1. Trang chủ
  2. » Luận Văn - Báo Cáo

0739 nghiên cứu tổng hợp và biến tính vật liệu ms2 (mmo2 w) bằng g c3n4 làm chất xúc tác quang luận văn tốt nghiệp

150 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Synthesis And Modification Of MS2 (M= Mo,W) With g-C3N4 For Photocatalysis
Tác giả Truong Duy Huong
Người hướng dẫn Assoc. Prof. Vo Vien, Prof. M. Enis Leblebici
Trường học Quy Nhon University
Chuyên ngành Physical And Theoretical Chemistry
Thể loại Doctoral Thesis
Năm xuất bản 2021
Thành phố Binh Dinh
Định dạng
Số trang 150
Dung lượng 4,3 MB

Cấu trúc

  • 1.1. OVERVIEWOFCURRENTPHOTOCATALYSTS (28)
  • 1.2. MS 2 -BASED(M=Mo,W)PHOTOCATALYSTS (30)
    • 1.2.1. StructuresofMS 2 (M=Mo,W) (30)
    • 1.2.2. MS 2 -basedcomposites (32)
    • 1.2.3. Synthesismethods (33)
      • 1.2.3.1. MS 2 (M=Mo,W)synthesis (33)
      • 1.2.3.2. MS 2 /g-C 3 N 4 synthesis (35)
  • 1.3. PHOTOCATALYTIC PROCESS, LIGHT SOURCES ANDASSESSMENTBENCHMARKS (36)
    • 1.3.1. Photocatalyticdegradationmechanism (36)
    • 1.3.2. Reactionkinetics (38)
    • 1.3.3. Adsorptionroleinphotocatalyticprocess (39)
    • 1.3.4. Lightsourcesforphotocatalysis–Lightemittingdiodes(LEDs)18 1.3.5. Photocatalyticreactorassessment (41)
  • 1.4. PHOTODEGRADATION OF ANTIBIOTICS AND DYES INAQUEOUSSOLUTION (44)
    • 1.4.1. Antibioticsphotodegradation (44)
    • 1.4.2. Dyesphotodegradation (45)
  • 1.5. PHOTOCATALYTICPILOTDESIGNOVERVIEW (47)
    • 1.5.1. Slurryreactorsversusimmobilizedcatalystreactors (48)
    • 1.5.2. Photocatalystseparation (49)
      • 1.5.2.1. Catalystimmobilization (49)
      • 1.5.2.2. Catalystseparation (50)
  • 2.1. CHEMICALSANDEQUIPMENT (51)
  • 2.2. MATERIALSFABRICATION (52)
    • 2.2.1. FabricationofWS 2 /g-C 3 N 4 (52)
    • 2.2.2. FabricationofMoS 2 /g-C 3 N 4 (54)
  • 2.3. CHARACTERIZATIONS (57)
    • 2.3.1. Materialcharacterizations (57)
    • 2.3.2. Determiningpointofzerocharge (57)
    • 2.3.3. Lightspectraandintensity (58)
  • 2.4. PHOTOCATALYTICEXPERIMENTS (58)
    • 2.4.1. Reactionsystem (58)
    • 2.4.2. Photocatalyticactivityevaluation (59)
    • 2.4.3. Calibrationcurves (61)
    • 2.4.4. Measurement of emitted irradiance using spectrophotometerprobe.................................................................... 39 2.4.5. CODmeasurement (62)
    • 2.4.6. High performance liquid chromatography (HPLC) and massspectrometry(MS) 40 2.4.7. Activespeciesdetermination (63)
    • 2.4.8. Oxidizingagent (64)
  • 2.5. PILOTDESIGN (65)
    • 2.5.1. Pilotdescriptionandoperatingprinciples (65)
    • 2.5.2. Detailedinstructions (66)
    • 2.5.3. TimingprogramforArduinocircuit (69)
    • 2.5.4. Sedimentationprocedureandcatalystrecoverypercentage (69)
  • 2.6. CALCULATIONS (70)
    • 2.6.2. Adsorption capacity (70)
    • 2.6.3. Flowrate forturbulentregime (71)
    • 2.6.4. Throughput forphotocatalytic pilot (71)
  • 3.1. MATERIALCHARACTERIZATIONS (72)
    • 3.1.1. WS 2 /g-C 3 N 4 characterizations (72)
      • 3.1.1.1. X-raydiffraction (72)
      • 3.1.1.2. Scanning electronmicroscopy (73)
      • 3.1.1.3. Energy-dispersiveX-rayelementalmapping (74)
      • 3.1.1.4. Transmissionelectronmicroscopy (75)
      • 3.1.1.5. Infraredspectroscopy (76)
      • 3.1.1.6. Raman spectroscopy (77)
      • 3.1.1.7. X-rayphotoelectronspectroscopy (78)
      • 3.1.1.8. Thermogravimetricanalysis (80)
      • 3.1.1.9. UV-Visdiffusereflectancespectroscopy (81)
    • 3.1.2. MoS 2 /g-C 3 N 4 characterizations (82)
      • 3.1.2.1. X-raydiffraction (82)
      • 3.1.2.2. Infraredspectroscopy (83)
      • 3.1.2.3. X-rayphotoelectronspectroscopy (84)
      • 3.1.2.4. BETSurfacearea analysis (85)
      • 3.1.2.5. Thermogravimetricanalysis (86)
      • 3.1.2.6. UV–vis diffusereflectance spectroscopy (88)
      • 3.1.2.7. Energy-dispersiveX-rayelementalmapping (88)
  • 3.2. MATERIALPHOTOCATALYTICACTIVITY (90)
    • 3.2.1. Adsorption-desorption equilibriumtime (90)
    • 3.2.2. Photocatalyticactivitycomparisons (92)
    • 3.2.3. Effectofcatalyst loading (95)
    • 3.2.4. Adsorption andphotocatalysis (97)
      • 3.2.4.1. Pointofzerochargeandexistedforms ofdye molecules (97)
      • 3.2.4.2. EffectofpHsolution,importantroleofadsorptionstep (99)
    • 3.2.5. A new benchmark for efficiency evaluation of reaction reactor – Photochemicalspacetimeyield (104)
      • 3.2.5.1. Calculatereactionrateconstantunderoptimalcondition (104)
      • 3.2.5.2. PSTYcalculationsforthechosenreactionsystems (105)
    • 3.2.6. Mechanisminvestigation (107)
      • 3.2.6.1. Effectofoxidantconcentration (107)
      • 3.2.6.2. Reactive species trapping experiments and proposedphotocatalyticmechanism (109)
    • 3.2.7. Applications (114)
      • 3.2.7.1. Photodegradationofaselectedantibiotic,enrofloxacin (114)
      • 3.2.7.2. Designed-pilotevaluation (119)
  • 2.3. Images of samples g-C 3 N 4 , MoS 2 , MCN1, MCN2, MCN3 andMCN5 (0)
  • desorptionequilibriumofRhBoverMoS 2 inthedark.Conditions:initialMBconcentration25 (0)
  • CN 1 catalystintheconditions:irradiatedvolume:25mL,initialRhBconcentration (0)
    • 5.0 ppm, pH: 3.0, 25 o C, under blue light, and (b) MB degradation over 7WCNcatalystintheconditions:irradiatedvolume:90mL,i n i t i a l M B concentra tion:3 0 . 0 m g . L -1 ,p H 6 . 4 , 2 5 o C,u n d e r 1 0 0 W i n c a n d e s c e n t l a m p (108)
    • 30.0 mg.L -1 , pH 2.5 for RhB and 9 for MB , catalyst loading: 0.7 g.L -1 , (0)
    • 5.0 mg.L -1 ,pH3.0,MCN1catalystloading:0.7g.L -1 ,25 o C,underbluelight (113)
    • 3.0 V) at pH 4, 25o C, initial EFA concentration 5 ppm, catalyst loading 1 g.L -1 and (116)
  • ofMoS 2 g-C 3 N 4 catalyst (0.7g.L -1 )suspensionat pH3.5 (0)

Nội dung

OVERVIEWOFCURRENTPHOTOCATALYSTS

The first photocatalyst studied in 1972 by Fujishima and Honda [59] isTiO2acting as an anode for water splitting in a photochemical cell Five yearslater, in 1977, it was first used by Frank and Bard for the reduction of CNˉ inwaterwideningitsapplicationtophotodegradationofpollutantsintheenvironme nt[55] So far, TiO2has become themost widely investigatedphotocatalyst due to its unique photocatalytic efficiency, photo-stability, lowcost,nontoxicity,availability,thermalandchemicalstability.BesidesTiO2andthe other photocatalystZnOhaveexhibitedtheiradvancedphotocatalyticactivity for wastewater treatment as well [100] However, they all possess thesamedisadvantagethattheydonotworkunderthevisiblelightbecauseoftheirlargeband gap,e.g.anataseTiO2hasthebandgapof3.2eV,whichsignificantly prevents them from using solar energy for activation This is dueto the fact that in the solar spectrum ultraviolet light accounts for only 4-5%,meanwhile the visible light makes up to nearly 40% of the solar energy [135].To dealt with this vital deficiency many modifications have been employed tomake them become active in the visible light region with good efficiency suchasdoping [39], [52],[100],[130], [172],dy esensitization [9] ,[110],[112],

[203] heterogeneous coupling [87], [101], [189], [195], [203],etc In additiontothat,alotofefforthasbeenmadetodevelopnovelmaterialswhichthemselves are active under the visible light without any modification. ThematerialswhichfallintothiscategoryhavebeenwidelyinvestigatedincludingBi2W

O6[40], BiVO4[49], Bi24O31Br10[150], Ag3PO4[80], CaIn2O4[45], g-

C3N4[200],etc However, in order to improve the photocatalytic performancetheyhavebeenusuallycombinedwithothercomponents,forinstance,B iVO4/rGO[158],ZnSnO3/rGO[64],Ag3PO4/g-C3N4[73],Ag/AgBr/g-C3N4

[26], Ag/AgVO3/rGO [222] Doping has also been a technique for enhancingthephotocatalyticactivity,suchasO-g-C3N4[56],Bi-Ag3PO4[217],Co- BiVO4[226],Mo-BiVO4[30],B-Bi2WO6[58].

Among these visible-light-driven photocatalysts, MoS2-based and WS2- based,thetransition-metal-dichalcogenides-basedphotocatalysts,haveattracted attention of many scientists due to their appropriate bandgap forvisible-light harvesting and the other unique properties as you will see in thenext section, leading to a variety of applications such as hydrogen production,pollutionreduction,andphotosynthesis[74],[113],[121],[146].

Carbon nitride with graphite-like structure (g-C3N4), a metal- freeorganicsemiconductorhasalluredsignificantattentionasapotentialphoto catalyst due to its electronic structure with band gap of 2.7 eV andrelativelyhighchemicalstability[184].However,photocatalyticperforma nce of pure g-C3N4is limited because of its poor absorption in thevisible region, fast recombination of photo-generated charge carriers andlow specific surface area [214] In order to overcome these disadvantages,similar to above mentioned techniques, various methods have also beenapplied such as co-polymerization [86], [212] altering different precursors[213], [220] and non-metal doping [215] Therefore, coupling techniqueswithotherco- catalystsisapromisingwaytoenhancephotocatalyticefficiency[141].

Some reports showed that the presence of MS2plays a beneficial role inimprovement of light harvesting, electron transfer at interfaces, and chargecarrier separation in the composite materials with g-C3N4 These benefitsareexplainedwithproperbandgapedgepositionsandgoodlatticematc hing of MS2andg-C3N4[78],[181].

MS 2 -BASED(M=Mo,W)PHOTOCATALYSTS

StructuresofMS 2 (M=Mo,W)

MoS2and WS2are materials that belong to a family of transition metalchalcogenides(TMDs)withlayeredstructureinwhicheachunit(MS2)compr isesatransitionmetal(M=Mo,W)layersandwichedbetweentwosulfuratomiclayers.MoS2 structurerepresentativeisshown in Figure1.1.

Figure 1.1 MoS2structure in three dimensions with the distance between thetwo adjacentlayersof 6.5 Å[142].

TherearethreetypesofstructuresofTMDsdependingonthearrangement of the atoms, namely, hexagonal (H), tetragonal (T) and theirdistortedphase(T’) [34].TakingMoS2asarepresentativeofthetwomaterials,it has four following polytypes 1H, 1T 2H and 3R as with the drawings shownin Figure1.2.

More specifically, in the 1H phase, the basic unit of MoS2monolayer,the sulfur atoms are organized into two layers creating a sandwich structurehaving a layer of molybdenum atoms in the middle, and the S atoms in theupperlayerarelocateddirectlyabovethoseonthelowerlayers.Meanwh ile, for 1T-MoS2the Mo atoms located at the center positions of the octahedralinterstices of the S layers and the S atoms in the upper and lower planes areoffset fromeach other toformaunitcell[74].

Figure1.2.Four commonMoS2poly-types [12].

The next polytype of MoS2is 2H with two MoS2units in the unit cell.Each layer has the structure of 1H with a monatomic Mo plane between twomonatomic S planes in a manner described above Two layers, which areweakly coupled by van der Waals interaction, in the unit cell are arranged sothatMoatomsofonelayerarelocatedontopofSatomsintwoadjacentlayers[10].The3R MoS2alsohasthesametrigonalprismaticcoordinationasthe2HMoS2,however,therear ethreeMoS2unitsperunitcell.Offourpolytypes,1His the most stable, it is also the stable phase of 2D MoS2[202] In bulk MoS2,both 1T and 2H exist However, the latter phase is usually more stable and itsproperties is different from the former (1T is a metal, meanwhile, 2H is asemiconductor)

[193].AsbulkformMoS2(2H)isanindirectbandgapsemiconductor with a bandgap value of 1.3 eV, when reducing the samplethickness down to a few atomic layers or even to a 2H monolayer the bandgapis widened to 2.1 eV [61], however, still as an indirect form As mentionedabove,a2Hmonolayeriscomposedoftwolayersof1Hlinkedtogetherjustby weak interaction of van der Waals force, this allows that monolayer to befurther divided, leading to a three atomic layer sheet [11] The transformationalso converts the for a single 1H layer from indirect to direct bandgap with thecalculated value increasing to 2.3 eV [38] Similarly, the bandgap of WS2hasthe value of1.35 eV for bulk material as indirect [94] and approximate 2.0 eVfor monolayer as direct one [210] This optical property suggests that suchmaterials can strongly absorb in the visible region of the solar spectrum, and itis more appropriatewhenusedasacocatalyst.

MS 2 -basedcomposites

Similar to the other photocatalysts such as TiO2, MS2(M = Mo, W) hasbeen widely used in the form of composites to improve the photocatalyticactivitiesoftheindividualcomponents,especiallyinthefieldofphotocatalyticde gradation of organic contaminants The composites in which MS2(M = Mo,W) used as a cocatalyst have been recently developed such as MoS2/grapheneoxide[47],[96],[106],[224],[229];MoS2/g-

MoS2/TiO2[79],[165],[218];MoS2/BiOBr[43],[155],[196];WS2/WO3[44],

C3N4hasbeenconsideredasapromisingcandidateduetoits electronic structure with band gap of2.7 eV,in additiontolow-cost,abundanceofsource,non- toxicityandchemicalstability[83],[114],[211].ThecombinationofMoS2andg-

C3N4tocreateacompositeisfavourableduetothetwo facts, firstly, both of them are layered materials could result in intimatecontactsfacilitatingforthechargetransferbetweenthetwophases,andanothercomesf romtheproperbandedgesofthetwocomponents[181]toproducetypeIIofsemiconductor heterojunctions[185].Regardingtheproperbandedges,g-C3N4has the conduction band (CB) and valence band (VB) edges at -1.13 eVand+1.57eV,respectively,meanwhile,thecorrespondingvaluesofMoS2 as nanosheetsare-0.1and+2.0eV[61].Thisdifferenceinbandedgesallowstheelectrons to transfer from the CB of g-C3N4to that of MoS2and the holestransfer from the VB of MoS2to that of g-C3N4 As a result, in the formedcompositeMoS2/g-

C3N4bothelectronsandholesaremoremobilecomparedtotheindividualcomponents.Thisl eadstothereductioninrecombinationrateofphotoinducedchargecarriers,thereforeincreasi ngthephotocatalyticactivity.

Synthesismethods

InordertoobtainMS2asmonoorfewlayersthetwofollowingstrategies,namely, “top- down” exfoliation and “bottom-up” synthesis methods have beenwidelyused[219].Thetworepresentativesfortheformerstrategy areme chanicalexfoliationandexfoliationmethod,meanwhile,hydrothermalmet hod,solvothermalmethodandchemicalvapordepositionrepresentingforthelatt erone[193].Likegraphenesheetssynthesis,MoS2single- layercanbeexfoliatedf r o m S i O2/Siw i t h t h e S c o t c h - t a p e m e t h o d [ 1 0 3 ] R e g a r d i n g t h e exfoliationm e t h o d w h i c h c o u l d b e c h e m i c a l e x f o l i a t i o n [ 6 5 ] , l i q u i d - p h a s e exfoliation

[69] and electrochemical exfoliation [117] Lithium ionintercalationisthemostcommonchemicalmethodforfabricationof1Tmetallic MoS2usingn-butyllithium inhexanereactingwithMoS2powderunderargonatmosphere,at65 o Covernighttofor mLixMoS2.Aftertheremovalofunreactedn- butyllithiumanditsorganicresidue,theembeddedMoS2wasdispersedi n d e i o n i z e d w a t e r , t h e n c e n t r i f u g e d t o g e t t h e s t a b l e M o S2nanosheets[ 6 5 ] S o n i c a t i o n , a l i q u i d - p h a s e e x f o l i a t i o n i s a l s o a n e f f e c t i v e methodforpreparationofMo

S2nanosheets[37].TheexfoliationmethodcanbeusedtofabricateWS2nanosh eetsaswell.Amongthementionedmethods,the hydrothermal method is the most common regarding economical aspect Inthismethod,anamount ofsulfursource,commonlyused suchasthioureaand thioacetamide, and a molybdenum salt, such as Na2MoO4, (NH4)6Mo7O24aremixed together in deionized water, then the resultant solution was heated in anoven at 200 o C for 24h after being transferred to a Teflon-lined stainless steelautoclave [36], [227] If an organic solvent is used instead of water, the otherconditions keep the same then the method called solvothermal method Somewidely used organic solvent for this task include N-N-dimethylformamide, 1-methyl-2-pyrrolidinoneandpolyethyleneglycol- 600.Inordertocreateahigh-quality atomic thin MoS2, chemical vapor deposition (CVD) has been broadlyemployed For example, MoS2could be synthesized by sulfurization of MoO3using this method [104] WS2nanosheets were also synthesized using thosemethodsappliedforMoS2asmentionedabove,suchasmechanicalexfoliation[134 ],[138],chemicalexfoliation[35],[115],liquid-phaseexfoliation[223], hydrothermalmethod[ 2 1 ] , [46]andCVDmethod [171],[204].

In contrast to the synthesis of MoS2as discussed in the previoussection, the synthesis of the MoS2/g-C3N4composite has been reported injust a few studies [109], [154], [170] Generally, the reported methodsconsist of three steps in which the two individual materials g-

C3N4andMoS2are produced separately by heating precursors such as urea, melamine,cyanamide for the former, and using a hydrothermal method for the latter.Then, the mixture of g-C3N4and MoS2is treated by ultrasound. However,both of the hydrothermal and ultrasound steps require high energy and theformeroccursathydrothermalconditions.Similarly,fewreportsonWS2/g-

C3N4as photocatalysts have been published [4], [78] For example, WS2/mpg-

(NH4)2WS4as WS2precursor in the presence of mpg-C3N4under theatmosphereo f t h e g a s m i x t u r e o f H2Sa n d H2[ 7 8 ] I n a n o t h e r s t u d y, g -

CS2gas [4] Therefore, a facile method to synthesize a large amountof the materials without compromising photocatalytic activity is still inneed.

PHOTOCATALYTIC PROCESS, LIGHT SOURCES ANDASSESSMENTBENCHMARKS

Photocatalyticdegradationmechanism

Ingeneral,thesystemofheterogeneousphotocatalysisusingthesemiconduc tor material to absorb the suitable light to produce charge carriers,thenthesespecieswilltakepartintheredoxreactionsoccurringonthesurfaceof the material but the semiconductor is still unchanged after the process. Thiskindofmaterialiscalledaphotocatalyst.Thesuitablelightasmentionedaboveis the electromagnetic irradiation which has photon energy,hν, equal to orgreaterthanthebandgap(E g )oftheemployedphotocatalyst.Theexcitationofan electron (e - ) from the valence band (VB) to the conduction band (CB) willhappenoncethelightisabsorbed,leavingbehindaphotogeneratedhole(h + )attheVB asillustratedin Figure 1.3.

These photoinduced electrons and holes can recombine and give off theabsorbed energy as heat form (Equation 1.2) or migrate to the surface of thecatalysttoreactwiththeavailablemoleculesinthesystemsuchasoxygenandwatertofo rmreactiveradicalsincludingHO˙andO2˙ˉ(Equations1.3and1.4),respectively Subsequently, these powerful species along with holes couldcompletely photodegrade the organic pollutants presenting in the system tosimple molecules such as carbon dioxide and water through a number ofintermediatespecies(Eq.1.5).Thesereactionswerebroadlyproposedasfollows[17]:

Therecombinationphenomenonofe - andh + occursjustwithinpicoseconds after photogeneration if there is no scavenger in the system [17].However,eveninthepresenceofscavengers,therecombinationofthephotoin duced charges is not completely avoidable due to its high rate Thisleads to the dissipation of energy and thereby reducing the quantum efficiency[32].Thecausesforthisphenomenoncouldbeascribedtoimperfectionsinthecr ystalanditmayhappenbothonthesurfaceandinthebulkofthesemiconductor.Thus,th etechniquesthatareusedinprolongingthelifetimeofthep h o t o g e n e r a t e d e l e c t r o n s a n d h o l e s p l a y a c r u c i a l r o l e i n i m p r o v i n g t h e

Reactant adsorption onto the surface of photocatalyst (fast)

Reactant (R) transportation in the solution

Product (P) transportation in the solution

(slow) photocatalytic activity of the photocatalyst The normal methods which havebeen applied for this purpose are doping, co-catalyst addition, heterogeneouscoupling,etc This will be discussed in more detail in the below sub-sectionsofthischapter.

Reactionkinetics

Inthephotocatalyticprocessforphotodegradationoforganiccontaminant, a series of five consecutive steps includes the transportation ofreactant from bulk of the solution to adsorb onto surface of the catalyst, thenthe interfacial photoreaction and finally the desorption of the product to thebulk from the surface This five-step process is illustrated by a flowchart asshownbelow.

For consecutive reactions as shown in Figure 1.4, the overall photocatalyticreaction rate is controlled by the slowest stage This rate determining step inthe photocatalysis process would be the photoreaction taking place on thecatalyst’ssurfaceifthereactorisundercontinuouslystirredcondition,thentherateof thereaction(r) converting (R)into (P)canbedefinedas, r=-dC/dt=k.θ (1.6) where θ is the fraction of the reactant absorbed,kis the reaction rate and if theadsorption process obeys the Langmuir model then this quantity can be foundas follows, θ=KC/(1+KC) (1.7) whereCis theconcentrationofthereactantattheadsorption- desorptionequilibrium, andKis the adsorption coefficient of the reactant From Eq.(1.6)and (1.7),the reactionrate becomes, r =-dC/dt=kKC/(1+KC) (1.8)

Equation1.8expressesthekineticsofthephotocatalyticdegradationoforganiccompounds which follow the Langmuir-Hinshelwood model [60] In the caseof a low concentration of the reactant,C TBA > DMSO The resultalso indicated that TEOA scavenger exhibited much stronger inhibitionshowingthatholewasthedominantreactivespeciesinthephotodegra dationprocessofRhBoverMCN1catalystunderstudiedconditions.Thisimpor tantroleofholewassupportedbythemorepositive valencebandedgeofg-C3N4comparedtotheredoxpotentialofRhB(+1.57V vs +1.43 V) [201].The hole of MoS2also was able to oxidize RhBdirectlyduetoitsmorepositivepotential+2V[136].Meanwhile,thequitestrong adverse-effect caused by BQ and TBA scavengers revealed that theoxygenreactivespecies,namely,thesuperoxideradicalanionandhydroxylradical also play their important part in the overall photocatalysis.

Theformationofthesespeciescouldbeattributedtothemorenegativepotentialof electron which generated from g-C3N4conduction band edge -1.13 Vcompared to the reduction potential of the redox pair O2/O2˙ˉ of -0.28 V[197].Furthermore,theOH˙radicalwasjustproducedfromO2˙ˉasdiscussed detailedly later, this resulted in decreasing its role in the wholeprocess. Meanwhile, the direct formation of this type of reactive speciesfrom H2O and hole was unfavorable energetically due to the too muchpositive potential of the pair OH˙/H2O However, the role of electrons inthe process was insignificant as seen in Figure 3.38, when there was apresence of DMSO, an electron scavenger, just a minor effect observed onthe photodegradation rateofRhBover thecatalyst.

From the exploration of the role of reactive species as discussedabove and the separation of charge in the composite as seen in

PL spectrain Figure 3.24 could help us to propose a photocatalytic mechanism asillustrated in Figure 3.38a The charge separation could be attributed to thelower conduction band position of MoS2in the composite leading to itsability to receive photoexcited electrons from g-C3N4[154], which favourstheseparationofelectron-holepairs.TheseparatedelectronsonthesurfaceofMoS2reduces present oxidants in the solution In the case of dissolvedoxygen this reduction step, which also occurs on the surface,can be givenas,

The formed superoxide radical anion continuously undergoes threemore steps to release hydroxyl radical OH˙ which are described as follows[22]:

Hydroxylradical isa strong oxidizing species thatdegrades theorganicpollutantsinthesolution.Meanwhile,theaccumulatedholesonthesurface of g-C3N4could directly oxidize the adsorbed dye molecule on thesurface, h++dye →intermediates→CO 2 +H 2 O+ othersimplemolecules (3.10)

Thisreaction(3.10)ofoxidizingthetargetmoleculemainlycontributed to the overall processas supported in the carrier trappingexperiments.

The Equations from 3.6 to 3.9 relating to oxygen and the role ofH2O2as discussed in the previous subsection indicate that how importantthe presence of oxidant on the surface is, any factor that introduces adecreaseinamountofthatmoleculeonthecatalystsurfacewouldleadtoanegative effect on the overal rate of photodegradation of pollutant Thiscould be explained using the model as shown in Figure 3.38b, in the caseof just few target molecules adsorbing on the catalyst surface, the reactionrateforthiswouldbelowduetothelowadsorbed- moleculenumber.Whenthat numberincreases,so doesthe rate because the oxidizing reagentmolecules still are enough for the photocatalytic process, however, if theadsorbed molecules continue to increase, this would reduce the space foroxidantmoleculestobeadsorbed,thenmightresultinadecreaseinoverallrate.Thi s modelseems tosatisfywiththeresulthasbeenobservedsofar.

The UV-Vis spectra of RhB solution after 120 min of illuminationtheoptimal conditions as indicatedabovewas shown inFigure3.39.

Conditions of process: irradiatedvolume:25 mL, initialRhBconcentration: 5.0 mg.L -1 , pH 3.0, MCN1 catalyst loading: 0.7 g.L -1 , 25 o C,under blue light.

Iti s o b v i o u s t h a t a f t e r 1 2 0 m i n o f i l l u m i n a t i o n t h e m a x i m u m wavelength was shifted from 553 nm to 497 nm corresponding to thetransformation of RhB to RhB 110 [126] with the structures shown inFigure3.40.

Rhodamine B,λ max U3nm Rhodamine110,λ max I7nm

Applications

Enrofloxacin (ENR) is a colorless antibiotic substance which containsboth amino and carboxylic groups This aspect is similar to that of RhBmolecule, which could guide us to guess the acidic aqueous solution will besuitable for the photodegradation of this antibiotic over MoS2/g-

C3N4undervisiblelight.Figure3.41showsthatthepH4wasfavourableforthephoto degradationofENR,an acidic medium,asexpected.

Figure 3.41.Photodegradation of 20 mL ENR of 5 ppm, catalyst loading:0.5g.L -1 ,underbluelight (0.2 A,3.0V)for2h,25 o Catdifferent pHs.

The optimal catalyst loading was also obtained from Figure 3.42 withthe value of 1 g/L Here, the similar trend also observed as those of RhB andMB.

Under the optimal conditions of solution pH and catalyst loading,thereactionrateofthephotodegradationofENRwithotherspecificconditionswasdetermine dasshowninFigure3.43withthevalueof0.007min -1 Thisrate constantwas10timeslowerthanthatinthecaseofRhBphotodegradationoverthe same catalyst and initial concentration, even under the used lamp powertwicelarger.

Figure3.42.Effect ofcatalystloadingsonphotodegradationof20mLENRof5ppm, under LEDblue light (0.2A,3.0V) for2h,25 o CatpH4.

3.0 V) at pH 4, 25 o C, initial EFA concentration 5 ppm, catalyst loading 1 g.L -

C3N4underblueLEDs.AsshowninFigure3.44thechangesofCODandconcentrationoftheENRsolutionafter4 hours of illumination are completely different A reduction in COD of thesolutionfor8hoursofirradiationwasalsopresentedtoexploremoreaboutthemineralizatio ndegree.

Figure 3.44 ENR conversion and COD reduction after 4 h of irradiationunder LED blue light (0.2 A, 3.0 V), pH 4, initial concentration

More specifically, while ENR in the solution was entirely degraded, itsCODreducedonlyaround20%forthefirst4hours.Thissignificantdifferenceindicated that ENR itself could easily be totally degraded but not direct tosimple molecules, instead it was partially oxidized to intermediates during thephotocatalyticprocess.ThispointwasalsosupportedbytheHPLCchromatogram of the ENR solution as shown in Figure 3.45 The peak at theretention time of 10.24 min which belongs to ENR completely disappearedafter a 4-hour period of illumination under LED blue light, this is consistentwiththeaboveobservationfromUV-

Vismeasurement.Alltheformedintermediates with high relative abundance have higher molecular massescompared to that of ENR, which was confirmed by the corresponding massspectra (see Appendix 2), implying that the ENR molecule under the givenconditionswaspartiallydecomposed.Thisresultalsoexplainedthelowreduc tionofCODincomparisonwithENRconversionasdiscussedpreviously.

Figure3.45.HPLC chromatogram of ENRsolutionafter(a)0h,(b)4hand

This was also brought up a new question, whether the formed intermediatesbecomemoretoxicthantheENRitselftotheenvironmentorhumanhea lth.

Toanswerthistoughbutnecessaryquestionatoxicitytestshouldbeconducted[180] This test belongs to the biochemistry area, nevertheless, that is stillneeded toinvestigateinthe future research.

The recovery of the used catalyst for recycling is very important whenemploying a pilot in practical application The methods have been widelyappliedsuchascatalystsedimentation[53],immobilization[149],usingme mbraneusing[127],etc.Thepilotinthisworkwasdesignedtousethefirstone due to its simplicity In order to apply this method efficiently, an increasein sedimentation rate plays an important role To achieve this high rate, therehave been two common methods, namely, adjusting pH of the suspension tothe point of zero charge of the catalyst or adding an appropriate electrolytesubstancetothesystem[53].

The first option was chosen with the result shown in Figure 3.46 It isobvious that at pH 3.5 the catalyst exhibited the fastest rate of settlement dueto that value of pH closest to the pHpzc(3.6) of the catalyst MCN1, resulting inaquickaggregationofunchargedparticles,thereforetheincreaseinthesedimenta tion rate.

Asshownintheabovefigure,thesedimentationoccurredfastwithinthefirst 80 minutes of the process, then kept unchanged for the next 40 minutes.Basedonthisobservationtherecoveryofthecatalystwhenusingthepilotafter1, 2 and 3 hours of sedimentation of the suspension at pH 3.5 was carried out,with resultshowninFigure3.47.

Figure 3.46 Transmittance of 800-nm electromagnetic wave throughMoS2/g-C3N4suspension(0.7g.L -

Figure 3.47 Percentage of catalyst recovery after different sedimentationtimesofMoS2/g-C3N4catalyst (0.7g.L -1 )suspension at pH3.5.

The recovery reached nearly 80% after 2 hours of catalyst settlement,andalmostremainedunchangedfor1hourmore.Althoughthelossofcatal ystwas still high, however, this drawback could be acceptable due to the simpleand low-costprocess.

The photocatalytic activity of the recycled material was evaluated in thesameconditionsasforthefirst-usesample,theresultwasshowninFigure3.48.

Figure 3.48 Recycling test for the photocatalytic degradation of RhB overMCN1 sample Conditions of process: irradiated volume: 25 mL, initialRhB concentration: 5.0 mg.L -1 , pH 3.0, catalyst loading: 0.7 g.L -1 , 25 o C,under blue light.

From the recycling test, it could be concluded that the material after thefirstusestillexhibiteditsphotocatalyticactivityforthenextrunswithinsignificant decreases.

ToevaluatethethroughputofthepilotRhBsolutionwasusedassimulated wastewater with the following conditions: 30 L of 5 ppm RhBsolution at pH 3.5, MCN1 catalyst loading 0.7 g.L -1 , illuminated area 0.24 m 2 of 2 sets of blue LEDs (15 V, 5A), flow rate 8 L.min -1 These conditions alongwiththedistributionofwastewaterasathinlayerwhichwaspreviouslyprovengoodforth eexcitementofthecatalystwerealsotakenintoaccountinthepilotdesign Under these conditions, it took 120 h for stimulated wastewater beingcompletelytreated, therefore the calculatedpilotthroughputwas1.0L.h -1 m -2

Itisobviousthatthisvalueisproportionaltotheilluminatedarea,themoretheareaofthesolu tionbeingilluminated,thelargerthevolumeofthesolutioncanbe treated per hour That means the application of the pilot can be feasible iftheilluminatedareaislargeenoughtomeetaparticularrequirement.Actually,thepilotitse lfisunlikelytoapplydirectlytoaspecificsituation.Nevertheless,it becomes useful when putting it in a complete system in which the pilot isused as the last part before the treated water is discharged Thus, the pilot ismost suitable for wastewater containing substances that are not biodegradableat low concentration Instead of using electricity for the illumination, thesunlight can be applied effectively if the collector tilts a appropriate angledepending ontheposition where thepilotis beingplaced.

1 The heterojunction WS2/g-C3N4composites were successfully constructedviaafacilecalcinationdirectlyfromtheprecursorsoftungsticacidandthiourea in the solid state The experimental results indicates that the weight ratio ofWS2to g-C3N4in the composites affects their photocatalytic activities. Amongthe composites, 7WCN (synthesized from H2WO4and thiourea with the massratio 1:7) is the best material which could photodegrade 85.3% MB in 6 hoursunder visible light A synergistic effect of components in the heterojunction ofthe composites for enhancing photocatalytic performance was proposed. Inaddition,theMoS2/g-

C3N4c o m p o s i t e s w e r e s y n t h e s i z e d b y a s i m p l e method from sodium molybdate and thiourea in solid state, without the needfor hydrothermal-condition and ultrasound process steps as previous reports,therebya v o i d i n g t h e h i g h - p r e s s u r e a n d h i g h - e n e r g y c o n s u m p t i o n procedure.Thesynthesizedcompositeswereprove nt o b e e f f i c i e n t a n d activeinphotocatalysis,e s p e c i a l l y t h e M C N

1 ( s y n t h e s i z e d f r o m h e a t i n g the mixture of 0.06 gram MoS2and

N2gas)samplewiththeoptimumMoS2contentinwhichthei n t e r f a c i a l c h a r g e transferincreasedandthusreducedtheelectron- holer e c o m b i n a t i o n , improvingthephotocatalyticactivity.

2 The adsorption step plays a crucial role in the whole photocatalyticprocess,themorethetargetmoleculesadsorbonthephotocatalyst’ssurfa cethe faster they would be photodegraded However, too many adsorbedmolecules on the surface could lead to a negative effect on the overallphotodegradation rate due to the lack of oxidizers on the surface such asoxygen.

3 The reaction system used MoS2/g-C3N4photocatalyst and light- emittingdiode(LED)wasproventohaveavalueofnewbenchmarkphotochemicals pace-time yield (PSTY) of 8.3x10 -3 day -1 kW -1 This value was more than100 times higher than that of the previous system (300 W Xe lamp, usedvolumeof50mL,andthesameinitialconcentrationofthetargetmolecule)also employed the same photocatalyst MoS2/g-C3N4over the same targetmolecule rhodamineB.

4 The designed photocatalytic pilot can operate automatically and applythe natural sedimentation for recycling photocatalyst, opening a new doortotransferthelab- scaleintovariouspracticalapplicationsincludingwastewater treatment under visible light.

1 Huu Ha Tran,Duy Huong Truong, Thanh Tam Truong, Thi Xuan DieuNguyen, Ying-Shi Jin, Sung Jin Kim, and Vien Vo, “A Facile SynthesisofWS2/g-

Chem.Soc.,vol.39,no.8,pp.965–971,2018.

2 D H Truong, V Vo, T Van Gerven, and M E Leblebici, “ A

C3N4Photocatalyst,”Chem.Eng.Technol.,pp.1–15,2019.

3 Nguyễn Thị Thanh Bích, Nguy ễn Đức Nhân, Huỳnh Hữu Điền, NguyễnTống Yến Như, Phạm Thị Yến Nhi, Nguyễn Văn Phúc,Trương

DuyHướng,Võ Vi ễn,“EffectofpH onAdsorption–Photocatalysis ofTungstenDisulfide”,JournalofScience,QuyNhonUniversity,2020.

4 TrầnHữuHà,TrầnDoãnAn,NguyễnVănPhúc,NguyễnThịViệtNga,Trương

C3N4bởiMS2(M=Mo,W)ứngdụnglàmchấtxúctácquang,TạpchíKhoahọcTrư ờngĐạihọcQuyNhơn,tập11,số5/2017,tr23-32.

Hà,VõViễn(2017),"Nghiêncứutổnghợpvàhoạttínhxúctácquangcủavậtliệu compositMoS2/g-C3N4 ",TạpchíXúctácvàHấpphụViệtNam6(2),pp.tr.115- 119.

2 QuảngT h ù y Trang,TrươngT h ị Mỹ Trúc, S ái C ô n g D a n h , VõViễn

(2016),"Tổng hợpvà tínhchấ t xúctácquang củavậtl iệ ucomposit WS

2/g-C3N4 ",Tạp chíKhoa h ọc ĐHQGHN: Khoa học Tự nhiênvàCôngnghệ,32(4),pp.tr.90-96.

3 Akbal F (2005), "Photocatalytic degradation of organic dyes in thepresenceoftitaniumdioxideunderUVandsolarlight:effectofoperationa lparameters",EnvironmentalProgress,24(3),pp.317-322.

4 AkpleM.S.,LowJ.,WagehS.,Al-GhamdiA.A.,YuJ.,ZhangJ.(2015),"Enhanced visible light photocatalytic H2-production of g-

5 Al-Ahmad A., Daschner F., Kümmerer K (1999), "Biodegradability ofcefotiam,ciprofloxacin,meropenem,penicillinG,andsulfamethoxazoleandinhib itionofwastewaterbacteria",Archivesofenvironmentalcontamination and toxicology,37(2),pp.158-163.

6 AlshehriM.,Al-MarzoukiF.,AlshehrieA.,HafezM.(2018),"Synthesis,characterization and band alignment characteristics of

NiO/SnO2bulkheterojunctionnanoarchitectureforpromisingphotocatalysis applications",Journalof AlloysandCompounds,757,pp.161-168.

7 AnG.,LiuY.,ChaiY.,ShangH.,LiuC.

(2006),"Synthesis,characterizationandthermaldecompositionmechanis mofcetyltrimethyl ammonium tetrathiotungstate",Journal of Natural

8 Anderson C., Bard A J (1997), "Improved photocatalytic activity andcharacterization of mixed TiO2/SiO2and

9 Asbury J B., Hao E., Wang Y., Ghosh H N., Lian T (2001),

Ultrafastelectron transfer dynamics from molecular adsorbates to semiconductornanocrystallinethin films,Editor^Editors,ACSPublications.

10 Ataca C., Topsakal M., Akturk E., Ciraci S (2011), "A comparativestudy of lattice dynamics of three-and two-dimensionalMoS2 ",TheJournalof Physical Chemistry C,115(33),pp.16354-16361.

11 AyariA.,CobasE.,OgundadegbeO.,FuhrerM.S.(2007),"Realizationand electrical characterization of ultrathin crystals of layered transition- metaldichalcogenides",Journalofappliedphysics,101(1),p.014507.

(2002),"Intercalation chemistry of molybdenum disulfide", Coordinationchemistryreviews,224(1-2),pp.87-109.

13 Berkdemir A., Gutiérrez H R., Botello-Méndez A R., Perea -López

N.,Elías A L., Chi a C.-I.,Wang B., Crespi V H., López -Urías F., CharlierJ.-C (2013), "Identification of individual and few layers of

WS2usingRaman Spectroscopy",Scientificreports,3(1),pp.1-8.

14 BhandavatR.,DavidL.,SinghG.(2012),"Synthesisofsurface- functionalizedWS2nanosheetsandperformanceasLi- ionbatteryanodes",Thejournalofphysicalchemistryletters,3(11),pp.1523-1530.

15 BickleyR.,SlaterM.,WangW.-J.(2005),"Engineeringdevelopmentofa photocatalytic reactor for waste water treatment",Process Safety andEnvironmental

16 BideauM.,ClaudelB.,DubienC.,FaureL.,KazouanH.(1995),"Onthe“immobilization” of titanium dioxide in the photocatalytic oxidation ofspentwaters",JournalofPhotochemistryandPhotobiologyA:Chemistry,91(2 ),pp.137-144.

17 BoraL.V.,MewadaR.K.(2017),"Visible/ solarlightactivephotocatalystsfororganiceffluenttreatment:Fundamentals,mec hanismsandparametricreview",RenewableandSustainableEnergyReviews,76,pp. 1393-1421.

18 Boyjoo Y., Ang M., Pareek V (2014), "CFD simulation of a pilot scaleslurryphotocatalyticreactoranddesignofmultiple- lampreactors",Chemical EngineeringScience,111,pp.266-277.

19 Brezova V., Jankovičová M., Soldan M., Blažková A., Rehakova

M.,Šurina I., Čeppan M., Havlinova B (1994), "Photocatalytic degradationofp- toluenesulphonicacidinaqueoussystemscontainingpowderedandimmobilizedtitan iumdioxide",JournalofPhotochemistryandPhotobiologyA:

20 ByrneJ.,EgginsB.,BrownN.,MckinneyB.,RouseM.

(1998),"Immobilisation of TiO2powder for the treatment of polluted water",Applied Catalysis B:Environmental,17(1-2),pp.25-36.

21 CaoS.,LiuT.,HussainS.,ZengW.,PengX.,PanF.

(2014),"HydrothermalsynthesisofvarietylowdimensionalWS2nanostruct ures",Materials Letters,129,pp.205-208.

22 CaoY., Li Q., Wang W (2017), "Construction of a crossed-layer- structureMoS2/g-

23 Carp O., Huisman C L., Reller A (2004), "Photoinduced reactivity oftitaniumdioxide",Progressinsolidstatechemistry,32(1-2),pp.33-177.

24 ChatterjeeD.,MahataA.(2002),"Visiblelightinducedphotodegradation of organic pollutants on dye adsorbed

TiO2surface",JournalofPhotochemistryandPhotobiologyA:Chemistry,153(1- 3),pp.199-204.

25 Chen D., Ji G., Ding B., Ma Y., Qu B., Chen W., Lee J Y (2013),

"Insitunitrogenatedgraphene–few- layerWS2compositesforfastandreversibleLi+storage",Nanoscale,5(17),pp 7890-7896.

26 Chen D., Wang Z., Du Y., Yang G., Ren T., Ding H (2015), "In situionic-liquid-assisted synthesis of plasmonic photocatalyst Ag/AgBr/g-C3N4withenhancedvisible- lightphotocatalyticactivity",CatalysisToday,258,pp.41-48.

27 Chen D H., Ye X., Li K (2005), "Oxidation of PCE with a UV

LEDphotocatalyticreactor",ChemicalEngineering&Technology:IndustrialCh emistry‐PlantEquipment‐Process Engineering‐Biotechnology,

28 ChenF.,LiS.,ChenQ.,ZhengX.,LiuP.,FangS.(2018),"3Dgrapheneaerogels- supportedAgandAg@Ag3PO4heterostructurefortheefficientadsorption-photocatalysis capture of different dye pollutants in water",Materials Research Bulletin,105,pp.334-341.

29 ChenH.-W.,KuY.,IrawanA.(2007),"Photodecompositionofo-cresolbyUV-

30 ChenL.,TomaF.M.,CooperJ.K.,LyonA.,LinY.,SharpI.D.,Ager

J W (2015), "Mo‐doped BiVO4photoanodes synthesized by reactivesputtering",ChemSusChem,8(6),pp.1066-1071.

31 Chen M., Yao J., Huang Y., Gong H., Chu W (2018),

O3heterojunctions:efficiency,kinetics,pathways,mechanismsandtoxicityevaluation" ,Chemical Engineering Journal,334,pp.453-461.

32 Chen X., Mao S S (2007), "Titanium dioxide nanomaterials: synthesis,properties, modifications, and applications",Chemical reviews, 107(7),pp.2891- 2959.

33 Cho I.-H., Zoh K.-D (2007), "Photocatalytic degradation of azo dye(ReactiveR e d 1 2 0 ) i n T i O 2 / U V s y s t e m : O p t i m i z a t i o n a n d m o d e l i n g usingaresponsesurfacemethodology(RSM)basedonthecentralcompositedes ign",DyesandPigments,75(3),pp.533-543.

34 Choi W., Choudhary N., Han G H., Park J., Akinwande D., Lee Y H.

(2017),"Recentdevelopmentoftwo- dimensionaltransitionmetaldichalcogenides and their applications",Materials Today, 20(3), pp.116-130.

K.,KimJ.,KaehrB.,FoleyB.M.,LuP.,DykstraC.,HopkinsP.E.,BrinkerC.J.,Hu angJ.(2015),"Controllingthemetalto semiconductor transition of MoS2and WS2in solution",Journal oftheAmerican ChemicalSociety,137(5),pp.1742-1745.

36 Chung D Y., Park S.-K., Chung Y.-H., Yu S.-H., Lim D.-H., Jung

N.,HamH.C.,ParkH.-Y.,PiaoY.,Yoo S.J.(2014),"Edge-exposedMoS2nano- assembledstructuresasefficientelectrocatalystsforhydrogenevolution reaction",Nanoscale,6(4),pp.2131-2136.

37 Coleman J N., Lotya M., O’neill A., Bergin S D., King P J., Khan

U.,Young K., Gaucher A., De S., Smith R J (2011), "Two- dimensionalnanosheetsproducedbyliquidexfoliationoflayeredmaterials",Scien ce,331(6017),pp.568-571.

38 Crowne F J., Amani M., Birdwell A G., Chin M L., O’regan T.

P.,Najmaei S., Liu Z., Ajayan P M., Lou J., Dubey M (2013),

39 CzoskaA.,LivraghiS.,ChiesaM.,GiamelloE.,AgnoliS.,GranozziG.,Finazzi E.,

Valentin C D., Pacchioni G (2008), "The nature of defectsinfluorine- dopedTiO2 ",TheJournalofPhysicalChemistryC,112(24),pp.8951-8956.

40 DaiX.-J.,LuoY.-S.,ZhangW.-D.,FuS.-Y.(2010),"Facilehydrothermal synthesis and photocatalytic activity of bismuth tungstatehierarchicalhollow sphereswithanultrahighsurfacearea",DaltonTransactions,39(14),pp.3426 -3432.

(2008),"UV/H2O2treatmentofRhodamineBinaqueoussolution:Influenceo foperationalparametersandkineticmodeling",Desalination,230(1-3),pp.16-26.

42 DanionA.,DisdierJ.,GuillardC.,PạsséO.,Jaffrezic-RenaultN.

(2006),"Photocatalytic degradation of imidazolinone fungicide in TiO2-coatedoptical fiber reactor",Applied Catalysis B: Environmental, 62(3-4), pp.274-281.

43 Di J., Xia J., Ge Y., Xu L., Xu H., Chen J., He M., Li H (2014),

"Facilefabricationa n d e n h a n c e d v i s i b l e l i g h t p h o t o c a t a l y t i c a c t i v i t y o f f e w - layerMoS2coupledBiOBrmicrospheres",DaltonTransactions,43(41),pp.15429- 15438.

(1999),"Coupledsemiconductorsystemsforphotocatalysis.Preparationandchar acterizationofpolycrystallinemixedWO3/WS2powders",TheJournalof

45 Ding J., Sun S., Bao J., Luo Z., Gao C (2009), "Synthesis of

CaIn2O4rods and its photocatalytic performance under visible-light irradiation",Catalysis letters,130(1-2),pp.147-153.

46 Ding W., Hu L., Dai J., Tang X., Wei R., Sheng Z., Liang C., Shao

D.,Song W., Liu Q (2019), "Highly ambient-stable 1T-MoS2and 1T-

47 Ding Y., Zhou Y., Nie W., Chen P (2015), "MoS2–GO nanocompositessynthesizedviaahydrothermalhydrogelmethodforsolarlightp hotocatalyticdegradationofmethyleneblue",AppliedSurfaceScience,357,pp.160 6-1612.

48 DonaJ.,GarrigaC.,AranaJ.,PérezJ.,ColonG.,MacíasM.,NavioJ.

49 Dong S., Feng J., Li Y., Hu L., Liu M., Wang Y., Pi Y., Sun J., Sun J.

(2014), "Shape-controlled synthesis of BiVO4hierarchical structureswithuniquenatural-sunlight- drivenphotocatalyticactivity",AppliedCatalysis B: Environmental,152,pp.413-424.

50 Doss N., Bernhardt P., Romero T., Masson R., Keller V., Keller N.

(2014), "Photocatalytic degradation of butanone (methylethylketone) ina small-size TiO2/β-SiC alveolar foam LED reactor",Applied

51 Ebert I., Bachmann J., Kühnen U., Küster A., Kussatz C., Maletzki

(2011),"Toxicityofthefluoroquinoloneantibioticsenrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms",EnvironmentalToxicologyandChemistry,30(12),pp.2786-2792.

(2008),"Visible-light-active titania photocatalysts:the caseofN-doped s

53 FernỏNdez-IbỏẹEz P., Blanco J., Malato S., De Las Nieves F.

(2003),"Application of the colloidal stability of TiO2particles for recovery andreuseinsolarphotocatalysis",WaterResearch,37(13),pp.3180-3188.

54 Fernandez A., Lassaletta G., Jimenez V., Justo A., Gonzalez-Elipe

(1995),"PreparationandcharacterizationofTiO2photocatalystssupported onvariousrigidsupports(glass,quartzandstainlesssteel).Comparativestud iesofphotocatalyticactivityinwaterpurification",AppliedCatalysisB:Envi ronmental,7(1-2),pp.49-63.

55 FrankS.N.,BardA.J.(1977),"Heterogeneousphotocatalyticoxidationof cyanide and sulfite in aqueous solutions at semiconductor powders",Thejournalofphysicalchemistry,81(15),pp.1484-1488.

56 Fu J., Zhu B., Jiang C., Cheng B., You W., Yu J (2017),

"Hierarchicalporous O‐doped g‐C3N4with enhanced photocatalytic

57 FuS.,LiuX.,YanY.,LiL.,LiuH.,ZhaoF.,ZhouJ.(2019),"Few- layerWS2modifiedBiOBrnanosheetswithenhancedbroad- spectrumphotocatalytic activity towards various pollutants removal",Science ofTheTotalEnvironment,694,p.133756.

58 FuY.,ChangC.,ChenP.,ChuX.,ZhuL.(2013),"Enhancedphotocatalytic performance of boron doped Bi2WO6nanosheets undersimulated solar light irradiation",Journal of hazardous materials, 254,pp.185-192.

(2008),"Heterogeneousphotocatalyticdegradation of organic contaminants over titanium dioxide: a review offundamentals, progress and problems",Journal of photochemistry andphotobiologyC:Photochemistry reviews,9(1),pp.1-12.

61 Ge L., Han C., Xiao X., Guo L (2013), "Synthesis and characterizationofcompositevisiblelightactivephotocatalystsMoS2/g-

C3N4withenhancedhydrogenevolutionactivity",Internationaljournalofhy drogen energy,38(17),pp.6960-6969.

62 Gelover S., Mondragón P., Jiménez A (2004), "Titanium dioxide sol – gel deposited over glass and its application as a photocatalyst for waterdecontamination",JournalofPhotochemistryandPhotobiologyA:Ch emistry,165(1-3),pp.241-246.

63 Ghosh J P., Langford C H., Achari G (2008), "Characterization of anLEDbasedphotoreactortodegrade4- chlorophenolinanaqueousmediumusingcoumarin(C-

64 GnanamoorthyG.,YadavV.K.,LathaD.,KarthikeyanV.,Narayanan

65 Guardia L., Paredes J I., Munuera J M., Villar-Rodil S., AyáN-

VarelaM., Martínez -Alonso A., TascóN J M (2014), "Chemically exfoliatedMoS2nanosheets as an efficient catalyst for reduction reactions in theaqueous phase",ACS applied materials & interfaces, 6(23), pp 21702-21710.

66 GuoF.,ShiW.,LinX.,YanX.,GuoY.,CheG.(2015),"NovelBiVO4/

InVO4heterojunctions:facilesynthesisandefficientvisible- lightphotocatalyticperformanceforthedegradationofrhodamineB",Separation and PurificationTechnology,141,pp.246-255.

67 Guo X., Cao G.-L., Ding F., Li X., Zhen S., Xue Y.-F., Yan Y.-M.,

LiuT., Sun K.-N (2015), "A bulky and flexible electrocatalyst for efficienthydrogenevolutionbasedonthegrowthofMoS2nanoparticlesoncar bon nanofiber foam",Journal of Materials Chemistry A, 3(9), pp.5041-5046.

68 GuoY.,ZhaoJ.,ZhangH.,YangS.,QiJ.,WangZ.,XuH.(2005),"Useof rice husk- based porous carbon for adsorption of Rhodamine B fromaqueous solutions",Dyes and

69 GuptaA.,ArunachalamV.,VasudevanS.(2016),"Liquid-phaseexfoliation of MoS2nanosheets: the critical role of trace water",Thejournalofphysicalchemistryletters,7(23),pp.4884-4890.

70 Hang N T., Zhang S., Yang W (2017), "Efficient exfoliation of g-

71 Hasegawa K., Ito T., Maeda M., Kagaya S (2001), "A TiO2- suspendedcontinuous flow photoreactor system combined with the separation ofTiO2particlesbycoagulationforthephotocatalyticdegradationofdibutyl phthalate",Chemistryletters,30(9),pp.890-891.

72 Hassanpour M., Safardoust-Hojaghan H., Salavati-Niasari M.

(2017),"Degradation of methylene blue and Rhodamine B as water pollutantsviagreensynthesizedCo3O4/ZnOnanocomposite",JournalofMol ecular Liquids,229,pp.293-299.

73 HeY.,ZhangL.,TengB.,FanM.(2015),"NewapplicationofZ-schemeAg3PO4/g-

C3N4composite in converting CO2to fuel",Environmentalscience

(2016),"Molybdenumdisulfidenanomaterials:Structures,properties,synthesisandre centprogressonhydrogenevolutionreaction",AppliedMaterials

75 HoW.,YuJ.C.,LinJ.,YuJ.,LiP.(2004),"Preparationandphotocatalytic behavior of MoS2and WS2nanocluster sensitized TiO2 ",Langmuir,20(14),pp.5865-5869.

76 Homem V., Santos L (2011), "Degradation and removal methods ofantibiotics from aqueous matrices–a review",Journal of environmentalmanagement,92(10),pp.2304-2347.

77 HongJ.,ChenC.,BedoyaF.E.,KelsallG.H.,O'hareD.,PetitC.(2016),"Carbonnitride nanosheet/metal–organic frameworknanocompositeswithsynergisticphotocatalyticactivities",Cata lysisScience&Technology,6(13),pp.5042-5051.

78 Hou Y., Zhu Y., Xu Y., Wang X (2014), "Photocatalytic hydrogenproduction over carbon nitride loaded with WS2as cocatalyst undervisiblelight",AppliedCatalysisB:Environmental,156,pp.122-127.

80 HuangH.,FengY.,ZhouJ.,LiG.,DaiK.

(2013),"VisiblelightphotocatalyticreductionofCr(VI)onAg3PO4nanoparticles",

81 Jamali A., Vanraes R., Hanselaer P., Van Gerven T (2013), "A batchLED reactor for the photocatalytic degradation of phenol",ChemicalEngineeringandProcessing:ProcessIntensification,71, pp.43-50.

82 Jiang J., Ou-Yang L., Zhu L., Zheng A., Zou J., Yi X., Tang H.

C3N4onthelayernumberofitsnanosheets:astudybyRamanspectroscopycouple dwithfirst-principlescalculations",Carbon,80,pp.213-221.

84 Jo W.-K., Tayade R J (2014), "New generation energy-efficient lightsourceforphotocatalysis:LEDsforenvironmentalapplications",Indust rial &Engineering ChemistryResearch,53(6),pp.2073-2084.

85 JohnsonB.(2003),High-power,short- waveLEDpurifiesair,Editor^Editors,Laurin Publ Co Inc Berkshire

Common Po Box 1146,Pittsfield,Ma01202Usa.

86 Jun Y S., Lee E Z., Wang X., Hong W H., Stucky G D., Thomas A.

(2013), "From melamine‐cyanuric acid supramolecular aggregates tocarbonnitridehollowspheres",AdvancedFunctionalMaterials,23(29),pp.3661-3667.

87 Junqi L., Zhanyun G., Yu W., Zhenfeng Z (2014), "Three- dimensionalTiO2/Bi2WO6hierarchicalheterostructurewithenhancedvisib lephotocatalyticactivity",Micro&Nano Letters,9(2),pp.65-68.

88 Kagaya S., Shimizu K., Arai R., Hasegawa K (1999), "Separation oftitaniumdioxidephotocatalystinitsaqueoussuspensionsbycoagulationwithba sicaluminiumchloride",Water Research,33(7),pp.1753-1755.

90 Kaur M., Umar A., Mehta S K., Singh S., Kansal S K., Fouad

91 Kočí K., Reli M., Troppová I., Šihor M., Kupková J., Kustrowski

P.,Praus P (2017), "Photocatalytic decomposition of N2O over TiO2/g-

C3N4photocatalysts heterojunction",Applied Surface Science, 396, pp.1685-1695.

92 KomatsuT.(2001),"Thefirstsynthesisandcharacterizationofcyameluric high polymers",Macromolecular Chemistry and Physics,202(1),pp.19- 25.

93 KongJ.-Z.,LiA.-D.,LiX.-Y.,ZhaiH.-F.,ZhangW.-Q.,GongY.-P.,LiH.,WuD.

(2010),"Photo-degradationofmethyleneblueusingTa-dopedZnO nanoparticle",Journal of solid state chemistry, 183(6), pp 1359-1364.

94 KucA.,ZiboucheN.,HeineT.(2011),"Influenceofquantumconfinement on the electronic structure of the transition metal sulfideTS2 ",PhysicalReview B,83(24),p.245213.

95 Kumar A., Pandey G (2017), "A review on the factors affecting thephotocatalyticdegradationofhazardousmaterials",Mater.Sci.Eng.Int.J,1(3) ,pp.1-10.

96 KumarS.,SharmaV.,BhattacharyyaK.,KrishnanV.(2016),"Synergetic effect of

MoS2/rGO doping to enhance the photocatalyticperformance of ZnO nanoparticles",New Journal of Chemistry, 40(6),pp.5185-5197.

98 LeblebiciM.E.,RongéJ.,MartensJ.A.,StefanidisG.D.,VanGerven

( 2 0 1 5 ) , " C o m p u t a t i o n a l m o d e l l i n g o f a p h o t o c a t a l y t i c U V - L E D reactor with internal mass and photon transfer consideration",ChemicalEngineering Journal,264, pp.962-970.

"Comparisonof photocatalytic space-time yields of 12 reactor designs for wastewatertreatment",ChemicalEngineeringandProcessing:ProcessIntensif ication,97,pp.106-111.

(2016),"Recentdevelopmentsofzincoxidebasedphotocatalystinwatertrea tmenttechnology: areview",Water research,88,pp.428-448.

102 Legrini O., Oliveros E., Braun A (1993), "Photochemical processes forwatertreatment",Chemicalreviews,93(2),pp.671-698.

103 Li H., Wu J., Yin Z., Zhang H (2014), "Preparation and applications ofmechanically exfoliated single-layer and multilayer MoS2and WSe2nanosheets",Accounts ofchemicalresearch,47(4),pp.1067-1075.

104 Li H., Yin Z., He Q., Li H., Huang X., Lu G., Fam D W H., Tok A.

I.Y., Zhang Q., Zhang H (2012), "Fabrication of single‐and multilayerMoS2film‐basedfield‐ effecttransistorsforsensingNOatroomtemperature",small,8(1),pp.63-67.

105 Li J., Liu E., Ma Y., Hu X., Wan J., Sun L., Fan J (2016), "Synthesis ofMoS2/g-

C3N4nanosheetsas2Dheterojunctionphotocatalystswithenhanced visible light activity",Applied Surface Science, 364, pp 694-702.

106 Li J., Liu X., Pan L., Qin W., Chen T., Sun Z (2014), "MoS2– reducedgrapheneoxidecompositessynthesizedviaamicrowave- assistedmethod for visible-light photocatalytic degradation of methylene blue",RscAdvances,4(19),pp.9647-9651.

107 Li Puma G., Yue P L (2001), "A novel fountain photocatalytic reactorforwatertreatmentandpurification:modelinganddesign",Industrial&engi neering chemistryresearch,40(23),pp.5162-5169.

108 LiQ.,BianJ.,ZhangL.,ZhangR.,WangG.,NgD.H.(2014),"Synthesis of

Carbon Materials–TiO2Hybrid Nanostructures and TheirVisible‐ LightPhoto‐catalyticActivity",ChemPlusChem,79(3),pp.454-461.

109 Li Q., Zhang N., Yang Y., Wang G., Ng D H (2014), "High efficiencyphotocatalysisforpollutantdegradationwithMoS2/C3N4heterostructu res",Langmuir,30(29),pp.8965-8972.

110 Li X., Cheng Y., Kang S., Mu J (2010), "Preparation and enhancedvisible light-driven catalytic activity of ZnO microrods sensitized byporphyrinheteroaggregate",Appliedsurfacescience,256(22),pp.6705-6709.

111 Li X., Zhao Y (1999), "Advanced treatment of dyeing wastewater forreuse",WaterScienceandTechnology,39(10-11),pp.249-255.

(2013),"FacilepreparationofsquaryliumdyesensitizedTiO2nanoparticlesandt heirenhancedvisible- lightphotocatalyticactivity",Journalofalloysandcompounds,564,pp.138-142.

113 Li Z., Meng X., Zhang Z (2018), "Recent development on MoS2- basedphotocatalysis:Areview",JournalofPhotochemistryandPhotobiologyC:Photo chemistry Reviews,35,pp.39-55.

114 LiangD.,JingT.,MaY.,HaoJ.,SunG.,DengM.

C3N4heterostructure:atheoretical study",The Journal of Physical Chemistry C, 120(42), pp.24023-24029.

115 Lin H., Wang J., Luo Q., Peng H., Luo C., Qi R., Huang R., Travas-

Sejdic J., Duan C.-G (2017), "Rapid and highly efficient chemicalexfoliationoflayeredMoS2andWS2 ",JournalofAlloysandCompo unds,699,pp.222-229.

116 Liu H., Liang J., Du J., Gao Q., Fu S., Li L., Hu M., Zhao F., Zhou J.

(2020),"PromotingchargeseparationindualdefectmediatedZ-schemeMoS2/ g-C3N4photocatalysts for enhanced photocatalytic degradationactivity:synergisticeffectinsight",ColloidsandSurfacesA:Phy sicochemical andEngineeringAspects,p 124668.

117 Liu N., Kim P., Kim J H., Ye J H., Kim S., Lee C J (2014), "Large- area atomically thin MoS2nanosheets prepared using electrochemicalexfoliation",ACSnano,8(7),pp.6902-6910.

118 Lu H., Xu L., Wei B., Zhang M., Gao H., Sun W (2014),

"Enhancedphotosensitizationprocessinducedbythep– njunctionofBi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B",Appliedsurfacescience,303,pp.360-366.

119 Luo Y., Wei X., Gao B., Zou W., Zheng Y., Yang Y., Zhang Y.,

TongQ., Dong L (2019), "Synergistic adsorption-photocatalysis processes ofgraphitic carbon nitrate (g-C3N4) for contaminant removal: Kinetics,models,andmechanisms",ChemicalEngineeringJournal,375,p.1 22019.

120 Lyu J., Hu Z., Li Z., Ge M (2019), "Removal of tetracycline by

121 MahlerB.,HoepfnerV.,LiaoK.,OzinG.A.(2014),"Colloidalsynthesisof1T-

WS2nanosheets:applicationsforphotocatalytichydrogenevolution",Journalo ftheAmericanChemicalSociety,136(40),pp.14121-14127.

122 MakK.F.,LeeC.,HoneJ.,ShanJ.,HeinzT.F.

123 Makama A., Salmiaton A., Saion E., Choong T., Abdullah N.

(2015),"Microwave-assisted synthesis of porous ZnO/SnS2heterojunction anditsenhancedphotoactivityforwaterpurification",JournalofNanomateri als,2015.

124 MalatoS., Blanco J., Richter C., Braun B., MaldonadoM.

(1998),"Enhancementoftherateofsolarphotocatalyticmineralizationofor ganic pollutants by inorganic oxidizing species",Applied Catalysis

125 MatosJ.,LaineJ., HerrmannJ.-M.,UzcateguiD.,BritoJ (2007),"Influence of activated carbon upon titania on aqueous photocatalyticconsecutive runs of phenol photodegradation",Applied Catalysis

126 MerkaO.,YarovyiV.,BahnemannD.W.,WarkM.(2011),"pH- controlofthephotocatalyticdegradationmechanismofrhodamineBoverPb3

Nb4O13 ",The Journal of Physical Chemistry C, 115(16), pp 8014-8023.

127 Molinari R., Mungari M., Drioli E., Di Paola A., Loddo V.,

PalmisanoL., Schiavello M (2000), "Study on a photocatalytic membrane reactorforwater purification",CatalysisToday,55(1-2),pp.71- 78.

128 Monga D., Ilager D., Shetti N P., Basu S., Aminabhavi T M.

C3N4nanoflowersforenhancedvisible-light-driven photocatalytic and electrochemical degradation oforganic pollutants",Journal of

129 Mu C., Zhang Y., Cui W., Liang Y., Zhu Y (2017), "Removal ofbisphenol A over a separation free 3D Ag3PO4-graphene hydrogel via anadsorption- photocatalysissynergy",AppliedCatalysisB:Environmental,212,pp.41-49.

130 Nagaveni K., Hegde M., Ravishankar N., Subbanna G., Madras G.

(2004),"SynthesisandstructureofnanocrystallineTiO2withlowerband gap showing high photocatalytic activity",Langmuir, 20(7), pp 2900- 2907.

131 NaharM.S.,HasegawaK.,KagayaS.(2006),"Photocatalyticdegradation of phenol by visible light-responsive iron-doped TiO2andspontaneoussedimentationoftheTiO2particles",Chemosphere,65(11),p p.1976-1982.

132 Nakano K., Obuchi E., Takagi S., Yamamoto R., Tanizaki T.,

TaketomiM.,EguchiM.,IchidaK.,SuzukiM.,HashimotoA.

(2004),"Photocatalytic treatment of water containing dinitrophenol and citywateroverTiO2/SiO2 ",Separationandpurificationtechnology,34(1-3),pp.67- 72.

133 Natarajan T S., Thomas M., Natarajan K., Bajaj H C., Tayade R J.

134 Paradisanos I., Germanis S., Pelekanos N., Fotakis C., Kymakis

E.,Kioseoglou G., Stratakis E (2017), "Room temperature observation ofbiexcitonsinexfoliatedWS2monolayers",AppliedPhysicsLetters,110(19),p. 193102.

135 Pelaez M., Nolan N T., Pillai S C., Seery M K., Falaras P., Kontos

"Areview on the visible light active titanium dioxide photocatalysts forenvironmental applications",Applied Catalysis B: Environmental, 125,pp.331-349.

136 PengW.-C.,LiX.-Y.(2014),"SynthesisofMoS2/g-C3N4asasolarlight- responsivephotocatalystfororganicdegradation",CatalysisCommunications,4 9,pp.63-67.

Ag2CrO4nanocompositeswithn– nheterojunctionsasexcellentphotocatalystsfordegradationofdifferentpollutantsun dervisiblelight",JournalofMaterialsScience:MaterialsinElectronics,27(4) ,pp.4098-4108.

138 Plechinger G., Nagler P., Kraus J., Paradiso N., Strunk C., Schüller

C.,Korn T (2015), "Identification of excitons, trions and biexcitons insingle‐layer WS2",physica status solidi (RRL)–Rapid Research

CeO2nanoparticlecatalysisofmethylenebluephotodegradation:kineticsandme chanism",Chin.J.Catal,31(11-12),pp.1328-1334.

140 PresciuttiA.,AsdrubaliF.,MarrocchiA.,BroggiA.,PizzoliG.,Damiani

(2014),"Sunsimulators:Developmentofaninnovativelowcostfilmfilter",Sustain ability,6(10), pp.6830-6846.

(2013),"Progress,challengeandperspectiveofheterogeneous photocatalysts",Chemical Society Reviews, 42(7), pp.2568-2580.

142 RadisavljevicB.,RadenovicA.,BrivioJ.,GiacomettiV.,KisA.(2011),"Single-layer

MoS2transistors",Nature nanotechnology, 6(3), pp 147-150.

143 RanjitK.,WillnerI.,BossmannS.,BraunA.(2001),"Lanthanideoxide- dopedtitaniumdioxidephotocatalysts:novelphotocatalystsfortheenhanced degradation of p-chlorophenoxyacetic acid",Environmentalscience

144 Ray A K (1999), "Design, modelling and experimentation of a newlarge- scalephotocatalyticreactorforwatertreatment",ChemicalEngineeringScie nce,54(15-16),pp.3113-3125.

145 RoyaeeS.J.,SohrabiM.,SoleymaniF.(2011),"Performanceofaphoto‐impinging streams reactor for the phenol degradation process",JournalofChemical Technology

146 Sang Y., Zhao Z., Zhao M., Hao P., Leng Y., Liu H (2015), "From

UVtonear‐ infrared,WS2nanosheet:anovelphotocatalystforfullsolarlightspectrumphotodegrad ation",AdvancedMaterials,27(2),pp.363-369.

"Determinationoffluoroquinolone antibiotics in hospital and municipal wastewaters inCoimbrabyliquidchromatographywithamonolithiccolumnandfluoresc ence detection",Analytical and bioanalytical chemistry, 391(3),pp.799- 805.

148 SenthilkumaarS.,PorkodiK.,GomathiR.,ManonmaniN.(2006),"Sol– gelderivedsilverdopednanocrystallinetitaniacatalysedphotodegradation of methylene blue from aqueous solution",Dyes andPigments,69(1-2),pp.22-30.

149 Shan A Y., Ghazi T I M., Rashid S A (2010), "Immobilisation oftitaniumdioxideontosupportingmaterialsinheterogeneousphotocatalysis: a review",Applied Catalysis A: General, 389(1-2), pp.1-8.

150 Shang J., Hao W., Lv X., Wang T., Wang X., Du Y., Dou S., Xie

151 Sharma P., Sasson Y (2017), "A photoactive catalyst Ru/g-

153 Sheng Y., Wei Z., Miao H., Yao W., Li H., Zhu Y (2019),

"Enhancedorganicpollutantphotodegradationviaadsorption/photocataly sissynergyusinga3Dg-C3N4/TiO2free-separationphotocatalyst",Chemical

154 ShiL.,LiangL.,WangF.,LiuM.,SunJ.(2015),"EnhancedPhotocatalytic

Activity of Degrading Rhodamine B Over MoS2/g-C3N4Photocatalyst Under Visible Light",Energy and Environment Focus,4(2),pp.74-81.

155 ShiZ.,ZhangY.,DuoerkunG.,CaoW.,LiuT.,ZhangL.,LiuJ.,LiM.,Chen Z (2020),

"Fabrication of MoS2/BiOBr heterojunctions on carbonfibersasaweaveablephotocatalystfortetracyclinehydrochloridedegr adation and Cr(VI) reduction under visible light",EnvironmentalScience:Nano.

156 ShironitaS.,MoriK.,ShimizuT.,OhmichiT.,MimuraN.,Yamashita

H (2008), "Preparation of nano-sized platinum metal catalyst usingphoto-assisteddepositionmethodonmesoporoussilicaincludingsingle- sitephotocatalyst",Appliedsurfacescience,254(23),pp.7604-7607.

TiO2heterojunction in the presence of H2O2 ",Water, Air, & Soil

(2018),"Efficientpromotionofchargeseparationwithreducedgrapheneoxide(rG O)inBiVO4/rGOphotoanode for greatly enhanced photoelectrochemical water splitting",Solar EnergyMaterialsand Solar Cells,185,pp.325-332.

159 SongB.,WangQ.,WangL.,LinJ.,WeiX.,MurugadossV.,WuS.,GuoZ., Ding T., Wei S.

(2020), "Carbon nitride nanoplatelet photocatalystsheterostructuredwithB- dopedcarbonnanodotsforenhancedphotodegradationoforganicPollutants",

160 Subramanian M., Kannan A.(2010), "Photocatalytic degradation ofphenol in a rotating annular reactor",Chemical engineering science,65(9),pp.2727-2740.

161 SunS.,WuY.,ZhangX.,ZhangZ.,YanY.,GuanW.(2014),"Enhancedvisible-light-driven photocatalytic degradation performance of Cip onBiVO4–Bi2WO6nano-heterojunction photocatalysts",Nano, 9(02), p.1450015.

162 Sun Y., Wang W., Zhang L., Sun S (2013), "The photocatalysis ofBi2MoO6undertheirradiationofblueLED",MaterialsResearchBulletin,4 8(10),pp.4357-4361.

163 Surolia P K., Tayade R J., Jasra R V (2007), "Effect of anions on thephotocatalytic activity of Fe (III) salts impregnated TiO2 ",Industrial

164 Suzuki Y., Maezawa A., Uchida S (2000), "Liquid-solid separation ofphoto-catalyst suspension induced by ultrasound",Chemistry

165 Tacchini I., Terrado E., Anson A., Martinez M (2011), "Preparation ofaTiO2/MoS2nanoparticle-basedcompositeby solvothermalmethodwithenhancedphotoactivityforthedegradationoforgan icmoleculesinwaterunder UVlight",Micro&NanoLetters,6(11),pp.932-936.

166 Tayade R J., Kulkarni R G., Jasra R V (2006), "Transition metal ionimpregnatedmesoporousTiO2forphotocatalyticdegradationoforganicconta minants in water",Industrial & engineering chemistry research,45(15),pp.5231-5238.

(2009),"Photocatalyticdegradationofmethylenebluedyeusingultravioletl ightemittingdiodes",Industrial&EngineeringChemistryResearch,48(23), pp.10262-10267.

168 TayadeR.J.,SuroliaP.K.,KulkarniR.G.,JasraR.V.(2007),"Photocatalytic degradation of dyes and organic contaminants in waterusing nanocrystalline anatase and rutile TiO2 ",Science and Technologyof

169 Thripuranthaka M., Kashid R V., Sekhar Rout C., Late D J.

(2014),"TemperaturedependentRamanspectroscopyofchemicallyderivedfewla yer MoS2and WS2nanosheets",Applied Physics Letters, 104(8), p.081911.

170 Tian Y., Ge L., Wang K., Chai Y (2014), "Synthesis of novel MoS2/g-

C3N4heterojunction photocatalysts with enhanced hydrogen evolutionactivity",Materials characterization,87,pp.70-73.

171 Tongay S., Fan W., Kang J., Park J., Koldemir U., Suh J., Narang D.

S.,Liu K., Ji J., Li J (2014), "Tuning interlayer coupling in large-areaheterostructures with CVD- grown MoS2and WS2monolayers",Nanoletters,14(6),pp.3185-3190.

174 VattikutiS.P.,NgoI.-L.,ByonC.(2016),"Physicochemcialcharacteristic of CdS-anchored porous WS2hybrid in the photocatalyticdegradation of crystal violet under UV and visible light irradiation",SolidState Sciences,61,pp.121-130.

"Synthesisof Pd co-doped nano-TiO2–SO4 2–and its synergetic effect on the solarphotodegradationofReactiveRed120dye",Materialsscienceinsemico nductorprocessing,25,pp.163-172.

177 Vezzoli M., Martens W N., Bell J M (2011), "Investigation of phenoldegradation:Truereactionkineticsonfixedfilmtitaniumdioxidepho tocatalyst",AppliedCatalysisA:General,404(1-2),pp.155-163.

(1994),"Photochemistryoftextileazodyes.Spectralcharacterizationofexcitedstate,re ducedandoxidizedformsofacidorange7",JournalofPhotochemistryandPhoto biologyA:Chemistry,83(2),pp.141-146.

179 VisanA.,RafieianD.,OgiegloW.,LammertinkR.G.(2014),"Modelingintrinsic kinetics in immobilized photocatalytic microreactors",Appliedcatalysis B: environmental,150,pp.93-100.

180 Wang C., Yin L., Xu Z., Niu J., Hou L.-A (2017),

"Electrochemicaldegradationofenrofloxacinbyleaddioxideanode:Kinetics,m echanismand toxicity evaluation",Chemical Engineering Journal, 326, pp 911- 920.

181 WangJ.,GuanZ.,HuangJ.,LiQ.,YangJ.(2014),"Enhancedphotocatalytic mechanism for the hybrid g-C3N4/MoS2nanocomposite",Journalof

182 Wang X., Lim T.-T (2010), "Solvothermal synthesis of C–N codopedTiO2and photocatalytic evaluation for bisphenol A degradation using avisible- lightirradiatedLEDphotoreactor",AppliedCatalysisB:Environmental,100(1- 2),pp.355-364.

183 Wang X., Lim T.-T (2011), "Effect of hexamethylenetetramine on thevisible-light photocatalytic activity of C–N codoped TiO2for bisphenolA degradation: evaluation of photocatalytic mechanism and solutiontoxicity",Applied Catalysis A:General,399(1-2),pp.233-241.

184 Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.

M.,DomenK.,AntoniettiM.(2009),"Ametal- freepolymericphotocatalystforhydrogenproductionfromwaterundervisible light",Naturematerials,8(1),pp.76-80.

185 WangY.,WangQ.,ZhanX.,WangF.,SafdarM.,HeJ.(2013),"Visiblelight driven type II heterostructures and their enhanced photocatalysisproperties: areview",Nanoscale,5(18),pp.8326-8339.

186 Wang Z.-P., Xu J., Cai W.-M., Zhou B.-X., He Z.-G., Cai C.-G.,

(2005),"Visiblelightinducedphotodegradationoforganicpollutantsonnitr ogenandfluorineco-dopedTiO2photocatalyst",JournalofEnvironmental

187 Watarai H., Funaki F (1996), "Total internal reflection fluorescencemeasurementsofprotonationequilibriaofrhodamineBandoct adecylrhodamine B at a toluene/water interface",Langmuir, 12(26),pp.6717-6720.

188 Wei L., Chen Y., Lin Y., Wu H., Yuan R., Li Z (2014), "MoS2as non- noble-metalco- catalystforphotocatalytichydrogenevolutionoverhexagonalZnIn2S4under visiblelightirradiations",AppliedCatalysisB:Environmental,144,pp.521-527.

189 Wei Z., Li Y., Luo S., Liu C., Meng D., Ding M., Zeng G.

(2014),"HierarchicalheterostructureofCdSnanoparticlessensitizedelectr ospunTiO2nanofiberswithenhancedphotocatalyticactivity",Separation and

190 Weimin X., Geissen S.-U (2001), "Separation of titanium dioxide fromphotocatalytically treated water by cross-flow microfiltration",WaterResearch,35(5),pp.1256-1262.

191 Wen J., Xie J., Chen X., Li X (2017), "A review on g-C3N4- basedphotocatalysts",Appliedsurface science,391,pp.72-123.

192 Wen X.-J., Niu C.-G., Zhang L., Liang C., Zeng G.-M (2018), "A novelAg2O/CeO2heterojunction photocatalysts for photocatalytic degradationof enrofloxacin: possible degradation pathways, mineralization activityandanindepthmechanisminsight",AppliedCatalysisB:Environmental,221, pp.701-714.

193 Wu M.-H., Li L., Liu N., Wang D.-J., Xue Y.-C., Tang L.

(2018),"Molybdenumdisulfide(MoS2)asaco- catalystforphotocatalyticdegradation of organic contaminants: A review",Process Safety andEnvironmental Protection,118,pp.40-58.

194 Wu Y., Liu Z., Li Y., Chen J., Zhu X., Na P (2019), "WS2nanodots- modifiedTiO2nanotubestoenhancevisible- lightphotocatalyticactivity",MaterialsLetters,240,pp.47-50.

195 Wu Y., Xu F., Guo D., Gao Z., Wu D., Jiang K (2013), "Synthesis ofZnO/CdSehierarchicalheterostructurewithimprovedvisiblephotocatal yticefficiency",Appliedsurfacescience,274,pp.39-44.

196 Xia J., Ge Y., Zhao D., Di J., Ji M., Yin S., Li H., Chen R.

(2015),"Microwave-assistedsynthesisoffew-layeredMoS2/BiOBrhollow microsphereswithsuperiorvisible-light- responsephotocatalyticactivityforciprofloxacinremoval",CrystEngComm,17(1 9),pp.3645-3651.

197 XuD.,ChengB.,CaoS.,YuJ.(2015),"Enhancedphotocatalyticactivityand stability of Z-scheme Ag2CrO4-GO composite photocatalysts fororganicpollutantdegradation",AppliedCatalysisB:Environmental,164,pp.380 -388.

198 Xu F., Almeida T P., Chang H., Xia Y., Wears M L., Zhu Y.

199 Xu H.-Y., Wu L.-C., Zhao H., Jin L.-G., Qi S.-Y (2015),

200 Yan S., Li Z., Zou Z (2009), "Photodegradation performance of g-

C3N4fabricated by directly heating melamine",Langmuir, 25(17), pp 10397-10401.

201 Yan S., Li Z., Zou Z (2010), "Photodegradation of rhodamine B andmethylorangeoverboron-dopedg-

202 Yang D., Sandoval S J., Divigalpitiya W., Irwin J., Frindt R.

(1991),"Structure of single-molecular-layer MoS2 ",Physical Review B, 43(14),p.12053.

(VI) in aqueous solution using dye-sensitized nanoscale ZnO undervisible light irradiation",Journal of Nanoparticle Research, 11(1), p.221.

204 YangW.,ShangJ.,WangJ.,ShenX.,CaoB.,PeimyooN.,ZouC.,ChenY.,WangY.,C ongC.(2016),"Electricallytunablevalley-lightemittingdiode (vLED) based on CVD- grown monolayer WS2",Nano letters,16(3),pp.1560-1567.

205 Yatmaz H., Wallis C., Howarth C (2001), "The spinning disc reactor– studiesonanovelTiO2photocatalyticreactor",Chemosphere,42(4),pp.397-403.

206 YavuzY.,SkogồsJ.G.,GỹllỹogluM.G.,LangứT.,MồrvikR.

(2006),"Arecoldlightsourcesreallycold?",SurgicalLaparoscopyEndosc opy&PercutaneousTechniques,16(5),pp.370-376.

207 Yu J., Wang S., Low J., Xiao W (2013), "Enhanced photocatalyticperformanceofdirectZ-schemeg-C3N4/TiO2photocatalysts forthedecomposition of formaldehyde in air",Physical Chemistry

208 Yu W., Xu D., Peng T (2015), "Enhanced photocatalytic activity of g-

C3N4for selective CO2reduction to CH3OH via facile coupling of ZnO:adirectZ- schememechanism",JournalofMaterialsChemistryA,3(39),pp.19936-19947.

210 Zeng H., Liu G.-B., Dai J., Yan Y., Zhu B., He R., Xie L., Xu S.,

ChenX., Yao W (2013), "Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides",Scientificreports,3,p.1608.

211 Zhang G., Huang C., Wang X (2015), "Dispersing molecular cobalt ingraphiticcarbonnitrideframeworksforphotocatalyticwateroxidation",Small,1 1(9-10),pp.1215-1221.

(2013),"AfacilesynthesisofcovalentcarbonnitridephotocatalystsbyCo- polymerizationofureaandphenylureaforhydrogen evolution",Journalofcatalysis,307,pp.246-253.

213 Zhang G., Zhang J., Zhang M., Wang X (2012), "Polycondensation ofthioureaintocarbonnitridesemiconductorsasvisiblelightphotocatalysts",

214 ZhangJ.,GuoF.,WangX.(2013),"Anoptimizedandgeneralsyntheticstrategy for fabrication of polymeric carbon nitride nanoarchitectures",Advanced functionalmaterials,23(23),pp.3008-3014.

215 Zhang J., Sun J., Maeda K., Domen K., Liu P., Antonietti M., Fu

X.,WangX.(2011),"Sulfur-mediatedsynthesisofcarbonnitride:band- gapengineeringandimprovedfunctionsforphotocatalysis",Energy&Environm ental Science,4(3),pp.675-678.

216 Zhang L., Zhang F., Yang X., Long G., Wu Y., Zhang T., Leng

K.,Huang Y., Ma Y., Yu A (2013), "Porous 3D graphene-based bulkmaterials with exceptional high surface area and excellent conductivityforsupercapacitors",Scientific reports,3,p.1408.

217 Zhang S., Zhang S., Song L (2014), "Super-high activity of

Bi 3+ dopedAg3PO4and enhanced photocatalytic mechanism",Applied

218 ZhangW.,XiaoX.,ZhengL.,WanC.(2015),"FabricationofTiO2/

MoS2co mp osit e photocatalyst a n d i tsph ot oc at al yt ic me ch an i sm for degradation of methyl orange under visible light",The

219 Zhang X., Lai Z., Tan C., Zhang H (2016), "Solution‐processed two‐ dimensionalMoS2nanosheets:preparation,hybridization,andapplications",Ang ewandte Chemie International Edition, 55(31), pp.8816-8838.

220 Zhang Y., Liu J., Wu G., Chen W (2012), "Porous graphitic carbonnitridesynthesizedviadirectpolymerizationofureaforefficientsunli ght-driven photocatalytic hydrogen production",Nanoscale, 4(17),pp.5300-5303.

221 ZhangY.,PanQ.,ChaiG.,LiangM.,DongG.,ZhangQ.,QiuJ.(2013),"Synthesis and luminescence mechanism of multicolor-emitting g-C3N4nanopowders by low temperature thermal condensation of melamine",Scientificreports,3,p.1943.

222 Zhao W., Li J., Bo Wei Z., Wang S., He H., Sun C., Yang S.

(2015),"Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/rGOand its excellent visible-light photocatalytic activity",Applied CatalysisB:Environmental,179,pp.9-20.

223 Zhao X., Ma X., Sun J., Li D., Yang X (2016), "Enhanced catalyticactivities of surfactant-assisted exfoliated WS2nanodots for hydrogenevolution",ACSnano,10(2),pp.2159-2166.

224 Zhao Y., Zhang X., Wang C., Zhao Y., Zhou H., Li J., Jin H.

(2017),"ThesynthesisofhierarchicalnanostructuredMoS2/Graphenecomp ositeswithenhancedvisible-lightphoto- degradationproperty",AppliedSurface Science,412,pp.207-213.

(2017),"Enhancedphotocatalytic activity of TiO2nanoparticles using

WS2/g-C3N4hybridas co-catalyst",Transactions of Nonferrous Metals

226 ZhouB.,ZhaoX.,LiuH.,QuJ.,HuangC.(2010),"Visible- lightsensitivecobalt-dopedBiVO4(Co-

BiVO4)photocatalyticcompositesforthe degradation of methylene blue dye in dilute aqueous solutions",Applied Catalysis B:Environmental,99(1-2),pp.214-221.

227 Zhou W., Yin Z., Du Y., Huang X., Zeng Z., Fan Z., Liu H., Wang

J.,Zhang H (2013), "Synthesis of few‐layer MoS2nanosheet‐coated TiO2nanobelt heterostructures for enhanced photocatalytic activities",small,9(1),pp.140-147.

228 Zhu B., Xia P., Ho W., Yu J (2015), "Isoelectric point and adsorptionactivityofporousg-C3N4 ",AppliedSurfaceScience,344,pp.188-195.

229 ZouX.,ZhangJ.,ZhaoX.,ZhangZ.(2020),"MoS2/ rGOcompositesforphotocatalyticdegradationofranitidineandeliminationofND MAformation potential under visible light",Chemical Engineering

LC-MSofENR solutionafter0h,4hand8hofillumination a) 0h b) 4h

catalystintheconditions:irradiatedvolume:25mL,initialRhBconcentration

ppm, pH: 3.0, 25 o C, under blue light, and (b) MB degradation over 7WCNcatalystintheconditions:irradiatedvolume:90mL,i n i t i a l M B concentra tion:3 0 0 m g L -1 ,p H 6 4 , 2 5 o C,u n d e r 1 0 0 W i n c a n d e s c e n t l a m p

Therefore, at too high concentration of H2O2, the degradation reactionwasinhibited.TheeffectofH2O2itselfonthedegradationofRhBwasalsoco nducted for comparison It is clear that in the same conditions, however,without the catalyst then RhB concentration is still unchanged, this isconsistent with previousstudy[41].

This result shows the importance of the presence of an acceptorelectron or an oxidant to the photocatalytic process Therefore, in the caseofwithoutaddinganoxidizingreagent,thedissolvedoxygenintheaqueoussolution becomes vital for the photocatalytic reactions This observationsupportedtheconclusionthatwehavediscussedsofarabouttheadsorptionco mpetition of target molecules against the dissolved oxygen molecule ontothesurfaceofthephotocatalystleadingtoadecreaseinthephotodegradation rate.

Generally,thereactivespecieswhichparticipateinthesurfacereactiondu ringthephotocatalyticprocess,includinghole,superoxideradicalanion,hydrox ylradical,andelectron.Toexplorewhichofthemhadthemostcontributiontothephot ocatalyticprocess,thecorrespondingreactivespeciesscavengerswereemployedint hereactionsystemthatusedMoS2/g-C3N4asaphotocatalysttodegradeRhB asshowninFigure3.37.

Figure 3.37 Photodegradation of RhB over MCN1 catalyst in the presence ofdifferent trapping agents TEOA, BQ, TBA, and DMSO as hole, superoxideradicalanion,hydroxyl radical,electron scavengers,respectively.

ThechangesinRhBphotodegradationrateindicatedthatalltheusedscavengers hadnegativeeffectsonthephotocatalyticactivityofthecatalystto different extents in order of TEOA > BQ > TBA > DMSO The resultalso indicated that TEOA scavenger exhibited much stronger inhibitionshowingthatholewasthedominantreactivespeciesinthephotodegra dationprocessofRhBoverMCN1catalystunderstudiedconditions.Thisimpor tantroleofholewassupportedbythemorepositive valencebandedgeofg-C3N4comparedtotheredoxpotentialofRhB(+1.57V vs +1.43 V) [201].The hole of MoS2also was able to oxidize RhBdirectlyduetoitsmorepositivepotential+2V[136].Meanwhile,thequitestrong adverse-effect caused by BQ and TBA scavengers revealed that theoxygenreactivespecies,namely,thesuperoxideradicalanionandhydroxylradical also play their important part in the overall photocatalysis.

Theformationofthesespeciescouldbeattributedtothemorenegativepotentialof electron which generated from g-C3N4conduction band edge -1.13 Vcompared to the reduction potential of the redox pair O2/O2˙ˉ of -0.28 V[197].Furthermore,theOH˙radicalwasjustproducedfromO2˙ˉasdiscussed detailedly later, this resulted in decreasing its role in the wholeprocess. Meanwhile, the direct formation of this type of reactive speciesfrom H2O and hole was unfavorable energetically due to the too muchpositive potential of the pair OH˙/H2O However, the role of electrons inthe process was insignificant as seen in Figure 3.38, when there was apresence of DMSO, an electron scavenger, just a minor effect observed onthe photodegradation rateofRhBover thecatalyst.

From the exploration of the role of reactive species as discussedabove and the separation of charge in the composite as seen in

PL spectrain Figure 3.24 could help us to propose a photocatalytic mechanism asillustrated in Figure 3.38a The charge separation could be attributed to thelower conduction band position of MoS2in the composite leading to itsability to receive photoexcited electrons from g-C3N4[154], which favourstheseparationofelectron-holepairs.TheseparatedelectronsonthesurfaceofMoS2reduces present oxidants in the solution In the case of dissolvedoxygen this reduction step, which also occurs on the surface,can be givenas,

The formed superoxide radical anion continuously undergoes threemore steps to release hydroxyl radical OH˙ which are described as follows[22]:

Hydroxylradical isa strong oxidizing species thatdegrades theorganicpollutantsinthesolution.Meanwhile,theaccumulatedholesonthesurface of g-C3N4could directly oxidize the adsorbed dye molecule on thesurface, h++dye →intermediates→CO 2 +H 2 O+ othersimplemolecules (3.10)

Thisreaction(3.10)ofoxidizingthetargetmoleculemainlycontributed to the overall processas supported in the carrier trappingexperiments.

The Equations from 3.6 to 3.9 relating to oxygen and the role ofH2O2as discussed in the previous subsection indicate that how importantthe presence of oxidant on the surface is, any factor that introduces adecreaseinamountofthatmoleculeonthecatalystsurfacewouldleadtoanegative effect on the overal rate of photodegradation of pollutant Thiscould be explained using the model as shown in Figure 3.38b, in the caseof just few target molecules adsorbing on the catalyst surface, the reactionrateforthiswouldbelowduetothelowadsorbed- moleculenumber.Whenthat numberincreases,so doesthe rate because the oxidizing reagentmolecules still are enough for the photocatalytic process, however, if theadsorbed molecules continue to increase, this would reduce the space foroxidantmoleculestobeadsorbed,thenmightresultinadecreaseinoverallrate.Thi s modelseems tosatisfywiththeresulthasbeenobservedsofar.

The UV-Vis spectra of RhB solution after 120 min of illuminationtheoptimal conditions as indicatedabovewas shown inFigure3.39.

Conditions of process: irradiatedvolume:25 mL, initialRhBconcentration: 5.0 mg.L -1 , pH 3.0, MCN1 catalyst loading: 0.7 g.L -1 , 25 o C,under blue light.

Iti s o b v i o u s t h a t a f t e r 1 2 0 m i n o f i l l u m i n a t i o n t h e m a x i m u m wavelength was shifted from 553 nm to 497 nm corresponding to thetransformation of RhB to RhB 110 [126] with the structures shown inFigure3.40.

Rhodamine B,λ max U3nm Rhodamine110,λ max I7nm

Enrofloxacin (ENR) is a colorless antibiotic substance which containsboth amino and carboxylic groups This aspect is similar to that of RhBmolecule, which could guide us to guess the acidic aqueous solution will besuitable for the photodegradation of this antibiotic over MoS2/g-

C3N4undervisiblelight.Figure3.41showsthatthepH4wasfavourableforthephoto degradationofENR,an acidic medium,asexpected.

Figure 3.41.Photodegradation of 20 mL ENR of 5 ppm, catalyst loading:0.5g.L -1 ,underbluelight (0.2 A,3.0V)for2h,25 o Catdifferent pHs.

The optimal catalyst loading was also obtained from Figure 3.42 withthe value of 1 g/L Here, the similar trend also observed as those of RhB andMB.

Under the optimal conditions of solution pH and catalyst loading,thereactionrateofthephotodegradationofENRwithotherspecificconditionswasdetermine dasshowninFigure3.43withthevalueof0.007min -1 Thisrate constantwas10timeslowerthanthatinthecaseofRhBphotodegradationoverthe same catalyst and initial concentration, even under the used lamp powertwicelarger.

Figure3.42.Effect ofcatalystloadingsonphotodegradationof20mLENRof5ppm, under LEDblue light (0.2A,3.0V) for2h,25 o CatpH4.

3.0 V) at pH 4, 25 o C, initial EFA concentration 5 ppm, catalyst loading 1 g.L -

C3N4underblueLEDs.AsshowninFigure3.44thechangesofCODandconcentrationoftheENRsolutionafter4 hours of illumination are completely different A reduction in COD of thesolutionfor8hoursofirradiationwasalsopresentedtoexploremoreaboutthemineralizatio ndegree.

Figure 3.44 ENR conversion and COD reduction after 4 h of irradiationunder LED blue light (0.2 A, 3.0 V), pH 4, initial concentration

More specifically, while ENR in the solution was entirely degraded, itsCODreducedonlyaround20%forthefirst4hours.Thissignificantdifferenceindicated that ENR itself could easily be totally degraded but not direct tosimple molecules, instead it was partially oxidized to intermediates during thephotocatalyticprocess.ThispointwasalsosupportedbytheHPLCchromatogram of the ENR solution as shown in Figure 3.45 The peak at theretention time of 10.24 min which belongs to ENR completely disappearedafter a 4-hour period of illumination under LED blue light, this is consistentwiththeaboveobservationfromUV-

Vismeasurement.Alltheformedintermediates with high relative abundance have higher molecular massescompared to that of ENR, which was confirmed by the corresponding massspectra (see Appendix 2), implying that the ENR molecule under the givenconditionswaspartiallydecomposed.Thisresultalsoexplainedthelowreduc tionofCODincomparisonwithENRconversionasdiscussedpreviously.

Figure3.45.HPLC chromatogram of ENRsolutionafter(a)0h,(b)4hand

This was also brought up a new question, whether the formed intermediatesbecomemoretoxicthantheENRitselftotheenvironmentorhumanhea lth.

Toanswerthistoughbutnecessaryquestionatoxicitytestshouldbeconducted[180] This test belongs to the biochemistry area, nevertheless, that is stillneeded toinvestigateinthe future research.

The recovery of the used catalyst for recycling is very important whenemploying a pilot in practical application The methods have been widelyappliedsuchascatalystsedimentation[53],immobilization[149],usingme mbraneusing[127],etc.Thepilotinthisworkwasdesignedtousethefirstone due to its simplicity In order to apply this method efficiently, an increasein sedimentation rate plays an important role To achieve this high rate, therehave been two common methods, namely, adjusting pH of the suspension tothe point of zero charge of the catalyst or adding an appropriate electrolytesubstancetothesystem[53].

The first option was chosen with the result shown in Figure 3.46 It isobvious that at pH 3.5 the catalyst exhibited the fastest rate of settlement dueto that value of pH closest to the pHpzc(3.6) of the catalyst MCN1, resulting inaquickaggregationofunchargedparticles,thereforetheincreaseinthesedimenta tion rate.

Asshownintheabovefigure,thesedimentationoccurredfastwithinthefirst 80 minutes of the process, then kept unchanged for the next 40 minutes.Basedonthisobservationtherecoveryofthecatalystwhenusingthepilotafter1, 2 and 3 hours of sedimentation of the suspension at pH 3.5 was carried out,with resultshowninFigure3.47.

Figure 3.46 Transmittance of 800-nm electromagnetic wave throughMoS2/g-C3N4suspension(0.7g.L -

Figure 3.47 Percentage of catalyst recovery after different sedimentationtimesofMoS2/g-C3N4catalyst (0.7g.L -1 )suspension at pH3.5.

The recovery reached nearly 80% after 2 hours of catalyst settlement,andalmostremainedunchangedfor1hourmore.Althoughthelossofcatal ystwas still high, however, this drawback could be acceptable due to the simpleand low-costprocess.

The photocatalytic activity of the recycled material was evaluated in thesameconditionsasforthefirst-usesample,theresultwasshowninFigure3.48.

Figure 3.48 Recycling test for the photocatalytic degradation of RhB overMCN1 sample Conditions of process: irradiated volume: 25 mL, initialRhB concentration: 5.0 mg.L -1 , pH 3.0, catalyst loading: 0.7 g.L -1 , 25 o C,under blue light.

From the recycling test, it could be concluded that the material after thefirstusestillexhibiteditsphotocatalyticactivityforthenextrunswithinsignificant decreases.

ToevaluatethethroughputofthepilotRhBsolutionwasusedassimulated wastewater with the following conditions: 30 L of 5 ppm RhBsolution at pH 3.5, MCN1 catalyst loading 0.7 g.L -1 , illuminated area 0.24 m 2 of 2 sets of blue LEDs (15 V, 5A), flow rate 8 L.min -1 These conditions alongwiththedistributionofwastewaterasathinlayerwhichwaspreviouslyprovengoodforth eexcitementofthecatalystwerealsotakenintoaccountinthepilotdesign Under these conditions, it took 120 h for stimulated wastewater beingcompletelytreated, therefore the calculatedpilotthroughputwas1.0L.h -1 m -2

Itisobviousthatthisvalueisproportionaltotheilluminatedarea,themoretheareaofthesolu tionbeingilluminated,thelargerthevolumeofthesolutioncanbe treated per hour That means the application of the pilot can be feasible iftheilluminatedareaislargeenoughtomeetaparticularrequirement.Actually,thepilotitse lfisunlikelytoapplydirectlytoaspecificsituation.Nevertheless,it becomes useful when putting it in a complete system in which the pilot isused as the last part before the treated water is discharged Thus, the pilot ismost suitable for wastewater containing substances that are not biodegradableat low concentration Instead of using electricity for the illumination, thesunlight can be applied effectively if the collector tilts a appropriate angledepending ontheposition where thepilotis beingplaced.

1 The heterojunction WS2/g-C3N4composites were successfully constructedviaafacilecalcinationdirectlyfromtheprecursorsoftungsticacidandthiourea in the solid state The experimental results indicates that the weight ratio ofWS2to g-C3N4in the composites affects their photocatalytic activities. Amongthe composites, 7WCN (synthesized from H2WO4and thiourea with the massratio 1:7) is the best material which could photodegrade 85.3% MB in 6 hoursunder visible light A synergistic effect of components in the heterojunction ofthe composites for enhancing photocatalytic performance was proposed. Inaddition,theMoS2/g-

C3N4c o m p o s i t e s w e r e s y n t h e s i z e d b y a s i m p l e method from sodium molybdate and thiourea in solid state, without the needfor hydrothermal-condition and ultrasound process steps as previous reports,therebya v o i d i n g t h e h i g h - p r e s s u r e a n d h i g h - e n e r g y c o n s u m p t i o n procedure.Thesynthesizedcompositeswereprove nt o b e e f f i c i e n t a n d activeinphotocatalysis,e s p e c i a l l y t h e M C N

1 ( s y n t h e s i z e d f r o m h e a t i n g the mixture of 0.06 gram MoS2and

N2gas)samplewiththeoptimumMoS2contentinwhichthei n t e r f a c i a l c h a r g e transferincreasedandthusreducedtheelectron- holer e c o m b i n a t i o n , improvingthephotocatalyticactivity.

2 The adsorption step plays a crucial role in the whole photocatalyticprocess,themorethetargetmoleculesadsorbonthephotocatalyst’ssurfa cethe faster they would be photodegraded However, too many adsorbedmolecules on the surface could lead to a negative effect on the overallphotodegradation rate due to the lack of oxidizers on the surface such asoxygen.

mg.L -1 ,pH3.0,MCN1catalystloading:0.7g.L -1 ,25 o C,underbluelight

Iti s o b v i o u s t h a t a f t e r 1 2 0 m i n o f i l l u m i n a t i o n t h e m a x i m u m wavelength was shifted from 553 nm to 497 nm corresponding to thetransformation of RhB to RhB 110 [126] with the structures shown inFigure3.40.

Rhodamine B,λ max U3nm Rhodamine110,λ max I7nm

Enrofloxacin (ENR) is a colorless antibiotic substance which containsboth amino and carboxylic groups This aspect is similar to that of RhBmolecule, which could guide us to guess the acidic aqueous solution will besuitable for the photodegradation of this antibiotic over MoS2/g-

C3N4undervisiblelight.Figure3.41showsthatthepH4wasfavourableforthephoto degradationofENR,an acidic medium,asexpected.

Figure 3.41.Photodegradation of 20 mL ENR of 5 ppm, catalyst loading:0.5g.L -1 ,underbluelight (0.2 A,3.0V)for2h,25 o Catdifferent pHs.

The optimal catalyst loading was also obtained from Figure 3.42 withthe value of 1 g/L Here, the similar trend also observed as those of RhB andMB.

Under the optimal conditions of solution pH and catalyst loading,thereactionrateofthephotodegradationofENRwithotherspecificconditionswasdetermine dasshowninFigure3.43withthevalueof0.007min -1 Thisrate constantwas10timeslowerthanthatinthecaseofRhBphotodegradationoverthe same catalyst and initial concentration, even under the used lamp powertwicelarger.

Figure3.42.Effect ofcatalystloadingsonphotodegradationof20mLENRof5ppm, under LEDblue light (0.2A,3.0V) for2h,25 o CatpH4.

V) at pH 4, 25o C, initial EFA concentration 5 ppm, catalyst loading 1 g.L -1 and

C3N4underblueLEDs.AsshowninFigure3.44thechangesofCODandconcentrationoftheENRsolutionafter4 hours of illumination are completely different A reduction in COD of thesolutionfor8hoursofirradiationwasalsopresentedtoexploremoreaboutthemineralizatio ndegree.

Figure 3.44 ENR conversion and COD reduction after 4 h of irradiationunder LED blue light (0.2 A, 3.0 V), pH 4, initial concentration

More specifically, while ENR in the solution was entirely degraded, itsCODreducedonlyaround20%forthefirst4hours.Thissignificantdifferenceindicated that ENR itself could easily be totally degraded but not direct tosimple molecules, instead it was partially oxidized to intermediates during thephotocatalyticprocess.ThispointwasalsosupportedbytheHPLCchromatogram of the ENR solution as shown in Figure 3.45 The peak at theretention time of 10.24 min which belongs to ENR completely disappearedafter a 4-hour period of illumination under LED blue light, this is consistentwiththeaboveobservationfromUV-

Vismeasurement.Alltheformedintermediates with high relative abundance have higher molecular massescompared to that of ENR, which was confirmed by the corresponding massspectra (see Appendix 2), implying that the ENR molecule under the givenconditionswaspartiallydecomposed.Thisresultalsoexplainedthelowreduc tionofCODincomparisonwithENRconversionasdiscussedpreviously.

Figure3.45.HPLC chromatogram of ENRsolutionafter(a)0h,(b)4hand

This was also brought up a new question, whether the formed intermediatesbecomemoretoxicthantheENRitselftotheenvironmentorhumanhea lth.

Toanswerthistoughbutnecessaryquestionatoxicitytestshouldbeconducted[180] This test belongs to the biochemistry area, nevertheless, that is stillneeded toinvestigateinthe future research.

The recovery of the used catalyst for recycling is very important whenemploying a pilot in practical application The methods have been widelyappliedsuchascatalystsedimentation[53],immobilization[149],usingme mbraneusing[127],etc.Thepilotinthisworkwasdesignedtousethefirstone due to its simplicity In order to apply this method efficiently, an increasein sedimentation rate plays an important role To achieve this high rate, therehave been two common methods, namely, adjusting pH of the suspension tothe point of zero charge of the catalyst or adding an appropriate electrolytesubstancetothesystem[53].

The first option was chosen with the result shown in Figure 3.46 It isobvious that at pH 3.5 the catalyst exhibited the fastest rate of settlement dueto that value of pH closest to the pHpzc(3.6) of the catalyst MCN1, resulting inaquickaggregationofunchargedparticles,thereforetheincreaseinthesedimenta tion rate.

Asshownintheabovefigure,thesedimentationoccurredfastwithinthefirst 80 minutes of the process, then kept unchanged for the next 40 minutes.Basedonthisobservationtherecoveryofthecatalystwhenusingthepilotafter1, 2 and 3 hours of sedimentation of the suspension at pH 3.5 was carried out,with resultshowninFigure3.47.

Figure 3.46 Transmittance of 800-nm electromagnetic wave throughMoS2/g-C3N4suspension(0.7g.L -

Figure 3.47 Percentage of catalyst recovery after different sedimentationtimesofMoS2/g-C3N4catalyst (0.7g.L -1 )suspension at pH3.5.

The recovery reached nearly 80% after 2 hours of catalyst settlement,andalmostremainedunchangedfor1hourmore.Althoughthelossofcatal ystwas still high, however, this drawback could be acceptable due to the simpleand low-costprocess.

The photocatalytic activity of the recycled material was evaluated in thesameconditionsasforthefirst-usesample,theresultwasshowninFigure3.48.

Figure 3.48 Recycling test for the photocatalytic degradation of RhB overMCN1 sample Conditions of process: irradiated volume: 25 mL, initialRhB concentration: 5.0 mg.L -1 , pH 3.0, catalyst loading: 0.7 g.L -1 , 25 o C,under blue light.

From the recycling test, it could be concluded that the material after thefirstusestillexhibiteditsphotocatalyticactivityforthenextrunswithinsignificant decreases.

ToevaluatethethroughputofthepilotRhBsolutionwasusedassimulated wastewater with the following conditions: 30 L of 5 ppm RhBsolution at pH 3.5, MCN1 catalyst loading 0.7 g.L -1 , illuminated area 0.24 m 2 of 2 sets of blue LEDs (15 V, 5A), flow rate 8 L.min -1 These conditions alongwiththedistributionofwastewaterasathinlayerwhichwaspreviouslyprovengoodforth eexcitementofthecatalystwerealsotakenintoaccountinthepilotdesign Under these conditions, it took 120 h for stimulated wastewater beingcompletelytreated, therefore the calculatedpilotthroughputwas1.0L.h -1 m -2

Itisobviousthatthisvalueisproportionaltotheilluminatedarea,themoretheareaofthesolu tionbeingilluminated,thelargerthevolumeofthesolutioncanbe treated per hour That means the application of the pilot can be feasible iftheilluminatedareaislargeenoughtomeetaparticularrequirement.Actually,thepilotitse lfisunlikelytoapplydirectlytoaspecificsituation.Nevertheless,it becomes useful when putting it in a complete system in which the pilot isused as the last part before the treated water is discharged Thus, the pilot ismost suitable for wastewater containing substances that are not biodegradableat low concentration Instead of using electricity for the illumination, thesunlight can be applied effectively if the collector tilts a appropriate angledepending ontheposition where thepilotis beingplaced.

1 The heterojunction WS2/g-C3N4composites were successfully constructedviaafacilecalcinationdirectlyfromtheprecursorsoftungsticacidandthiourea in the solid state The experimental results indicates that the weight ratio ofWS2to g-C3N4in the composites affects their photocatalytic activities. Amongthe composites, 7WCN (synthesized from H2WO4and thiourea with the massratio 1:7) is the best material which could photodegrade 85.3% MB in 6 hoursunder visible light A synergistic effect of components in the heterojunction ofthe composites for enhancing photocatalytic performance was proposed. Inaddition,theMoS2/g-

C3N4c o m p o s i t e s w e r e s y n t h e s i z e d b y a s i m p l e method from sodium molybdate and thiourea in solid state, without the needfor hydrothermal-condition and ultrasound process steps as previous reports,therebya v o i d i n g t h e h i g h - p r e s s u r e a n d h i g h - e n e r g y c o n s u m p t i o n procedure.Thesynthesizedcompositeswereprove nt o b e e f f i c i e n t a n d activeinphotocatalysis,e s p e c i a l l y t h e M C N

1 ( s y n t h e s i z e d f r o m h e a t i n g the mixture of 0.06 gram MoS2and

N2gas)samplewiththeoptimumMoS2contentinwhichthei n t e r f a c i a l c h a r g e transferincreasedandthusreducedtheelectron- holer e c o m b i n a t i o n , improvingthephotocatalyticactivity.

2 The adsorption step plays a crucial role in the whole photocatalyticprocess,themorethetargetmoleculesadsorbonthephotocatalyst’ssurfa cethe faster they would be photodegraded However, too many adsorbedmolecules on the surface could lead to a negative effect on the overallphotodegradation rate due to the lack of oxidizers on the surface such asoxygen.

3 The reaction system used MoS2/g-C3N4photocatalyst and light- emittingdiode(LED)wasproventohaveavalueofnewbenchmarkphotochemicals pace-time yield (PSTY) of 8.3x10 -3 day -1 kW -1 This value was more than100 times higher than that of the previous system (300 W Xe lamp, usedvolumeof50mL,andthesameinitialconcentrationofthetargetmolecule)also employed the same photocatalyst MoS2/g-C3N4over the same targetmolecule rhodamineB.

4 The designed photocatalytic pilot can operate automatically and applythe natural sedimentation for recycling photocatalyst, opening a new doortotransferthelab- scaleintovariouspracticalapplicationsincludingwastewater treatment under visible light.

1 Huu Ha Tran,Duy Huong Truong, Thanh Tam Truong, Thi Xuan DieuNguyen, Ying-Shi Jin, Sung Jin Kim, and Vien Vo, “A Facile SynthesisofWS2/g-

Chem.Soc.,vol.39,no.8,pp.965–971,2018.

2 D H Truong, V Vo, T Van Gerven, and M E Leblebici, “ A

C3N4Photocatalyst,”Chem.Eng.Technol.,pp.1–15,2019.

3 Nguyễn Thị Thanh Bích, Nguy ễn Đức Nhân, Huỳnh Hữu Điền, NguyễnTống Yến Như, Phạm Thị Yến Nhi, Nguyễn Văn Phúc,Trương

DuyHướng,Võ Vi ễn,“EffectofpH onAdsorption–Photocatalysis ofTungstenDisulfide”,JournalofScience,QuyNhonUniversity,2020.

4 TrầnHữuHà,TrầnDoãnAn,NguyễnVănPhúc,NguyễnThịViệtNga,Trương

C3N4bởiMS2(M=Mo,W)ứngdụnglàmchấtxúctácquang,TạpchíKhoahọcTrư ờngĐạihọcQuyNhơn,tập11,số5/2017,tr23-32.

Hà,VõViễn(2017),"Nghiêncứutổnghợpvàhoạttínhxúctácquangcủavậtliệu compositMoS2/g-C3N4 ",TạpchíXúctácvàHấpphụViệtNam6(2),pp.tr.115- 119.

2 QuảngT h ù y Trang,TrươngT h ị Mỹ Trúc, S ái C ô n g D a n h , VõViễn

(2016),"Tổng hợpvà tínhchấ t xúctácquang củavậtl iệ ucomposit WS

2/g-C3N4 ",Tạp chíKhoa h ọc ĐHQGHN: Khoa học Tự nhiênvàCôngnghệ,32(4),pp.tr.90-96.

3 Akbal F (2005), "Photocatalytic degradation of organic dyes in thepresenceoftitaniumdioxideunderUVandsolarlight:effectofoperationa lparameters",EnvironmentalProgress,24(3),pp.317-322.

4 AkpleM.S.,LowJ.,WagehS.,Al-GhamdiA.A.,YuJ.,ZhangJ.(2015),"Enhanced visible light photocatalytic H2-production of g-

5 Al-Ahmad A., Daschner F., Kümmerer K (1999), "Biodegradability ofcefotiam,ciprofloxacin,meropenem,penicillinG,andsulfamethoxazoleandinhib itionofwastewaterbacteria",Archivesofenvironmentalcontamination and toxicology,37(2),pp.158-163.

6 AlshehriM.,Al-MarzoukiF.,AlshehrieA.,HafezM.(2018),"Synthesis,characterization and band alignment characteristics of

NiO/SnO2bulkheterojunctionnanoarchitectureforpromisingphotocatalysis applications",Journalof AlloysandCompounds,757,pp.161-168.

7 AnG.,LiuY.,ChaiY.,ShangH.,LiuC.

(2006),"Synthesis,characterizationandthermaldecompositionmechanis mofcetyltrimethyl ammonium tetrathiotungstate",Journal of Natural

8 Anderson C., Bard A J (1997), "Improved photocatalytic activity andcharacterization of mixed TiO2/SiO2and

9 Asbury J B., Hao E., Wang Y., Ghosh H N., Lian T (2001),

Ultrafastelectron transfer dynamics from molecular adsorbates to semiconductornanocrystallinethin films,Editor^Editors,ACSPublications.

10 Ataca C., Topsakal M., Akturk E., Ciraci S (2011), "A comparativestudy of lattice dynamics of three-and two-dimensionalMoS2 ",TheJournalof Physical Chemistry C,115(33),pp.16354-16361.

11 AyariA.,CobasE.,OgundadegbeO.,FuhrerM.S.(2007),"Realizationand electrical characterization of ultrathin crystals of layered transition- metaldichalcogenides",Journalofappliedphysics,101(1),p.014507.

(2002),"Intercalation chemistry of molybdenum disulfide", Coordinationchemistryreviews,224(1-2),pp.87-109.

13 Berkdemir A., Gutiérrez H R., Botello-Méndez A R., Perea -López

N.,Elías A L., Chi a C.-I.,Wang B., Crespi V H., López -Urías F., CharlierJ.-C (2013), "Identification of individual and few layers of

WS2usingRaman Spectroscopy",Scientificreports,3(1),pp.1-8.

14 BhandavatR.,DavidL.,SinghG.(2012),"Synthesisofsurface- functionalizedWS2nanosheetsandperformanceasLi- ionbatteryanodes",Thejournalofphysicalchemistryletters,3(11),pp.1523-1530.

15 BickleyR.,SlaterM.,WangW.-J.(2005),"Engineeringdevelopmentofa photocatalytic reactor for waste water treatment",Process Safety andEnvironmental

16 BideauM.,ClaudelB.,DubienC.,FaureL.,KazouanH.(1995),"Onthe“immobilization” of titanium dioxide in the photocatalytic oxidation ofspentwaters",JournalofPhotochemistryandPhotobiologyA:Chemistry,91(2 ),pp.137-144.

17 BoraL.V.,MewadaR.K.(2017),"Visible/ solarlightactivephotocatalystsfororganiceffluenttreatment:Fundamentals,mec hanismsandparametricreview",RenewableandSustainableEnergyReviews,76,pp. 1393-1421.

18 Boyjoo Y., Ang M., Pareek V (2014), "CFD simulation of a pilot scaleslurryphotocatalyticreactoranddesignofmultiple- lampreactors",Chemical EngineeringScience,111,pp.266-277.

19 Brezova V., Jankovičová M., Soldan M., Blažková A., Rehakova

M.,Šurina I., Čeppan M., Havlinova B (1994), "Photocatalytic degradationofp- toluenesulphonicacidinaqueoussystemscontainingpowderedandimmobilizedtitan iumdioxide",JournalofPhotochemistryandPhotobiologyA:

20 ByrneJ.,EgginsB.,BrownN.,MckinneyB.,RouseM.

(1998),"Immobilisation of TiO2powder for the treatment of polluted water",Applied Catalysis B:Environmental,17(1-2),pp.25-36.

21 CaoS.,LiuT.,HussainS.,ZengW.,PengX.,PanF.

(2014),"HydrothermalsynthesisofvarietylowdimensionalWS2nanostruct ures",Materials Letters,129,pp.205-208.

22 CaoY., Li Q., Wang W (2017), "Construction of a crossed-layer- structureMoS2/g-

23 Carp O., Huisman C L., Reller A (2004), "Photoinduced reactivity oftitaniumdioxide",Progressinsolidstatechemistry,32(1-2),pp.33-177.

24 ChatterjeeD.,MahataA.(2002),"Visiblelightinducedphotodegradation of organic pollutants on dye adsorbed

TiO2surface",JournalofPhotochemistryandPhotobiologyA:Chemistry,153(1- 3),pp.199-204.

25 Chen D., Ji G., Ding B., Ma Y., Qu B., Chen W., Lee J Y (2013),

"Insitunitrogenatedgraphene–few- layerWS2compositesforfastandreversibleLi+storage",Nanoscale,5(17),pp 7890-7896.

26 Chen D., Wang Z., Du Y., Yang G., Ren T., Ding H (2015), "In situionic-liquid-assisted synthesis of plasmonic photocatalyst Ag/AgBr/g-C3N4withenhancedvisible- lightphotocatalyticactivity",CatalysisToday,258,pp.41-48.

27 Chen D H., Ye X., Li K (2005), "Oxidation of PCE with a UV

LEDphotocatalyticreactor",ChemicalEngineering&Technology:IndustrialCh emistry‐PlantEquipment‐Process Engineering‐Biotechnology,

28 ChenF.,LiS.,ChenQ.,ZhengX.,LiuP.,FangS.(2018),"3Dgrapheneaerogels- supportedAgandAg@Ag3PO4heterostructurefortheefficientadsorption-photocatalysis capture of different dye pollutants in water",Materials Research Bulletin,105,pp.334-341.

29 ChenH.-W.,KuY.,IrawanA.(2007),"Photodecompositionofo-cresolbyUV-

30 ChenL.,TomaF.M.,CooperJ.K.,LyonA.,LinY.,SharpI.D.,Ager

J W (2015), "Mo‐doped BiVO4photoanodes synthesized by reactivesputtering",ChemSusChem,8(6),pp.1066-1071.

31 Chen M., Yao J., Huang Y., Gong H., Chu W (2018),

O3heterojunctions:efficiency,kinetics,pathways,mechanismsandtoxicityevaluation" ,Chemical Engineering Journal,334,pp.453-461.

32 Chen X., Mao S S (2007), "Titanium dioxide nanomaterials: synthesis,properties, modifications, and applications",Chemical reviews, 107(7),pp.2891- 2959.

33 Cho I.-H., Zoh K.-D (2007), "Photocatalytic degradation of azo dye(ReactiveR e d 1 2 0 ) i n T i O 2 / U V s y s t e m : O p t i m i z a t i o n a n d m o d e l i n g usingaresponsesurfacemethodology(RSM)basedonthecentralcompositedes ign",DyesandPigments,75(3),pp.533-543.

34 Choi W., Choudhary N., Han G H., Park J., Akinwande D., Lee Y H.

(2017),"Recentdevelopmentoftwo- dimensionaltransitionmetaldichalcogenides and their applications",Materials Today, 20(3), pp.116-130.

K.,KimJ.,KaehrB.,FoleyB.M.,LuP.,DykstraC.,HopkinsP.E.,BrinkerC.J.,Hu angJ.(2015),"Controllingthemetalto semiconductor transition of MoS2and WS2in solution",Journal oftheAmerican ChemicalSociety,137(5),pp.1742-1745.

36 Chung D Y., Park S.-K., Chung Y.-H., Yu S.-H., Lim D.-H., Jung

N.,HamH.C.,ParkH.-Y.,PiaoY.,Yoo S.J.(2014),"Edge-exposedMoS2nano- assembledstructuresasefficientelectrocatalystsforhydrogenevolution reaction",Nanoscale,6(4),pp.2131-2136.

37 Coleman J N., Lotya M., O’neill A., Bergin S D., King P J., Khan

U.,Young K., Gaucher A., De S., Smith R J (2011), "Two- dimensionalnanosheetsproducedbyliquidexfoliationoflayeredmaterials",Scien ce,331(6017),pp.568-571.

38 Crowne F J., Amani M., Birdwell A G., Chin M L., O’regan T.

P.,Najmaei S., Liu Z., Ajayan P M., Lou J., Dubey M (2013),

39 CzoskaA.,LivraghiS.,ChiesaM.,GiamelloE.,AgnoliS.,GranozziG.,Finazzi E.,

Valentin C D., Pacchioni G (2008), "The nature of defectsinfluorine- dopedTiO2 ",TheJournalofPhysicalChemistryC,112(24),pp.8951-8956.

40 DaiX.-J.,LuoY.-S.,ZhangW.-D.,FuS.-Y.(2010),"Facilehydrothermal synthesis and photocatalytic activity of bismuth tungstatehierarchicalhollow sphereswithanultrahighsurfacearea",DaltonTransactions,39(14),pp.3426 -3432.

(2008),"UV/H2O2treatmentofRhodamineBinaqueoussolution:Influenceo foperationalparametersandkineticmodeling",Desalination,230(1-3),pp.16-26.

42 DanionA.,DisdierJ.,GuillardC.,PạsséO.,Jaffrezic-RenaultN.

(2006),"Photocatalytic degradation of imidazolinone fungicide in TiO2-coatedoptical fiber reactor",Applied Catalysis B: Environmental, 62(3-4), pp.274-281.

43 Di J., Xia J., Ge Y., Xu L., Xu H., Chen J., He M., Li H (2014),

"Facilefabricationa n d e n h a n c e d v i s i b l e l i g h t p h o t o c a t a l y t i c a c t i v i t y o f f e w - layerMoS2coupledBiOBrmicrospheres",DaltonTransactions,43(41),pp.15429- 15438.

(1999),"Coupledsemiconductorsystemsforphotocatalysis.Preparationandchar acterizationofpolycrystallinemixedWO3/WS2powders",TheJournalof

45 Ding J., Sun S., Bao J., Luo Z., Gao C (2009), "Synthesis of

CaIn2O4rods and its photocatalytic performance under visible-light irradiation",Catalysis letters,130(1-2),pp.147-153.

46 Ding W., Hu L., Dai J., Tang X., Wei R., Sheng Z., Liang C., Shao

D.,Song W., Liu Q (2019), "Highly ambient-stable 1T-MoS2and 1T-

47 Ding Y., Zhou Y., Nie W., Chen P (2015), "MoS2–GO nanocompositessynthesizedviaahydrothermalhydrogelmethodforsolarlightp hotocatalyticdegradationofmethyleneblue",AppliedSurfaceScience,357,pp.160 6-1612.

48 DonaJ.,GarrigaC.,AranaJ.,PérezJ.,ColonG.,MacíasM.,NavioJ.

49 Dong S., Feng J., Li Y., Hu L., Liu M., Wang Y., Pi Y., Sun J., Sun J.

(2014), "Shape-controlled synthesis of BiVO4hierarchical structureswithuniquenatural-sunlight- drivenphotocatalyticactivity",AppliedCatalysis B: Environmental,152,pp.413-424.

50 Doss N., Bernhardt P., Romero T., Masson R., Keller V., Keller N.

(2014), "Photocatalytic degradation of butanone (methylethylketone) ina small-size TiO2/β-SiC alveolar foam LED reactor",Applied

51 Ebert I., Bachmann J., Kühnen U., Küster A., Kussatz C., Maletzki

(2011),"Toxicityofthefluoroquinoloneantibioticsenrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms",EnvironmentalToxicologyandChemistry,30(12),pp.2786-2792.

(2008),"Visible-light-active titania photocatalysts:the caseofN-doped s

53 FernỏNdez-IbỏẹEz P., Blanco J., Malato S., De Las Nieves F.

(2003),"Application of the colloidal stability of TiO2particles for recovery andreuseinsolarphotocatalysis",WaterResearch,37(13),pp.3180-3188.

54 Fernandez A., Lassaletta G., Jimenez V., Justo A., Gonzalez-Elipe

(1995),"PreparationandcharacterizationofTiO2photocatalystssupported onvariousrigidsupports(glass,quartzandstainlesssteel).Comparativestud iesofphotocatalyticactivityinwaterpurification",AppliedCatalysisB:Envi ronmental,7(1-2),pp.49-63.

55 FrankS.N.,BardA.J.(1977),"Heterogeneousphotocatalyticoxidationof cyanide and sulfite in aqueous solutions at semiconductor powders",Thejournalofphysicalchemistry,81(15),pp.1484-1488.

56 Fu J., Zhu B., Jiang C., Cheng B., You W., Yu J (2017),

"Hierarchicalporous O‐doped g‐C3N4with enhanced photocatalytic

57 FuS.,LiuX.,YanY.,LiL.,LiuH.,ZhaoF.,ZhouJ.(2019),"Few- layerWS2modifiedBiOBrnanosheetswithenhancedbroad- spectrumphotocatalytic activity towards various pollutants removal",Science ofTheTotalEnvironment,694,p.133756.

58 FuY.,ChangC.,ChenP.,ChuX.,ZhuL.(2013),"Enhancedphotocatalytic performance of boron doped Bi2WO6nanosheets undersimulated solar light irradiation",Journal of hazardous materials, 254,pp.185-192.

(2008),"Heterogeneousphotocatalyticdegradation of organic contaminants over titanium dioxide: a review offundamentals, progress and problems",Journal of photochemistry andphotobiologyC:Photochemistry reviews,9(1),pp.1-12.

61 Ge L., Han C., Xiao X., Guo L (2013), "Synthesis and characterizationofcompositevisiblelightactivephotocatalystsMoS2/g-

C3N4withenhancedhydrogenevolutionactivity",Internationaljournalofhy drogen energy,38(17),pp.6960-6969.

62 Gelover S., Mondragón P., Jiménez A (2004), "Titanium dioxide sol – gel deposited over glass and its application as a photocatalyst for waterdecontamination",JournalofPhotochemistryandPhotobiologyA:Ch emistry,165(1-3),pp.241-246.

63 Ghosh J P., Langford C H., Achari G (2008), "Characterization of anLEDbasedphotoreactortodegrade4- chlorophenolinanaqueousmediumusingcoumarin(C-

64 GnanamoorthyG.,YadavV.K.,LathaD.,KarthikeyanV.,Narayanan

65 Guardia L., Paredes J I., Munuera J M., Villar-Rodil S., AyáN-

VarelaM., Martínez -Alonso A., TascóN J M (2014), "Chemically exfoliatedMoS2nanosheets as an efficient catalyst for reduction reactions in theaqueous phase",ACS applied materials & interfaces, 6(23), pp 21702-21710.

66 GuoF.,ShiW.,LinX.,YanX.,GuoY.,CheG.(2015),"NovelBiVO4/

InVO4heterojunctions:facilesynthesisandefficientvisible- lightphotocatalyticperformanceforthedegradationofrhodamineB",Separation and PurificationTechnology,141,pp.246-255.

67 Guo X., Cao G.-L., Ding F., Li X., Zhen S., Xue Y.-F., Yan Y.-M.,

LiuT., Sun K.-N (2015), "A bulky and flexible electrocatalyst for efficienthydrogenevolutionbasedonthegrowthofMoS2nanoparticlesoncar bon nanofiber foam",Journal of Materials Chemistry A, 3(9), pp.5041-5046.

68 GuoY.,ZhaoJ.,ZhangH.,YangS.,QiJ.,WangZ.,XuH.(2005),"Useof rice husk- based porous carbon for adsorption of Rhodamine B fromaqueous solutions",Dyes and

69 GuptaA.,ArunachalamV.,VasudevanS.(2016),"Liquid-phaseexfoliation of MoS2nanosheets: the critical role of trace water",Thejournalofphysicalchemistryletters,7(23),pp.4884-4890.

70 Hang N T., Zhang S., Yang W (2017), "Efficient exfoliation of g-

71 Hasegawa K., Ito T., Maeda M., Kagaya S (2001), "A TiO2- suspendedcontinuous flow photoreactor system combined with the separation ofTiO2particlesbycoagulationforthephotocatalyticdegradationofdibutyl phthalate",Chemistryletters,30(9),pp.890-891.

72 Hassanpour M., Safardoust-Hojaghan H., Salavati-Niasari M.

(2017),"Degradation of methylene blue and Rhodamine B as water pollutantsviagreensynthesizedCo3O4/ZnOnanocomposite",JournalofMol ecular Liquids,229,pp.293-299.

73 HeY.,ZhangL.,TengB.,FanM.(2015),"NewapplicationofZ-schemeAg3PO4/g-

C3N4composite in converting CO2to fuel",Environmentalscience

(2016),"Molybdenumdisulfidenanomaterials:Structures,properties,synthesisandre centprogressonhydrogenevolutionreaction",AppliedMaterials

75 HoW.,YuJ.C.,LinJ.,YuJ.,LiP.(2004),"Preparationandphotocatalytic behavior of MoS2and WS2nanocluster sensitized TiO2 ",Langmuir,20(14),pp.5865-5869.

76 Homem V., Santos L (2011), "Degradation and removal methods ofantibiotics from aqueous matrices–a review",Journal of environmentalmanagement,92(10),pp.2304-2347.

77 HongJ.,ChenC.,BedoyaF.E.,KelsallG.H.,O'hareD.,PetitC.(2016),"Carbonnitride nanosheet/metal–organic frameworknanocompositeswithsynergisticphotocatalyticactivities",Cata lysisScience&Technology,6(13),pp.5042-5051.

78 Hou Y., Zhu Y., Xu Y., Wang X (2014), "Photocatalytic hydrogenproduction over carbon nitride loaded with WS2as cocatalyst undervisiblelight",AppliedCatalysisB:Environmental,156,pp.122-127.

80 HuangH.,FengY.,ZhouJ.,LiG.,DaiK.

(2013),"VisiblelightphotocatalyticreductionofCr(VI)onAg3PO4nanoparticles",

81 Jamali A., Vanraes R., Hanselaer P., Van Gerven T (2013), "A batchLED reactor for the photocatalytic degradation of phenol",ChemicalEngineeringandProcessing:ProcessIntensification,71, pp.43-50.

82 Jiang J., Ou-Yang L., Zhu L., Zheng A., Zou J., Yi X., Tang H.

C3N4onthelayernumberofitsnanosheets:astudybyRamanspectroscopycouple dwithfirst-principlescalculations",Carbon,80,pp.213-221.

84 Jo W.-K., Tayade R J (2014), "New generation energy-efficient lightsourceforphotocatalysis:LEDsforenvironmentalapplications",Indust rial &Engineering ChemistryResearch,53(6),pp.2073-2084.

85 JohnsonB.(2003),High-power,short- waveLEDpurifiesair,Editor^Editors,Laurin Publ Co Inc Berkshire

Common Po Box 1146,Pittsfield,Ma01202Usa.

86 Jun Y S., Lee E Z., Wang X., Hong W H., Stucky G D., Thomas A.

(2013), "From melamine‐cyanuric acid supramolecular aggregates tocarbonnitridehollowspheres",AdvancedFunctionalMaterials,23(29),pp.3661-3667.

87 Junqi L., Zhanyun G., Yu W., Zhenfeng Z (2014), "Three- dimensionalTiO2/Bi2WO6hierarchicalheterostructurewithenhancedvisib lephotocatalyticactivity",Micro&Nano Letters,9(2),pp.65-68.

88 Kagaya S., Shimizu K., Arai R., Hasegawa K (1999), "Separation oftitaniumdioxidephotocatalystinitsaqueoussuspensionsbycoagulationwithba sicaluminiumchloride",Water Research,33(7),pp.1753-1755.

90 Kaur M., Umar A., Mehta S K., Singh S., Kansal S K., Fouad

91 Kočí K., Reli M., Troppová I., Šihor M., Kupková J., Kustrowski

P.,Praus P (2017), "Photocatalytic decomposition of N2O over TiO2/g-

C3N4photocatalysts heterojunction",Applied Surface Science, 396, pp.1685-1695.

92 KomatsuT.(2001),"Thefirstsynthesisandcharacterizationofcyameluric high polymers",Macromolecular Chemistry and Physics,202(1),pp.19- 25.

93 KongJ.-Z.,LiA.-D.,LiX.-Y.,ZhaiH.-F.,ZhangW.-Q.,GongY.-P.,LiH.,WuD.

(2010),"Photo-degradationofmethyleneblueusingTa-dopedZnO nanoparticle",Journal of solid state chemistry, 183(6), pp 1359-1364.

94 KucA.,ZiboucheN.,HeineT.(2011),"Influenceofquantumconfinement on the electronic structure of the transition metal sulfideTS2 ",PhysicalReview B,83(24),p.245213.

95 Kumar A., Pandey G (2017), "A review on the factors affecting thephotocatalyticdegradationofhazardousmaterials",Mater.Sci.Eng.Int.J,1(3) ,pp.1-10.

96 KumarS.,SharmaV.,BhattacharyyaK.,KrishnanV.(2016),"Synergetic effect of

MoS2/rGO doping to enhance the photocatalyticperformance of ZnO nanoparticles",New Journal of Chemistry, 40(6),pp.5185-5197.

98 LeblebiciM.E.,RongéJ.,MartensJ.A.,StefanidisG.D.,VanGerven

( 2 0 1 5 ) , " C o m p u t a t i o n a l m o d e l l i n g o f a p h o t o c a t a l y t i c U V - L E D reactor with internal mass and photon transfer consideration",ChemicalEngineering Journal,264, pp.962-970.

"Comparisonof photocatalytic space-time yields of 12 reactor designs for wastewatertreatment",ChemicalEngineeringandProcessing:ProcessIntensif ication,97,pp.106-111.

(2016),"Recentdevelopmentsofzincoxidebasedphotocatalystinwatertrea tmenttechnology: areview",Water research,88,pp.428-448.

102 Legrini O., Oliveros E., Braun A (1993), "Photochemical processes forwatertreatment",Chemicalreviews,93(2),pp.671-698.

103 Li H., Wu J., Yin Z., Zhang H (2014), "Preparation and applications ofmechanically exfoliated single-layer and multilayer MoS2and WSe2nanosheets",Accounts ofchemicalresearch,47(4),pp.1067-1075.

104 Li H., Yin Z., He Q., Li H., Huang X., Lu G., Fam D W H., Tok A.

I.Y., Zhang Q., Zhang H (2012), "Fabrication of single‐and multilayerMoS2film‐basedfield‐ effecttransistorsforsensingNOatroomtemperature",small,8(1),pp.63-67.

105 Li J., Liu E., Ma Y., Hu X., Wan J., Sun L., Fan J (2016), "Synthesis ofMoS2/g-

C3N4nanosheetsas2Dheterojunctionphotocatalystswithenhanced visible light activity",Applied Surface Science, 364, pp 694-702.

106 Li J., Liu X., Pan L., Qin W., Chen T., Sun Z (2014), "MoS2– reducedgrapheneoxidecompositessynthesizedviaamicrowave- assistedmethod for visible-light photocatalytic degradation of methylene blue",RscAdvances,4(19),pp.9647-9651.

107 Li Puma G., Yue P L (2001), "A novel fountain photocatalytic reactorforwatertreatmentandpurification:modelinganddesign",Industrial&engi neering chemistryresearch,40(23),pp.5162-5169.

108 LiQ.,BianJ.,ZhangL.,ZhangR.,WangG.,NgD.H.(2014),"Synthesis of

Carbon Materials–TiO2Hybrid Nanostructures and TheirVisible‐ LightPhoto‐catalyticActivity",ChemPlusChem,79(3),pp.454-461.

109 Li Q., Zhang N., Yang Y., Wang G., Ng D H (2014), "High efficiencyphotocatalysisforpollutantdegradationwithMoS2/C3N4heterostructu res",Langmuir,30(29),pp.8965-8972.

110 Li X., Cheng Y., Kang S., Mu J (2010), "Preparation and enhancedvisible light-driven catalytic activity of ZnO microrods sensitized byporphyrinheteroaggregate",Appliedsurfacescience,256(22),pp.6705-6709.

111 Li X., Zhao Y (1999), "Advanced treatment of dyeing wastewater forreuse",WaterScienceandTechnology,39(10-11),pp.249-255.

(2013),"FacilepreparationofsquaryliumdyesensitizedTiO2nanoparticlesandt heirenhancedvisible- lightphotocatalyticactivity",Journalofalloysandcompounds,564,pp.138-142.

113 Li Z., Meng X., Zhang Z (2018), "Recent development on MoS2- basedphotocatalysis:Areview",JournalofPhotochemistryandPhotobiologyC:Photo chemistry Reviews,35,pp.39-55.

114 LiangD.,JingT.,MaY.,HaoJ.,SunG.,DengM.

C3N4heterostructure:atheoretical study",The Journal of Physical Chemistry C, 120(42), pp.24023-24029.

115 Lin H., Wang J., Luo Q., Peng H., Luo C., Qi R., Huang R., Travas-

Sejdic J., Duan C.-G (2017), "Rapid and highly efficient chemicalexfoliationoflayeredMoS2andWS2 ",JournalofAlloysandCompo unds,699,pp.222-229.

116 Liu H., Liang J., Du J., Gao Q., Fu S., Li L., Hu M., Zhao F., Zhou J.

(2020),"PromotingchargeseparationindualdefectmediatedZ-schemeMoS2/ g-C3N4photocatalysts for enhanced photocatalytic degradationactivity:synergisticeffectinsight",ColloidsandSurfacesA:Phy sicochemical andEngineeringAspects,p 124668.

117 Liu N., Kim P., Kim J H., Ye J H., Kim S., Lee C J (2014), "Large- area atomically thin MoS2nanosheets prepared using electrochemicalexfoliation",ACSnano,8(7),pp.6902-6910.

118 Lu H., Xu L., Wei B., Zhang M., Gao H., Sun W (2014),

"Enhancedphotosensitizationprocessinducedbythep– njunctionofBi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B",Appliedsurfacescience,303,pp.360-366.

119 Luo Y., Wei X., Gao B., Zou W., Zheng Y., Yang Y., Zhang Y.,

TongQ., Dong L (2019), "Synergistic adsorption-photocatalysis processes ofgraphitic carbon nitrate (g-C3N4) for contaminant removal: Kinetics,models,andmechanisms",ChemicalEngineeringJournal,375,p.1 22019.

120 Lyu J., Hu Z., Li Z., Ge M (2019), "Removal of tetracycline by

121 MahlerB.,HoepfnerV.,LiaoK.,OzinG.A.(2014),"Colloidalsynthesisof1T-

WS2nanosheets:applicationsforphotocatalytichydrogenevolution",Journalo ftheAmericanChemicalSociety,136(40),pp.14121-14127.

122 MakK.F.,LeeC.,HoneJ.,ShanJ.,HeinzT.F.

123 Makama A., Salmiaton A., Saion E., Choong T., Abdullah N.

(2015),"Microwave-assisted synthesis of porous ZnO/SnS2heterojunction anditsenhancedphotoactivityforwaterpurification",JournalofNanomateri als,2015.

124 MalatoS., Blanco J., Richter C., Braun B., MaldonadoM.

(1998),"Enhancementoftherateofsolarphotocatalyticmineralizationofor ganic pollutants by inorganic oxidizing species",Applied Catalysis

125 MatosJ.,LaineJ., HerrmannJ.-M.,UzcateguiD.,BritoJ (2007),"Influence of activated carbon upon titania on aqueous photocatalyticconsecutive runs of phenol photodegradation",Applied Catalysis

126 MerkaO.,YarovyiV.,BahnemannD.W.,WarkM.(2011),"pH- controlofthephotocatalyticdegradationmechanismofrhodamineBoverPb3

Nb4O13 ",The Journal of Physical Chemistry C, 115(16), pp 8014-8023.

127 Molinari R., Mungari M., Drioli E., Di Paola A., Loddo V.,

PalmisanoL., Schiavello M (2000), "Study on a photocatalytic membrane reactorforwater purification",CatalysisToday,55(1-2),pp.71- 78.

128 Monga D., Ilager D., Shetti N P., Basu S., Aminabhavi T M.

C3N4nanoflowersforenhancedvisible-light-driven photocatalytic and electrochemical degradation oforganic pollutants",Journal of

129 Mu C., Zhang Y., Cui W., Liang Y., Zhu Y (2017), "Removal ofbisphenol A over a separation free 3D Ag3PO4-graphene hydrogel via anadsorption- photocatalysissynergy",AppliedCatalysisB:Environmental,212,pp.41-49.

130 Nagaveni K., Hegde M., Ravishankar N., Subbanna G., Madras G.

(2004),"SynthesisandstructureofnanocrystallineTiO2withlowerband gap showing high photocatalytic activity",Langmuir, 20(7), pp 2900- 2907.

131 NaharM.S.,HasegawaK.,KagayaS.(2006),"Photocatalyticdegradation of phenol by visible light-responsive iron-doped TiO2andspontaneoussedimentationoftheTiO2particles",Chemosphere,65(11),p p.1976-1982.

132 Nakano K., Obuchi E., Takagi S., Yamamoto R., Tanizaki T.,

TaketomiM.,EguchiM.,IchidaK.,SuzukiM.,HashimotoA.

(2004),"Photocatalytic treatment of water containing dinitrophenol and citywateroverTiO2/SiO2 ",Separationandpurificationtechnology,34(1-3),pp.67- 72.

133 Natarajan T S., Thomas M., Natarajan K., Bajaj H C., Tayade R J.

134 Paradisanos I., Germanis S., Pelekanos N., Fotakis C., Kymakis

E.,Kioseoglou G., Stratakis E (2017), "Room temperature observation ofbiexcitonsinexfoliatedWS2monolayers",AppliedPhysicsLetters,110(19),p. 193102.

135 Pelaez M., Nolan N T., Pillai S C., Seery M K., Falaras P., Kontos

"Areview on the visible light active titanium dioxide photocatalysts forenvironmental applications",Applied Catalysis B: Environmental, 125,pp.331-349.

136 PengW.-C.,LiX.-Y.(2014),"SynthesisofMoS2/g-C3N4asasolarlight- responsivephotocatalystfororganicdegradation",CatalysisCommunications,4 9,pp.63-67.

Ag2CrO4nanocompositeswithn– nheterojunctionsasexcellentphotocatalystsfordegradationofdifferentpollutantsun dervisiblelight",JournalofMaterialsScience:MaterialsinElectronics,27(4) ,pp.4098-4108.

138 Plechinger G., Nagler P., Kraus J., Paradiso N., Strunk C., Schüller

C.,Korn T (2015), "Identification of excitons, trions and biexcitons insingle‐layer WS2",physica status solidi (RRL)–Rapid Research

CeO2nanoparticlecatalysisofmethylenebluephotodegradation:kineticsandme chanism",Chin.J.Catal,31(11-12),pp.1328-1334.

140 PresciuttiA.,AsdrubaliF.,MarrocchiA.,BroggiA.,PizzoliG.,Damiani

(2014),"Sunsimulators:Developmentofaninnovativelowcostfilmfilter",Sustain ability,6(10), pp.6830-6846.

(2013),"Progress,challengeandperspectiveofheterogeneous photocatalysts",Chemical Society Reviews, 42(7), pp.2568-2580.

142 RadisavljevicB.,RadenovicA.,BrivioJ.,GiacomettiV.,KisA.(2011),"Single-layer

MoS2transistors",Nature nanotechnology, 6(3), pp 147-150.

143 RanjitK.,WillnerI.,BossmannS.,BraunA.(2001),"Lanthanideoxide- dopedtitaniumdioxidephotocatalysts:novelphotocatalystsfortheenhanced degradation of p-chlorophenoxyacetic acid",Environmentalscience

144 Ray A K (1999), "Design, modelling and experimentation of a newlarge- scalephotocatalyticreactorforwatertreatment",ChemicalEngineeringScie nce,54(15-16),pp.3113-3125.

145 RoyaeeS.J.,SohrabiM.,SoleymaniF.(2011),"Performanceofaphoto‐impinging streams reactor for the phenol degradation process",JournalofChemical Technology

146 Sang Y., Zhao Z., Zhao M., Hao P., Leng Y., Liu H (2015), "From

UVtonear‐ infrared,WS2nanosheet:anovelphotocatalystforfullsolarlightspectrumphotodegrad ation",AdvancedMaterials,27(2),pp.363-369.

"Determinationoffluoroquinolone antibiotics in hospital and municipal wastewaters inCoimbrabyliquidchromatographywithamonolithiccolumnandfluoresc ence detection",Analytical and bioanalytical chemistry, 391(3),pp.799- 805.

148 SenthilkumaarS.,PorkodiK.,GomathiR.,ManonmaniN.(2006),"Sol– gelderivedsilverdopednanocrystallinetitaniacatalysedphotodegradation of methylene blue from aqueous solution",Dyes andPigments,69(1-2),pp.22-30.

149 Shan A Y., Ghazi T I M., Rashid S A (2010), "Immobilisation oftitaniumdioxideontosupportingmaterialsinheterogeneousphotocatalysis: a review",Applied Catalysis A: General, 389(1-2), pp.1-8.

150 Shang J., Hao W., Lv X., Wang T., Wang X., Du Y., Dou S., Xie

151 Sharma P., Sasson Y (2017), "A photoactive catalyst Ru/g-

153 Sheng Y., Wei Z., Miao H., Yao W., Li H., Zhu Y (2019),

"Enhancedorganicpollutantphotodegradationviaadsorption/photocataly sissynergyusinga3Dg-C3N4/TiO2free-separationphotocatalyst",Chemical

154 ShiL.,LiangL.,WangF.,LiuM.,SunJ.(2015),"EnhancedPhotocatalytic

Activity of Degrading Rhodamine B Over MoS2/g-C3N4Photocatalyst Under Visible Light",Energy and Environment Focus,4(2),pp.74-81.

155 ShiZ.,ZhangY.,DuoerkunG.,CaoW.,LiuT.,ZhangL.,LiuJ.,LiM.,Chen Z (2020),

"Fabrication of MoS2/BiOBr heterojunctions on carbonfibersasaweaveablephotocatalystfortetracyclinehydrochloridedegr adation and Cr(VI) reduction under visible light",EnvironmentalScience:Nano.

156 ShironitaS.,MoriK.,ShimizuT.,OhmichiT.,MimuraN.,Yamashita

H (2008), "Preparation of nano-sized platinum metal catalyst usingphoto-assisteddepositionmethodonmesoporoussilicaincludingsingle- sitephotocatalyst",Appliedsurfacescience,254(23),pp.7604-7607.

TiO2heterojunction in the presence of H2O2 ",Water, Air, & Soil

(2018),"Efficientpromotionofchargeseparationwithreducedgrapheneoxide(rG O)inBiVO4/rGOphotoanode for greatly enhanced photoelectrochemical water splitting",Solar EnergyMaterialsand Solar Cells,185,pp.325-332.

159 SongB.,WangQ.,WangL.,LinJ.,WeiX.,MurugadossV.,WuS.,GuoZ., Ding T., Wei S.

(2020), "Carbon nitride nanoplatelet photocatalystsheterostructuredwithB- dopedcarbonnanodotsforenhancedphotodegradationoforganicPollutants",

160 Subramanian M., Kannan A.(2010), "Photocatalytic degradation ofphenol in a rotating annular reactor",Chemical engineering science,65(9),pp.2727-2740.

161 SunS.,WuY.,ZhangX.,ZhangZ.,YanY.,GuanW.(2014),"Enhancedvisible-light-driven photocatalytic degradation performance of Cip onBiVO4–Bi2WO6nano-heterojunction photocatalysts",Nano, 9(02), p.1450015.

162 Sun Y., Wang W., Zhang L., Sun S (2013), "The photocatalysis ofBi2MoO6undertheirradiationofblueLED",MaterialsResearchBulletin,4 8(10),pp.4357-4361.

163 Surolia P K., Tayade R J., Jasra R V (2007), "Effect of anions on thephotocatalytic activity of Fe (III) salts impregnated TiO2 ",Industrial

164 Suzuki Y., Maezawa A., Uchida S (2000), "Liquid-solid separation ofphoto-catalyst suspension induced by ultrasound",Chemistry

165 Tacchini I., Terrado E., Anson A., Martinez M (2011), "Preparation ofaTiO2/MoS2nanoparticle-basedcompositeby solvothermalmethodwithenhancedphotoactivityforthedegradationoforgan icmoleculesinwaterunder UVlight",Micro&NanoLetters,6(11),pp.932-936.

166 Tayade R J., Kulkarni R G., Jasra R V (2006), "Transition metal ionimpregnatedmesoporousTiO2forphotocatalyticdegradationoforganicconta minants in water",Industrial & engineering chemistry research,45(15),pp.5231-5238.

(2009),"Photocatalyticdegradationofmethylenebluedyeusingultravioletl ightemittingdiodes",Industrial&EngineeringChemistryResearch,48(23), pp.10262-10267.

168 TayadeR.J.,SuroliaP.K.,KulkarniR.G.,JasraR.V.(2007),"Photocatalytic degradation of dyes and organic contaminants in waterusing nanocrystalline anatase and rutile TiO2 ",Science and Technologyof

169 Thripuranthaka M., Kashid R V., Sekhar Rout C., Late D J.

(2014),"TemperaturedependentRamanspectroscopyofchemicallyderivedfewla yer MoS2and WS2nanosheets",Applied Physics Letters, 104(8), p.081911.

170 Tian Y., Ge L., Wang K., Chai Y (2014), "Synthesis of novel MoS2/g-

C3N4heterojunction photocatalysts with enhanced hydrogen evolutionactivity",Materials characterization,87,pp.70-73.

171 Tongay S., Fan W., Kang J., Park J., Koldemir U., Suh J., Narang D.

S.,Liu K., Ji J., Li J (2014), "Tuning interlayer coupling in large-areaheterostructures with CVD- grown MoS2and WS2monolayers",Nanoletters,14(6),pp.3185-3190.

174 VattikutiS.P.,NgoI.-L.,ByonC.(2016),"Physicochemcialcharacteristic of CdS-anchored porous WS2hybrid in the photocatalyticdegradation of crystal violet under UV and visible light irradiation",SolidState Sciences,61,pp.121-130.

"Synthesisof Pd co-doped nano-TiO2–SO4 2–and its synergetic effect on the solarphotodegradationofReactiveRed120dye",Materialsscienceinsemico nductorprocessing,25,pp.163-172.

177 Vezzoli M., Martens W N., Bell J M (2011), "Investigation of phenoldegradation:Truereactionkineticsonfixedfilmtitaniumdioxidepho tocatalyst",AppliedCatalysisA:General,404(1-2),pp.155-163.

(1994),"Photochemistryoftextileazodyes.Spectralcharacterizationofexcitedstate,re ducedandoxidizedformsofacidorange7",JournalofPhotochemistryandPhoto biologyA:Chemistry,83(2),pp.141-146.

179 VisanA.,RafieianD.,OgiegloW.,LammertinkR.G.(2014),"Modelingintrinsic kinetics in immobilized photocatalytic microreactors",Appliedcatalysis B: environmental,150,pp.93-100.

180 Wang C., Yin L., Xu Z., Niu J., Hou L.-A (2017),

"Electrochemicaldegradationofenrofloxacinbyleaddioxideanode:Kinetics,m echanismand toxicity evaluation",Chemical Engineering Journal, 326, pp 911- 920.

181 WangJ.,GuanZ.,HuangJ.,LiQ.,YangJ.(2014),"Enhancedphotocatalytic mechanism for the hybrid g-C3N4/MoS2nanocomposite",Journalof

182 Wang X., Lim T.-T (2010), "Solvothermal synthesis of C–N codopedTiO2and photocatalytic evaluation for bisphenol A degradation using avisible- lightirradiatedLEDphotoreactor",AppliedCatalysisB:Environmental,100(1- 2),pp.355-364.

183 Wang X., Lim T.-T (2011), "Effect of hexamethylenetetramine on thevisible-light photocatalytic activity of C–N codoped TiO2for bisphenolA degradation: evaluation of photocatalytic mechanism and solutiontoxicity",Applied Catalysis A:General,399(1-2),pp.233-241.

184 Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.

M.,DomenK.,AntoniettiM.(2009),"Ametal- freepolymericphotocatalystforhydrogenproductionfromwaterundervisible light",Naturematerials,8(1),pp.76-80.

185 WangY.,WangQ.,ZhanX.,WangF.,SafdarM.,HeJ.(2013),"Visiblelight driven type II heterostructures and their enhanced photocatalysisproperties: areview",Nanoscale,5(18),pp.8326-8339.

186 Wang Z.-P., Xu J., Cai W.-M., Zhou B.-X., He Z.-G., Cai C.-G.,

(2005),"Visiblelightinducedphotodegradationoforganicpollutantsonnitr ogenandfluorineco-dopedTiO2photocatalyst",JournalofEnvironmental

187 Watarai H., Funaki F (1996), "Total internal reflection fluorescencemeasurementsofprotonationequilibriaofrhodamineBandoct adecylrhodamine B at a toluene/water interface",Langmuir, 12(26),pp.6717-6720.

188 Wei L., Chen Y., Lin Y., Wu H., Yuan R., Li Z (2014), "MoS2as non- noble-metalco- catalystforphotocatalytichydrogenevolutionoverhexagonalZnIn2S4under visiblelightirradiations",AppliedCatalysisB:Environmental,144,pp.521-527.

189 Wei Z., Li Y., Luo S., Liu C., Meng D., Ding M., Zeng G.

(2014),"HierarchicalheterostructureofCdSnanoparticlessensitizedelectr ospunTiO2nanofiberswithenhancedphotocatalyticactivity",Separation and

190 Weimin X., Geissen S.-U (2001), "Separation of titanium dioxide fromphotocatalytically treated water by cross-flow microfiltration",WaterResearch,35(5),pp.1256-1262.

191 Wen J., Xie J., Chen X., Li X (2017), "A review on g-C3N4- basedphotocatalysts",Appliedsurface science,391,pp.72-123.

192 Wen X.-J., Niu C.-G., Zhang L., Liang C., Zeng G.-M (2018), "A novelAg2O/CeO2heterojunction photocatalysts for photocatalytic degradationof enrofloxacin: possible degradation pathways, mineralization activityandanindepthmechanisminsight",AppliedCatalysisB:Environmental,221, pp.701-714.

193 Wu M.-H., Li L., Liu N., Wang D.-J., Xue Y.-C., Tang L.

(2018),"Molybdenumdisulfide(MoS2)asaco- catalystforphotocatalyticdegradation of organic contaminants: A review",Process Safety andEnvironmental Protection,118,pp.40-58.

194 Wu Y., Liu Z., Li Y., Chen J., Zhu X., Na P (2019), "WS2nanodots- modifiedTiO2nanotubestoenhancevisible- lightphotocatalyticactivity",MaterialsLetters,240,pp.47-50.

195 Wu Y., Xu F., Guo D., Gao Z., Wu D., Jiang K (2013), "Synthesis ofZnO/CdSehierarchicalheterostructurewithimprovedvisiblephotocatal yticefficiency",Appliedsurfacescience,274,pp.39-44.

196 Xia J., Ge Y., Zhao D., Di J., Ji M., Yin S., Li H., Chen R.

(2015),"Microwave-assistedsynthesisoffew-layeredMoS2/BiOBrhollow microsphereswithsuperiorvisible-light- responsephotocatalyticactivityforciprofloxacinremoval",CrystEngComm,17(1 9),pp.3645-3651.

197 XuD.,ChengB.,CaoS.,YuJ.(2015),"Enhancedphotocatalyticactivityand stability of Z-scheme Ag2CrO4-GO composite photocatalysts fororganicpollutantdegradation",AppliedCatalysisB:Environmental,164,pp.380 -388.

198 Xu F., Almeida T P., Chang H., Xia Y., Wears M L., Zhu Y.

199 Xu H.-Y., Wu L.-C., Zhao H., Jin L.-G., Qi S.-Y (2015),

200 Yan S., Li Z., Zou Z (2009), "Photodegradation performance of g-

C3N4fabricated by directly heating melamine",Langmuir, 25(17), pp 10397-10401.

201 Yan S., Li Z., Zou Z (2010), "Photodegradation of rhodamine B andmethylorangeoverboron-dopedg-

202 Yang D., Sandoval S J., Divigalpitiya W., Irwin J., Frindt R.

(1991),"Structure of single-molecular-layer MoS2 ",Physical Review B, 43(14),p.12053.

(VI) in aqueous solution using dye-sensitized nanoscale ZnO undervisible light irradiation",Journal of Nanoparticle Research, 11(1), p.221.

204 YangW.,ShangJ.,WangJ.,ShenX.,CaoB.,PeimyooN.,ZouC.,ChenY.,WangY.,C ongC.(2016),"Electricallytunablevalley-lightemittingdiode (vLED) based on CVD- grown monolayer WS2",Nano letters,16(3),pp.1560-1567.

205 Yatmaz H., Wallis C., Howarth C (2001), "The spinning disc reactor– studiesonanovelTiO2photocatalyticreactor",Chemosphere,42(4),pp.397-403.

206 YavuzY.,SkogồsJ.G.,GỹllỹogluM.G.,LangứT.,MồrvikR.

(2006),"Arecoldlightsourcesreallycold?",SurgicalLaparoscopyEndosc opy&PercutaneousTechniques,16(5),pp.370-376.

207 Yu J., Wang S., Low J., Xiao W (2013), "Enhanced photocatalyticperformanceofdirectZ-schemeg-C3N4/TiO2photocatalysts forthedecomposition of formaldehyde in air",Physical Chemistry

208 Yu W., Xu D., Peng T (2015), "Enhanced photocatalytic activity of g-

C3N4for selective CO2reduction to CH3OH via facile coupling of ZnO:adirectZ- schememechanism",JournalofMaterialsChemistryA,3(39),pp.19936-19947.

210 Zeng H., Liu G.-B., Dai J., Yan Y., Zhu B., He R., Xie L., Xu S.,

ChenX., Yao W (2013), "Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides",Scientificreports,3,p.1608.

211 Zhang G., Huang C., Wang X (2015), "Dispersing molecular cobalt ingraphiticcarbonnitrideframeworksforphotocatalyticwateroxidation",Small,1 1(9-10),pp.1215-1221.

(2013),"AfacilesynthesisofcovalentcarbonnitridephotocatalystsbyCo- polymerizationofureaandphenylureaforhydrogen evolution",Journalofcatalysis,307,pp.246-253.

213 Zhang G., Zhang J., Zhang M., Wang X (2012), "Polycondensation ofthioureaintocarbonnitridesemiconductorsasvisiblelightphotocatalysts",

214 ZhangJ.,GuoF.,WangX.(2013),"Anoptimizedandgeneralsyntheticstrategy for fabrication of polymeric carbon nitride nanoarchitectures",Advanced functionalmaterials,23(23),pp.3008-3014.

215 Zhang J., Sun J., Maeda K., Domen K., Liu P., Antonietti M., Fu

X.,WangX.(2011),"Sulfur-mediatedsynthesisofcarbonnitride:band- gapengineeringandimprovedfunctionsforphotocatalysis",Energy&Environm ental Science,4(3),pp.675-678.

216 Zhang L., Zhang F., Yang X., Long G., Wu Y., Zhang T., Leng

K.,Huang Y., Ma Y., Yu A (2013), "Porous 3D graphene-based bulkmaterials with exceptional high surface area and excellent conductivityforsupercapacitors",Scientific reports,3,p.1408.

217 Zhang S., Zhang S., Song L (2014), "Super-high activity of

Bi 3+ dopedAg3PO4and enhanced photocatalytic mechanism",Applied

218 ZhangW.,XiaoX.,ZhengL.,WanC.(2015),"FabricationofTiO2/

MoS2co mp osit e photocatalyst a n d i tsph ot oc at al yt ic me ch an i sm for degradation of methyl orange under visible light",The

219 Zhang X., Lai Z., Tan C., Zhang H (2016), "Solution‐processed two‐ dimensionalMoS2nanosheets:preparation,hybridization,andapplications",Ang ewandte Chemie International Edition, 55(31), pp.8816-8838.

220 Zhang Y., Liu J., Wu G., Chen W (2012), "Porous graphitic carbonnitridesynthesizedviadirectpolymerizationofureaforefficientsunli ght-driven photocatalytic hydrogen production",Nanoscale, 4(17),pp.5300-5303.

221 ZhangY.,PanQ.,ChaiG.,LiangM.,DongG.,ZhangQ.,QiuJ.(2013),"Synthesis and luminescence mechanism of multicolor-emitting g-C3N4nanopowders by low temperature thermal condensation of melamine",Scientificreports,3,p.1943.

222 Zhao W., Li J., Bo Wei Z., Wang S., He H., Sun C., Yang S.

(2015),"Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/rGOand its excellent visible-light photocatalytic activity",Applied CatalysisB:Environmental,179,pp.9-20.

223 Zhao X., Ma X., Sun J., Li D., Yang X (2016), "Enhanced catalyticactivities of surfactant-assisted exfoliated WS2nanodots for hydrogenevolution",ACSnano,10(2),pp.2159-2166.

224 Zhao Y., Zhang X., Wang C., Zhao Y., Zhou H., Li J., Jin H.

(2017),"ThesynthesisofhierarchicalnanostructuredMoS2/Graphenecomp ositeswithenhancedvisible-lightphoto- degradationproperty",AppliedSurface Science,412,pp.207-213.

(2017),"Enhancedphotocatalytic activity of TiO2nanoparticles using

WS2/g-C3N4hybridas co-catalyst",Transactions of Nonferrous Metals

226 ZhouB.,ZhaoX.,LiuH.,QuJ.,HuangC.(2010),"Visible- lightsensitivecobalt-dopedBiVO4(Co-

BiVO4)photocatalyticcompositesforthe degradation of methylene blue dye in dilute aqueous solutions",Applied Catalysis B:Environmental,99(1-2),pp.214-221.

227 Zhou W., Yin Z., Du Y., Huang X., Zeng Z., Fan Z., Liu H., Wang

J.,Zhang H (2013), "Synthesis of few‐layer MoS2nanosheet‐coated TiO2nanobelt heterostructures for enhanced photocatalytic activities",small,9(1),pp.140-147.

228 Zhu B., Xia P., Ho W., Yu J (2015), "Isoelectric point and adsorptionactivityofporousg-C3N4 ",AppliedSurfaceScience,344,pp.188-195.

229 ZouX.,ZhangJ.,ZhaoX.,ZhangZ.(2020),"MoS2/ rGOcompositesforphotocatalyticdegradationofranitidineandeliminationofND MAformation potential under visible light",Chemical Engineering

LC-MSofENR solutionafter0h,4hand8hofillumination a) 0h b) 4h

Ngày đăng: 30/08/2023, 20:45

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
2. QuảngT h ù y Trang,TrươngT h ị Mỹ Trúc, S ái C ô n g D a n h , VõViễn (2016),"Tổng hợpvà tínhchấ t xúctácquang củavậtl iệ ucomposit WS2 /g-C 3 N 4 " ,Tạp chíKhoa h ọc ĐHQGHN: Khoa học Tự nhiênvàCôngnghệ,32(4),pp.tr.90-96.Tiếng Anh Sách, tạp chí
Tiêu đề: Tổng hợpvà tínhchấ t xúctácquang củavậtl iệ ucomposit WS2/g-C3N4
Tác giả: QuảngT h ù y Trang,TrươngT h ị Mỹ Trúc, S ái C ô n g D a n h , VõViễn
Năm: 2016
3. Akbal F. (2005), "Photocatalytic degradation of organic dyes in thepresenceoftitaniumdioxideunderUVandsolarlight:effectofoperationalparameters",EnvironmentalProgress,24(3),pp.317-322 Sách, tạp chí
Tiêu đề: Photocatalytic degradation of organic dyes inthepresenceoftitaniumdioxideunderUVandsolarlight:effectofoperationalparameters
Tác giả: Akbal F
Năm: 2005
4. AkpleM.S.,LowJ.,WagehS.,Al-GhamdiA.A.,YuJ.,ZhangJ.(2015),"Enhanced visiblelight photocatalytic H2-production of g-C 3 N 4 /WS 2 compositeheterostructures" ,AppliedSurfaceScience,358,pp.196-203 Sách, tạp chí
Tiêu đề: Enhanced visiblelight photocatalytic H2-production of g-C3N4/WS2compositeheterostructures
Tác giả: AkpleM.S.,LowJ.,WagehS.,Al-GhamdiA.A.,YuJ.,ZhangJ
Năm: 2015
5. Al-Ahmad A., Daschner F., Kümmerer K. (1999), "Biodegradability ofcefotiam,ciprofloxacin,meropenem,penicillinG,andsulfamethoxazoleandinhibitionofwastewaterbacteria",Archivesofenvironmentalcontamination and toxicology,37(2),pp.158-163 Sách, tạp chí
Tiêu đề: Biodegradabilityofcefotiam,ciprofloxacin,meropenem,penicillinG,andsulfamethoxazoleandinhibitionofwastewaterbacteria
Tác giả: Al-Ahmad A., Daschner F., Kümmerer K
Năm: 1999
6. AlshehriM.,Al-MarzoukiF.,AlshehrieA.,HafezM.(2018),"Synthesis,characterizationand band alignment characteristics ofNiO/SnO 2 bulkheterojunctionnanoarchitectureforpromisingphotocatalysisapplications",Journalof AlloysandCompounds,757,pp.161-168 Sách, tạp chí
Tiêu đề: Synthesis,characterizationand band alignment characteristics ofNiO/SnO2bulkheterojunctionnanoarchitectureforpromisingphotocatalysisapplications
Tác giả: AlshehriM.,Al-MarzoukiF.,AlshehrieA.,HafezM
Năm: 2018
8. Anderson C., Bard A. J. (1997), "Improved photocatalytic activityandcharacterization of mixed TiO 2 /SiO 2 andTiO 2 /Al 2 O 3 materials" ,TheJournalofPhysicalChemistryB,101(14),pp.2611-2616 Sách, tạp chí
Tiêu đề: Improved photocatalytic activityandcharacterization of mixed TiO2/SiO2andTiO2/Al2O3materials
Tác giả: Anderson C., Bard A. J
Năm: 1997
10. Ataca C., Topsakal M., Akturk E., Ciraci S. (2011), "A comparativestudy of lattice dynamics of three-and two-dimensional MoS 2 " ,TheJournalof Physical Chemistry C,115(33),pp.16354-16361 Sách, tạp chí
Tiêu đề: Acomparativestudy of lattice dynamics of three-and two-dimensionalMoS2
Tác giả: Ataca C., Topsakal M., Akturk E., Ciraci S
Năm: 2011
11. AyariA.,CobasE.,OgundadegbeO.,FuhrerM.S.(2007),"Realizationand electrical characterization of ultrathin crystals of layered transition- metaldichalcogenides" ,Journalofappliedphysics,101(1),p.014507 Sách, tạp chí
Tiêu đề: Realizationand electricalcharacterization of ultrathin crystals of layered transition-metaldichalcogenides
Tác giả: AyariA.,CobasE.,OgundadegbeO.,FuhrerM.S
Năm: 2007
13. Berkdemir A., Gutiérrez H. R., Botello-Méndez A. R., Perea -López N.,Elías A. L., Chi a C.-I.,Wang B., Crespi V. H., López -Urías F., CharlierJ.-C. (2013), "Identification of individual and few layers of WS 2 usingRaman Spectroscopy" ,Scientificreports,3(1),pp.1-8 Sách, tạp chí
Tiêu đề: Identification of individual and few layers ofWS2usingRaman Spectroscopy
Tác giả: Berkdemir A., Gutiérrez H. R., Botello-Méndez A. R., Perea -López N.,Elías A. L., Chi a C.-I.,Wang B., Crespi V. H., López -Urías F., CharlierJ.-C
Năm: 2013
14. BhandavatR.,DavidL.,SinghG.(2012),"Synthesisofsurface-functionalizedWS2nanosheetsandperformanceasLi-ionbatteryanodes" ,Thejournalofphysicalchemistryletters,3(11),pp.1523-1530 Sách, tạp chí
Tiêu đề: Synthesisofsurface-functionalizedWS2nanosheetsandperformanceasLi-ionbatteryanodes
Tác giả: BhandavatR.,DavidL.,SinghG
Năm: 2012
15. BickleyR.,SlaterM.,WangW.-J.(2005),"Engineeringdevelopmentofaphotocatalytic reactor for waste water treatment" ,Process Safety andEnvironmental Protection,83(3),pp.205-216 Sách, tạp chí
Tiêu đề: Engineeringdevelopmentofaphotocatalytic reactor for waste water treatment
Tác giả: BickleyR.,SlaterM.,WangW.-J
Năm: 2005
16. BideauM.,ClaudelB.,DubienC.,FaureL.,KazouanH.(1995),"Onthe“immobilization”of titanium dioxide in the photocatalytic oxidation ofspentwaters" ,JournalofPhotochemistryandPhotobiologyA:Chemistry,91(2),pp.137-144 Sách, tạp chí
Tiêu đề: Onthe“immobilization”of titanium dioxide in the photocatalytic oxidationofspentwaters
Tác giả: BideauM.,ClaudelB.,DubienC.,FaureL.,KazouanH
Năm: 1995
17. BoraL.V.,MewadaR.K.(2017),"Visible/solarlightactivephotocatalystsfororganiceffluenttreatment:Fundamentals,mechanismsandparametricreview",RenewableandSustainableEnergyReviews,76,pp.1393-1421 Sách, tạp chí
Tiêu đề: Visible/solarlightactivephotocatalystsfororganiceffluenttreatment:Fundamentals,mechanismsandparametricreview
Tác giả: BoraL.V.,MewadaR.K
Năm: 2017
18. Boyjoo Y., Ang M., Pareek V. (2014), "CFD simulation of a pilot scaleslurryphotocatalyticreactoranddesignofmultiple-lampreactors" ,Chemical EngineeringScience,111,pp.266-277 Sách, tạp chí
Tiêu đề: CFD simulation of a pilotscaleslurryphotocatalyticreactoranddesignofmultiple-lampreactors
Tác giả: Boyjoo Y., Ang M., Pareek V
Năm: 2014
19. Brezova V., Jankovičová M., Soldan M., Blažková A., Rehakova M.,Šurina I., Čeppan M., Havlinova B. (1994), "Photocatalytic degradationofp-toluenesulphonicacidinaqueoussystemscontainingpowderedandimmobilizedtitaniumdioxide",JournalofPhotochemistryandPhotobiologyA:Chemistry,83(1),pp.69-75 Sách, tạp chí
Tiêu đề: Photocatalyticdegradationofp-toluenesulphonicacidinaqueoussystemscontainingpowderedandimmobilizedtitaniumdioxide
Tác giả: Brezova V., Jankovičová M., Soldan M., Blažková A., Rehakova M.,Šurina I., Čeppan M., Havlinova B
Năm: 1994
(2014),"HydrothermalsynthesisofvarietylowdimensionalWS 2 nanostruct ures" ,Materials Letters,129,pp.205-208 Sách, tạp chí
Tiêu đề: HydrothermalsynthesisofvarietylowdimensionalWS2nanostructures
22. CaoY., Li Q., Wang W. (2017), "Construction of a crossed-layer- structureMoS 2 /g-C 3 N 4 heterojunctionwithenhancedphotocatalyticperformance" ,RSC advances,7(10),pp.6131-6139 Sách, tạp chí
Tiêu đề: Construction of a crossed-layer-structureMoS2/g-C3N4heterojunctionwithenhancedphotocatalyticperformance
Tác giả: CaoY., Li Q., Wang W
Năm: 2017
23. Carp O., Huisman C. L., Reller A. (2004), "Photoinduced reactivity oftitaniumdioxide" ,Progressinsolidstatechemistry,32(1-2),pp.33-177 Sách, tạp chí
Tiêu đề: Photoinduced reactivityoftitaniumdioxide
Tác giả: Carp O., Huisman C. L., Reller A
Năm: 2004
24. ChatterjeeD.,MahataA.(2002),"Visiblelightinducedphotodegradation oforganic pollutants on dye adsorbedTiO 2 surface" ,JournalofPhotochemistryandPhotobiologyA:Chemistry,153(1-3),pp.199-204 Sách, tạp chí
Tiêu đề: Visiblelightinducedphotodegradation oforganic pollutants on dye adsorbedTiO2surface
Tác giả: ChatterjeeD.,MahataA
Năm: 2002
25. Chen D., Ji G., Ding B., Ma Y., Qu B., Chen W., Lee J. Y. (2013),"Insitunitrogenatedgraphene–few-layerWS 2 compositesforfastandreversibleLi+storage" ,Nanoscale,5(17),pp .7890-7896 Sách, tạp chí
Tiêu đề: Insitunitrogenatedgraphene–few-layerWS2compositesforfastandreversibleLi+storage
Tác giả: Chen D., Ji G., Ding B., Ma Y., Qu B., Chen W., Lee J. Y
Năm: 2013

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w