển được (Trang 19)
Hình 2.3 Hộp cơ sở F 2/1 : (a) Trường hợp tổng quát; (b) Chi tiết; (c) Đại   diện bởi cặp của hai thay thế 2x2; (d) Biểu thức mô tả mối quan hệ giữa   đại diện b và c; (e) Hàm logic thay thế hộp P 2/1 ; (f) Sự khác nhau tương   ứng với vi sai đặc trưng củ - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.3 Hộp cơ sở F 2/1 : (a) Trường hợp tổng quát; (b) Chi tiết; (c) Đại diện bởi cặp của hai thay thế 2x2; (d) Biểu thức mô tả mối quan hệ giữa đại diện b và c; (e) Hàm logic thay thế hộp P 2/1 ; (f) Sự khác nhau tương ứng với vi sai đặc trưng củ (Trang 21)
Hình 2.4  Cách nhìn nhận cụ thể của tất cả các kiểu thực hiện của hộp S 2x2. - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.4 Cách nhìn nhận cụ thể của tất cả các kiểu thực hiện của hộp S 2x2 (Trang 25)
Bảng 2.4 các phần tử điều khiển hiện tại thoả mãn các tiêu chuẩn lựa chọn - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Bảng 2.4 các phần tử điều khiển hiện tại thoả mãn các tiêu chuẩn lựa chọn (Trang 27)
Hình 2.6.  Cấu trúc đệ quy của dạng thứ nhất(a) và dạng thứ hai   (b): cấu trúc của hộp P 2n/2m+n   (a) và  2 − 1 / 2 - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.6. Cấu trúc đệ quy của dạng thứ nhất(a) và dạng thứ hai (b): cấu trúc của hộp P 2n/2m+n (a) và 2 − 1 / 2 (Trang 34)
Hình 2.7. Cấu trúc đệ quy của dạng thứ ba: cấu trúc của các hộp P 2n/ - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.7. Cấu trúc đệ quy của dạng thứ ba: cấu trúc của các hộp P 2n/ (Trang 37)
Hình 2.8.  Two design variants of the controlled permutational   involutions: serial (a) and parallel (b) structures. - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.8. Two design variants of the controlled permutational involutions: serial (a) and parallel (b) structures (Trang 39)
Hình 2.9. Cấu trúc mạng liên kết  của hộp F 8/12 (a), F -1 8/12 (b), F 32/96 (c), và F -1 32/96 (d) - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.9. Cấu trúc mạng liên kết của hộp F 8/12 (a), F -1 8/12 (b), F 32/96 (c), và F -1 32/96 (d) (Trang 41)
Hình 2.10  Cấu trúc của hộp đối xứng F 2n/4m (a), P 16/32 (b), F 64/256 (c) - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.10 Cấu trúc của hộp đối xứng F 2n/4m (a), P 16/32 (b), F 64/256 (c) (Trang 42)
Hình 2.12  Phân phối của xác suất p(t)=Pr ( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho hộp  Q 32/96 , U 32/96 (a ), và Z ' 32/96 (b). - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.12 Phân phối của xác suất p(t)=Pr ( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho hộp Q 32/96 , U 32/96 (a ), và Z ' 32/96 (b) (Trang 49)
Hình 2.11  Phân phối của xác suất p(t) = Pr( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho hộp không  thay đổi F 32/96  sử dụng các phần tử điều khiển cạnh nhau Q 2/1 , R 2/1 , và P 2/1 - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.11 Phân phối của xác suất p(t) = Pr( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho hộp không thay đổi F 32/96 sử dụng các phần tử điều khiển cạnh nhau Q 2/1 , R 2/1 , và P 2/1 (Trang 49)
Bảng 2.9 Theo lý thuyết phân phối của xác suất p(t) = Pr( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho  hộp Q 64/92 - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Bảng 2.9 Theo lý thuyết phân phối của xác suất p(t) = Pr( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho hộp Q 64/92 (Trang 51)
Bảng 2.10  Theo lý thuyết phân phối của xác suất p(t) = Pr( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho  hộp Q 64/192 . - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Bảng 2.10 Theo lý thuyết phân phối của xác suất p(t) = Pr( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho hộp Q 64/192 (Trang 51)
Bảng 2.11 Theo lý thuyết phân phối của xác suất p(t) = Pr( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho  hộp R 32/80 - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Bảng 2.11 Theo lý thuyết phân phối của xác suất p(t) = Pr( ∆ Y t / ∆ X 1 , ∆ V 0 ) thay cho hộp R 32/80 (Trang 52)
Bảng 2.14  Security comparison against DCA - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Bảng 2.14 Security comparison against DCA (Trang 54)
Hình 2.13 Các đặc điểm vi sai với xác suất khác không tương ứng vói   hộp CP cở sở P 2/1 . - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.13 Các đặc điểm vi sai với xác suất khác không tương ứng vói hộp CP cở sở P 2/1 (Trang 57)
Hình 2.14  Một vi sai ( ∆ X t 1 , ∆ Y t 2 ) đi qua hộp CP: (a) sơ đồ tổng quát, (b)  trường hợp t1=t2=0, (c) việc tạo ra một cặp của các bit hoạt động và (d) - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 2.14 Một vi sai ( ∆ X t 1 , ∆ Y t 2 ) đi qua hộp CP: (a) sơ đồ tổng quát, (b) trường hợp t1=t2=0, (c) việc tạo ra một cặp của các bit hoạt động và (d) (Trang 60)
Bảng 2.16 Các xác suất p( ∆ X → ∆ Y ∆ L 2 ) với hộp P 64/192  bậc hai - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Bảng 2.16 Các xác suất p( ∆ X → ∆ Y ∆ L 2 ) với hộp P 64/192 bậc hai (Trang 62)
Bảng 2.15 Các xác suất p( ∆ X → ∆ Y ∆ L 1 ) với hộp P 64/192  bậc hai - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Bảng 2.15 Các xác suất p( ∆ X → ∆ Y ∆ L 1 ) với hộp P 64/192 bậc hai (Trang 62)
Sơ đồ cấu trúc và các vòng mã hóa cơ sở (thủ tục Crypt) của thuật toán - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Sơ đồ c ấu trúc và các vòng mã hóa cơ sở (thủ tục Crypt) của thuật toán (Trang 63)
Hình 3.3  Khối toán tử  F 32 − 1 / 112 - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 3.3 Khối toán tử F 32 − 1 / 112 (Trang 66)
Hình 3.5  Mô tả hoán vị cố định(hóan vị xoắn) - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 3.5 Mô tả hoán vị cố định(hóan vị xoắn) (Trang 67)
Bảng 4.1  Đánh giá ảnh hưởng của các bit dữ liệu đầu vào đến dữ liệu đầu ra. - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Bảng 4.1 Đánh giá ảnh hưởng của các bit dữ liệu đầu vào đến dữ liệu đầu ra (Trang 76)
Hình 4.1 Lưu  đồ  thuật  toán  thực  hiện  đánh  giá  với  giá  trị  khóa   (K)  cố  định và 10.000 giá trị khác nhau của dữ liệu (X) - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 4.1 Lưu đồ thuật toán thực hiện đánh giá với giá trị khóa (K) cố định và 10.000 giá trị khác nhau của dữ liệu (X) (Trang 76)
Bảng 4.2.  Đánh giá ảnh hưởng của các bit khóa đến dữ liệu đầu ra. - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Bảng 4.2. Đánh giá ảnh hưởng của các bit khóa đến dữ liệu đầu ra (Trang 77)
Hình 4.3 Kết quả đánh giá với 9 vòng mã hóa với một khoá và 10000 bộ   dữ liệu - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 4.3 Kết quả đánh giá với 9 vòng mã hóa với một khoá và 10000 bộ dữ liệu (Trang 79)
Hình 4.3 Kết quả đánh giá với 9 vòng mã hóa với một khoá 100 và 100   bộ dữ liệu - Đồ án tốt nghiệp đại học nghiên cứu và đánh giá các đặc trưng thống kê thuật toán mã hóa CRYPT(D) 64
Hình 4.3 Kết quả đánh giá với 9 vòng mã hóa với một khoá 100 và 100 bộ dữ liệu (Trang 79)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w