1. Trang chủ
  2. » Khoa Học Tự Nhiên

Bài giảng Sóng cơ học: Giao thoa sóng nâng cao potx

5 977 36

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 153,59 KB

Nội dung

ĐẶNG VIỆT HÙNG Bài giảng Sóng học Website: www.moon.vn Mobile: 0985074831 DẠNG 1. TÌM SỐ ĐIỂM DAO ĐỘNG VỚI BIÊN ĐỘ CỰC ĐẠI HOẶC CỰC TIỂU TRÊN ĐOẠN KHÔNG PHẢI ĐƯỜNG NỐI HAI NGUỒN SÓNG Bài toán: Cho hai nguồn sóng kết hợp A, B. M là điểm không thuộc AB và cách A, B các khoảng cho trước. Tìm số điểm dao động với biên độ cực đại hoặc cực tiểu trên AB. Cách giải: Cách 1: Phương pháp đại số Giả sử ta cần tìm số cực đại, cực tiểu trên đoạn MA (hoặc MB thì cũng tương tự). ♦ Xác định tính chất của các nguồn A, B. Nếu hai nguồn cùng pha thì điều kiện cực đại là d 2 – d 1 = kλ, và cực tiểu là d 2 – d 1 = (k + 0,5)λ Nếu hai nguồn ngược pha thì điều kiện cực đại là d 2 – d 1 = (k + 0,5)λ, và cực tiểu là d 2 – d 1 = kλ ♦ Gọi J là điểm trên AM, cách các nguồn các khoảng d 1 , d 2 và đường cực đại hoặc cực tiểu qua J. - Xét khi 1 2 1 d 0 J A d d AB d AB =  ≡ ⇒ → − =  =  - Xét khi 1 2 1 2 d MA J M d d MB MA d MB =  ≡ ⇒ → − = −  =  Khi đó ta 2 1 MB MA k λ AB MB MA d d AB MB MA (k 0,5) λ AB − ≤ ≤  − ≤ − ≤ ⇔  − ≤ + ≤  Giải hệ phương trình trên ta được số các giá trị k nguyên. Đó chính là số điểm cần tìm trên MA. Cách giải được áp dụng tương tự khi tìm số điểm trên MB. Cách 2: Phương pháp hình học ♦ Xác định tính chất của các nguồn A, B. Nếu hai nguôn cùng pha thì trung trực của AB là đường dao động cực đại, khi hai nguồn dao động ngược pha thì trung trực của AB là đường dao động cực tiểu. ♦ Khoảng cách giữa hai đường cực đại hoặc hai cực tiểu liên tiếp là λ/2, khoảng cách giữa một cực đại và một cực tiểu gần nhau nhất là λ/4. ♦ Gọi I là giao điểm của đường cực đại hoặc cực tiểu qua M với đường AB, khi đó ta điều kiện MB MA IB IA IB IA AB − = −   + =  Từ hệ phương trình trên ta tìm được IA, IB. Khi đó, số cực đại hoặc cực tiểu trên MA chính là số cực đại, cực tiểu trên IA. Tương tự, nếu tìm số cực đại, cực tiểu trên MB thì ta tìm trên IB. ♦ Nếu M không phải là đường cực đại hoặc cực tiểu thì I là giao điểm của đường cực đại hoặc cực tiểu gần M nhất, khi đó ta điều kiện MB MA IB IA IB IA AB − ≈ −   + =  Giải hệ phương trình trên ta cũng tìm được IA, IB. Khi đó, số cực đại hoặc cực tiểu trên MA chính là số cực đại, cực tiểu trên IA. Tương tự, nếu tìm số cực đại, cực tiểu trên MB thì ta tìm trên IB. Ví dụ 1. (Đề thi Đại học năm 2010): Ở mặt thoáng của một chất lỏng hai nguồn sóng kết hợp A và B cách nhau 20 cm, dao động theo phương thẳng đứng với phương trình u A = 2cos(40πt) mm và u B = 2cos(40πt + π) mm. Biết tốc độ truyền sóng trên mặt Bài giảng: GIAO THOA SÓNG NÂNG CAO ĐẶNG VIỆT HÙNG Bài giảng Sóng học Website: www.moon.vn Mobile: 0985074831 chất lỏng là 30 cm/s. Xét hình vuông AMNB thuộc mặt thoáng chất lỏng. Số điểm dao động với biên độ cực đại trên đoạn BM là A. 19 B. 18 C. 17 D. 20 Hướng dẫn giải: Cách 1: Phương pháp đại số Hai nguồn A, B dao động ngược pha nên điều kiện cực đại là ( ) 2 2 d d k 0,5 λ − = + , và đường trung trực của AB là đường dao động với biên độ cực tiểu. Gọi J là một điểm trên BM (cách các nguồn lần lượt là d 1 và d 2 như hình vẽ) và dao động với biên độ cực đại. AMNB là hình vuông cạnh 20 cm nên BM 20 2cm. = Khi đó ta ( ) 2 1 2 1 2 1 J A d d 20 2 20 20 d d 20 2 20 20 k 0,5 λ 20 2 20 J B d d 20  ≡ ⇒ − = −  →− ≤ − ≤ − ⇔ − ≤ + ≤ −  ≡ ⇒ − = −   Giải bất phương trình kép trên ta được 13,8 k 5,02 − ≤ ≤ , 19 giá trị của k tức là 19 điểm dao động với biên độ cực đại trên MB. Cách 2: Phương pháp hình học Do hai nguồn ngược pha nên trung trực của AB là cực tiểu. Từ giả thiết ta λ = v/f = 1,5 cm. Giữa hai cực đại liên tiếp cách nhau λ/2 và khoảng cách giữa cực đại, cực tiểu liên tiếp là λ/4 = 0,375 cm. Gọi I là điểm trên AB sao cho đường cực đại đi qua gần M nhất. Sử dụng phép tính gần đúng ta được IB 10 2 IB IA MB MA 20 2 20 IB IA AB 20 IO 10 2 10   = − ≈ − = −   →   + = =  = −    Ta nhận thấy rằng chỉ cực đại trên IB thì mới cực đại trên MB, nên để tìm cực đại trên MB ta tìm trên IB. Các cực đại cách nhau 0,75 cm, trung trực của AB là cực tiểu nên cực đại gần trung trực nhất cách trung trực 0,375 cm. Chọn O làm gốc tọa độ, chiều OB là chiều dương, khi đó tọa độ các cực đại trên IB thỏa mãn: 10 10 2 0,375 0,75k 10 6,02 k 12,83 − < + < ⇔ − < < 19 giá tr ị k nguyên th ỏ a mãn, v ậ y trên MB 19 c ự c đạ i. Nhận xét: Nhìn qua ta thấy cách 2 vẻ dài hơn khá nhiều so với cách 1, tuy nhiên thực tế làm bài thi thì chúng ta nên làm theo cách hai, vì nó trực quan hơn và chỉ cần các bạn nắm được khoảng cách giữa các cực đại, cực tiểu thì chỉ dùng thao tác bấm máy chúng ta thể giải quyết được ngay bài toán. Ví dụ 2: Hai nguồn kết hợp A, B cách nhau 16 cm dao động cùng pha. C là điểm nằm trên đường dao động cực tiểu, giữa đường cực tiểu qua C và trung trực của AB còn một đường dao động cực đại. Biết rằng AC = 17,2 cm; BC = 13,6 cm. Số đường dao động cực đại trên AC là A. 16 B. 6 C. 5 D. 8 Hướng dẫn giải: Hai ngu ồ n A, B dao độ ng cùng pha nên đ i ề u ki ệ n c ự c ti ể u d 2 – d 1 = (k + 0,5) λ và đườ ng trung tr ự c c ủ a AB là đườ ng dao độ ng v ớ i biên độ c ự c đạ i. Gi ữ a C và trung tr ự c AB m ộ t đườ ng c ự c đạ i nên C là đườ ng c ự c ti ể u th ứ hai, ứ ng v ớ i k = 1. Khi đ ó ta ( ) λ 1,2 cm 17,2 13,6 2 CA CB 1 0,5 λ λ 2,4 cm. λ 1,5 0,6 cm 2  =  −  − = + ⇒ = = →   =   ĐẶNG VIỆT HÙNG Bài giảng Sóng học Website: www.moon.vn Mobile: 0985074831 Gọi I là giao của đường cực tiểu qua C và AB, khi đó số cực đại trên AC chính là số cực đại trên AI. Mà I là cực tiểu nên cực đại gần I nhất về phía A cách I một khoảng λ/4 = 0,6 cm. Mặt khác IA IB CA CB 17,2 3,6 IA 9,2 cm IA IB AB 16 − = − = −  → =  + = =  Các cực đại cách nhau 1,2 cm nên số cực đại trên IA là số giá trị k thỏa mãn 0,6 1,2k IA k 7,16 k 0,1 7 k 0 k 0 + < <   ⇔ → =   ≥ ≥   Vậy trên IA 7 đường cực đại, hay trên AC 7 đường dao đọng với biên độ cực đại. Ví dụ 3: Trên mặt nước hai nguồn sóng giống nhau A và B, hai nguồn cùng pha, cách nhau khoảng AB = 10 cm đang dao động vuông góc với mặt nước tạo ra sóng bước sóng λ = 0,5 cm. C và D là hai điểm khác nhau trên mặt nước, CD vuông góc với AB tại M sao cho MA = 3 cm; MC = MD = 4 cm. Số điểm dao động cực đại trên CD là A. 3. B. 4 C. 5. D. 6. Hướng dẫn giải: Ta dễ dàng tính được CA 5cm;CB 65cm DA 5cm;DB 65cm  = =  →  = =   C, D không th ỏ a mãn đ i ề u ki ệ n c ự c đạ i c ũ ng nh ư c ự c ti ể u. G ọ i I là đ i ể m trên AB mà đườ ng c ự c đạ i đ i qua g ầ n C nh ấ t, do tính đố i x ứ ng nên m ỗ i đ i ể m trên MI khi đ ó s ẽ cho hai đ i ể m c ự c đạ i trên CD. Ta 65 5 CB CA IB IA 65 5 IB 2 IB IA AB 10  + − ≈ − = −  → =  + = =   Mà 65 5 MB 7cm MI 7 IB 7 0,468cm 2 + = ⇒ = − = − ≃ S ố c ự c đạ i trên MI là s ố giá tr ị k th ỏ a mãn h ệ ph ươ ng trình λ 0 k. MI 0 0,25k 0,468 k 0;1. 2 ≤ ≤ ⇔ ≤ ≤ → = Vậy trên MI hai điểm cho đường cực đại, trong đó điểm M (ứng với giá trị k = 0). Vậy trên CD 3 điểm dao động với biên độ cực đại (do M chỉ 1 đường, còn điểm kia cho hai đường trên CD). BÀI TẬP LUYỆN TẬP Câu 1: Tại hai điểm trên mặt nước, hai nguồn phát sóng A và B phương trình u = asin(40πt) cm, vận tốc truyền sóng là 50 cm/s, A và B cách nhau 11 cm. Gọi M là điểm trên mặt nước MA = 10 cm và MB = 5 cm. Số điểm dao động cực đại trên đoạn AM là A. 9. B. 7. C. 2. D. 6. Câu 2: Trên mặt nước nằm ngang hai nguồn sóng kết hợp cùng pha A, B cách nhau 6,5 cm, bước sóng λ = 1 cm. Xét điểm M MA = 7,5 cm, MB = 10 cm. Số điểm dao động với biên độ cực tiểu trên đoạn MB là A. 6 B. 8 C. 7 D. 9 Câu 3: Trên mặt nước hai nguồn sóng kết hợp cùng pha A, B cách nhau 6 cm, bước sóng λ = 6 mm. Xét hai điểm C, D trên mặt nước tạo thành hình vuông ABCD. Số điểm dao động với biên độ cực tiểu trên CD A. 6 B. 8 C. 4 D. 10 Câu 4: Tại hai điểm A và B trên mặt nước cách nhau 16 cm hai nguồn phát sóng kết hợp dao động theo phương trình u 1 = acos(30πt); u 2 = acos(30πt + π/2). Tốc độ truyền sóng trên mặt nước 30 cm/s. Gọi E, F là hai điểm trên đoạn AB sao cho AE = FB = 2 cm. Tìm số cực tiểu trên đoạn EF. A. 10 B. 11 C. 12 D. 13 Câu 5: Tại hai điểm A và B trên mặt chất lỏng cách nhau 15 cm hai nguồn phát sóng kết hợp dao động theo phương trình u 1 = acos(40πt); u 2 = acos(40πt + π). Tốc độ truyền sóng trên mặt chất lỏng 40 cm/s. Gọi E, F là hai ĐẶNG VIỆT HÙNG Bài giảng Sóng học Website: www.moon.vn Mobile: 0985074831 điểm trên đoạn AB sao cho AE = EF = FB. Tìm số cực đại trên đoạn EF. A. 7 B. 6 C. 5 D. 4 Câu 6: Tại mặt nước nằm ngang, hai nguồn kết hợp A và B dao động theo phương thẳng đứng với phương trình lần lượt là u A = a 1 sin(40πt + π/6) cm, u B = a 2 sin(40πt + π/2) cm. Hai nguồn đó tác động lên mặt nước tại hai điểm A và B cách nhau 18cm. Biết tốc độ truyền sóng trên mặt nước v = 120 cm/s. Gọi C và D là hai điểm thuộc mặt nước sao cho ABCD là hình vuông. Số điểm dao động với biên độ cực tiểu trên đoạn CD là A. 4. B. 3. C. 2. D. 1. Câu 7: Trên mặt chất lỏng hai nguồn kết hợp A, B cách nhau 8 cm, dao động theo phương trình lần lượt A B u acos(8 πt) u acos(8 πt π) =   = +  . Biết tốc độ truyền sóng là 4 cm/s. Gọi C, D là hai điểm trên mặt chất lỏng mà ABCD là hình chữ nhật cạnh BC = 6 cm.Tính số điểm dao động với biên độ cực đại và cực tiểu trên đoạn CD Đ/s: Cực đại là 6, cực tiểu là 7. Câu 8: Giao thoa của 2 nguồn kết hợp giống nhau là A, B tần số 20 Hz, tại 1 điểm M trên mặt nước cách A, B lần lượt 25 cm và 20,5 cm thì sóng biên độ cực đại. Giữa M và trung trực của AB 2 dãy cực đại khác a) Tìm tốc độ truyền sóng. b) Gọi C, D là 2 điểm trên mặt nước sao cho hình vuông ABCD. Tính số điểm dao động với biên độ cực đại trên CD, biết rằng AB = 8 cm. Đáp số: a) v = 30 cm. b) Trên CD 5 điểm dao động với biên độ cực đại. DẠNG 2. TÌM ĐIỂM DAO ĐỘNG CÙNG PHA HOẶC NGƯỢC PHA VỚI HAI NGUỒN Ví dụ 1: Trên mặt nước hai nguồn sóng nước giống nhau A và B dao động cùng pha với biên độ sóng không đổi bằng a, cách nhau một khoảng AB = 12 cm. C là một điểm trên mặt nước, cách đều hai nguồn và cách trung điểm O của đoạn AB một khoảng CO = 8 cm. Biết bước sóng λ = 1,6 cm. Số điểm dao động ngược pha với nguồn trên đoạn CO là A. 4 B. 5 C. 2 D. 3 Hướng dẫn giải: Gọi M là điểm trên đường trung trực của AB, M cách các nguồn d 1 , d 2 với d 1 = d 2 = d. Phương trình sóng truyền từ A đến M là AM 2 πd u acos ωt λ   = −     Phương trình sóng truyền từ B đến M là BM 2 πd u a cos ωt λ   = −     Phương trình dao động tổng hợp tại M là M AM BM 2 πd 2πd u u u 2acos .cos ωt λ λ     = + = −         Từ đó, độ lệch pha của M với các nguồn là 2 πd φ λ ∆ = , M ngược pha với hai nguồn khi 2πd φ (2k 1)π (2k 1)π λ (2k 1)λ d 0,8(2k 1) 2 ∆ = + → = + + ←→ = = + Ta dẽ dàng tính được AC = BC = 10 cm. M chạy trên CO nên 6 cm ≤ d ≤ 10 cm Từ đó ta ( ) 6 0,8 2k 1 10 3,25 k 5,75 k 4;5 ≤ + ≤ ⇒ ≤ ≤ → = Vậy hai điểm M thỏa mãn, chọn C. Ví dụ 2: Hai mũi nhọn A, B cách nhau 8 cm gắn vào đầu một cần rung tần số f = 100 Hz, đặt chạm nhẹ vào mặt m ột chất lỏng. Tốc độ truyền sóng trên mặt chất lỏng v = 0,8 m/s. Hai nguồn A, B dao động theo phương thẳng đứng với cùng phương trình u A = u B = acos(ωt) cm. Một điểm M 1 trên mặt chất lỏng cách đều A, B một khoảng d = 8 cm. Tìm trên đường trung trực của AB một điểm M 2 gần M 1 nhất và dao động cùng pha với M 1 . A. M 1 M 2 = 0,2 cm; M 1 M' 2 = 0,4 cm. B. M 1 M 2 = 0,91 cm; M 1 M' 2 = 0,94 cm. ĐẶNG VIỆT HÙNG Bài giảng Sóng học Website: www.moon.vn Mobile: 0985074831 C. M 1 M 2 = 9,1 cm; M 1 M' 2 = 9,4 cm. D. M 1 M 2 = 2 cm; M 1 M' 2 = 4 cm. Tương tự ví dụ trên ta độ lệch pha của M 1 và M 2 với hai nguồn A, B là M M' 2 πd φ λ 2 πd' φ λ  ∆ =     ∆ =   ⇒ độ lệch pha của M 1 với M 2 là 2 π(d' d) φ λ − ∆ = Để M 1 và M 2 dao động cùng pha thì 2π(d' d) φ k2π d' d kλ λ − ∆ = = ⇒ − = Do M 1 và M 2 khác nhau nên để độ dài M 1 M 2 ngắn nhất thì k 1 = ± TH1: k = 1 ⇒ d’ = d + λ = d + 0,8 = 8,8 cm. Khi đó, 2 2 2 2 1 2 2 1 M M OM OM 8,8 4 8 4 0,91cm. = − = − − − = TH2: k = –1 ⇒ d’ = d – λ = d – 0,8 = 7,2 cm. Khi đ ó, 2 2 2 2 1 2 2 1 M M OM OM 8 4 7,2 4 0,94 cm. = − = − − − = V ậ y hai đ i ể m M 2 th ỏ a mãn, chọn B . BÀI TẬP LUYỆN TẬP Câu 1: Hai ngu ồ n k ế t h ợ p S 1 và S 2 cách nhau m ộ t kho ả ng là 11 cm đề u dao độ ng theo ph ươ ng trình u = acos(20 π t) mm trên m ặ t n ướ c. Bi ế t t ố c độ truy ề n sóng trên m ặ t n ướ c 0,4 m/s và biên độ sóng không đổ i khi truy ề n đ i. H ỏ i đ i ể m g ầ n nh ấ t dao độ ng ng ượ c pha v ớ i các ngu ồ n n ằ m trên đườ ng trung tr ự c c ủ a S 1 S 2 cách ngu ồ n S 1 bao nhiêu? A. 32 cm B. 18 cm C. 24 cm D. 6 cm Câu 2: Hai ngu ồ n k ế t h ợ p S 1 , S 2 cách nhau m ộ t kho ả ng là 50 mm đề u dao độ ng theo ph ươ ng trình u = asin(200 π t) mm trên m ặ t n ướ c. Bi ế t v ậ n t ố c truy ề n sóng trên m ặ t n ướ c v = 0,8 m/s và biên độ sóng không đổ i khi truy ề n đ i. H ỏ i đ i ể m g ầ n nh ấ t dao độ ng cùng pha v ớ i ngu ồ n trên đườ ng trung tr ự c c ủ a S 1 S 2 cách ngu ồ n S 1 bao nhiêu? A. 32 mm B. 28 mm C. 24 mm D. 12 mm Câu 3: Trên m ặ t n ướ c hai ngu ồ n sóng gi ố ng nhau A và B, cách nhau kho ả ng AB = 12 cm đ ang dao độ ng vuông góc v ớ i m ặ t n ướ c t ạ o ra sóng b ướ c sóng λ = 1,6 cm. C và D là hai đ i ể m khác nhau trên m ặ t n ướ c, cách đề u hai ngu ồ n và cách trung đ i ể m O c ủ a AB m ộ t kho ả ng 8 cm. S ố đ i ể m dao độ ng cùng pha v ớ i ngu ồ n ở trên đ o ạ n CD là A. 3. B. 10. C. 5. D. 6. Câu 4: Hai ngu ồ n k ế t h ợ p cùng pha O 1 , O 2 λ = 5 cm, đ i ể m M cách ngu ồ n O 1 là 31 cm, cách O 2 là 18 cm. Đ i ể m N cách ngu ồ n O 1 là 22 cm, cách O 2 là 43 cm. Trong kho ả ng MN bao nhiêu g ợ n l ồ i, g ợ n lõm? A. 7; 7 B. 7; 8 C. 6; 7 D. 6; 8 Câu 5: Trên m ặ t n ướ c hai ngu ồ n phát sóng k ế t h ợ p S 1 và S 2 , dao độ ng theo các ph ươ ng trình l ầ n l ượ t là u 1 = acos(50 π t + π /2) và u 2 = acos(50 π t). T ố c độ truy ề n sóng c ủ a các ngu ồ n trên m ặ t n ướ c là 1 m/s. Hai đ i ể m P, Q thu ộ c h ệ vân giao thoa hi ệ u kho ả ng cách đế n hai ngu ồ n là PS 1 – PS 2 = 5 cm, QS 1 – QS 2 = 7 cm. H ỏ i các đ i ể m P, Q n ằ m trên đườ ng dao độ ng c ự c đạ i hay c ự c ti ể u? A. P, Q thu ộ c c ự c đạ i B. P, Q thu ộ c c ự c ti ể u C. P c ự c đạ i, Q c ự c ti ể u D. P c ự c ti ể u, Q c ự c đạ i Câu 6: Trong thí nghi ệ m giao thoa v ớ i hai ngu ồ n phát sóng gi ố ng nhau t ạ i A, B trên m ặ t n ướ c. Kho ả ng cách hai ngu ồ n là AB = 16 cm. Hai sóng truy ề n đ i b ướ c sóng λ = 4 cm. Trên đườ ng th ẳ ng xx’ song song v ớ i AB, cách AB m ộ t kho ả ng 8 cm, g ọ i C là giao đ i ể m c ủ a xx’ v ớ i đườ ng trung tr ự c c ủ a AB. Kho ả ng cách ng ắ n nh ấ t t ừ C đế n đ i ể m dao độ ng v ớ i biên độ c ự c ti ể u n ằ m trên xx' là A. 1,42 cm. B. 1,5 cm. C. 2,15 cm. D. 2,25 cm. . 2cos(40πt + π) mm. Biết tốc độ truyền sóng trên mặt Bài giảng: GIAO THOA SÓNG NÂNG CAO ĐẶNG VIỆT HÙNG Bài giảng Sóng cơ học Website: www.moon.vn Mobile: 0985074831 chất lỏng là 30 cm/s. Xét. nguồn sóng kết hợp A và B cách nhau 20 cm, dao động theo phương thẳng đứng với phương trình u A = 2cos(40πt) mm và u B = 2cos(40πt + π) mm. Biết tốc độ truyền sóng trên mặt Bài giảng: GIAO THOA. HÙNG Bài giảng Sóng cơ học Website: www.moon.vn Mobile: 0985074831 DẠNG 1. TÌM SỐ ĐIỂM DAO ĐỘNG VỚI BIÊN ĐỘ CỰC ĐẠI HOẶC CỰC TIỂU TRÊN ĐOẠN KHÔNG PHẢI ĐƯỜNG NỐI HAI NGUỒN SÓNG Bài

Ngày đăng: 19/06/2014, 20:20

TỪ KHÓA LIÊN QUAN

w