Ôn thi đại học môn toán Hàm hữu tỉ (báo tuổi trẻ giải chi tiết) CÁch làm bài đại số hay cho các bạn ôn thi đại học năm 2014
[...]... thẳng y = m, ta thấy nó luôn luôn cắt đồ thò g(x) = 2x2 − 4x − 3 2⏐x − 1⏐ tại 2 điểm phân biệt ∀m IV ) KHỐI A – DỰ BỊ 2 – NĂM 2003 (2 điểm) Cho hàm số: y = x 2 + (2m + 1)x + m 2 + m + 4 (1) (m là tham số) 2(x + m ) 1 Tìm m để hàm số (1) có cực trò và tính khoảng cách giữa hai điểm cực trò của đồ thò hàm số (1) 2 Khảo sát sự biến thi n và vẽ đồ thò hàm số (1) khi m = 0 BÀI GIẢI: 1) Tìm m : Ta có y'... D - NĂM 2002 x 2 + mx (3,0 điểm) Cho hàm số : y = (1) (m là tham số) 1− x 1 Khảo sát sự biến thi n và vẽ đồ thò hàm số (1) khi m = 0 2 Tìm m để hàm số (1) có cực đại và cực tiểu Với giá trò nào của m thì khoảng cách giữa hai điểm cực trò của đồ thò hàm số (1) bằng 10? y= 1) m = 0 y' = − x 2 + 2x (1 − x)2 x2 MXĐ : D = R\ {1} 1−x ; y' = 0 ⇔x = 0 hay x = 2 Bảng biến thi n : y(0) = 0; y(2) = − 4 x −0 y'... V II ) ĐẠI HỌC, CAO ĐẲNG - KHỐI D - DỰ BỊ 1 - NĂM 2004 (2 điểm)Cho hàm số : y = x2 + x + 4 (1) có đồ thò (C) x +1 1 Khảo sát hàm số (1) 2 Viết phương trình tiếp tuyến của (C), biết rằng tiếp tuyến đó vuông góc với đường thẳng x – 3y + 3 = 0 BÀI GIẢI: x2 + x + 4 1/ Khảo sát khi y = x +1 • MXĐ : D = R \ {–1} x 2 + 2x − 3 , • y' = (x + 1) 2 y' = 0 ⇔ x2 + 2x – 3 = 0 ⇔ x = 1hay x = – 3 • Bảng biến thi n... 2 + 6 Cho hàm số : y = (1) (m là tham số) x+3 1 Khảo sát sự biến thi n và vẽ đồ thò của hàm số (1) khi m = 1 2 Tìm m để hàm số (1) đồng biến trên khoảng (1; +∞) 1) Khi m = 1 y= MXĐ : D = R\{−3};y' = x2 + 5x + 7 x+3 x2 + 6x + 8 (x + 3)2 ; y' = 0 x = −4 hay x = −2 Bảng biến thi n : x −∞ −4 + 0 y' y − − 0 + +∞ −3 −∞ −2 +∞ −3 +∞ 1 −∞ Tiệm cận :x = −3; y = x + 2 y 2 −4 −3 −2 O −3 2) Tìm m để hàm số đồng... KHỐI A năm 2005: Gọi (Cm) là đồ thò của hàm số : y = x 2 + 2mx + 1 − 3m 2 (*) (m là tham số) x−m 1 Khảo sát sự biến thi n và vẽ đồ thò của hàm số (*) ứng với m = 1 2 Tìm m để hàm số (*) có hai điểm cực trò nằm về hai phía trục tung Giải: 1/ Khi m = 1 thì y = (1) x 2 + 2x − 2 x −1 • MXĐ: D = R \ {1} • y' = x 2 − 2x ( x − 1)2 , y' = 0 ⇔ x = 0 hay x = 2 Bảng biến thi n : • x -∞ y' y -∞ + 0 0 2 1 – +∞ -∞... BỊ 2 KHỐI B năm 2005: Cho hàm số : y = 2 x + 2x + 2 (*) x +1 1 Khảo sát sự biến thi n và vẽ đồ thò (C) của hàm số (*) 2 Gọi I là giao điểm của hai tiệm cận của ( C ).Chứng minh rằng không có tiếp tuyến nào của (C ) đi qua điểm I Giải : x 2 + 2x + 2 1/ Khảo sát y = (C) x +1 • MXĐ: D = R \ {−1} y' = x 2 + 2x 2 ( x + 1) ,y' = 0 ⇔ x 2 + 2x = 0 ⇔ x = 0 hay x = −2 • Bảng biến thi n : x -∞ -2 -1 0 y' +... 6x + 9 – m2 ≥ 0 ∀x ≥ 1 ⇔ x2 + 6x + 9 ≥ m2 ⇔ ∀x ≥ 1 g(x) = x2 + 6x + 9, với x ≥ 1 Khảo sát hàm số g'(x) = 2x + 6> 0, ∀x ≥ 1.Do đó ycbt ⇔ min (x2 + 6x + 9) ≥ m2 ⇔ g(1) = 16 ≥ m2 x ≥1 ⇔ −4 ≤ m ≤ 4 V I ) ĐẠI HỌC, CAO ĐẲNG - KHỐI A - DỰ BỊ 2 - NĂM 2004 (2 điểm) Cho hàm số : y = x + 1 x (1) có đồ thò (C) 1 Khảo sát hàm số (1) 2 Viết phương trình các tiếp tuyến của (C) đi qua điểm M(-1; 7) 1) Khảo sát y =... 2 y 5 2 −2 (2 điểm) y = 1x + 1 2 2 2 O −3 2 −1 x V ) ĐỀ DỰ BỊ 2 - KHỐI B – NĂM 2003 2x − 1 Cho hàm số : y = x −1 1 Khảo sát sự biến thi n và vẽ đồ thò (C) của hàm số (1) 2 Gọi I là giao điểm hai đường tiệm cận của (C) Tìm điểm M thuộc (C) sao cho tiếp tuyến của (C) tại M vuông góc với đường thẳng IM y BÀI GIẢI: 1) Khảo sát y = 2x − 1 1 =2+ x−1 x−1 MXĐ : D = R\{1} y' = −1 (x − 1)2 x < 0 , ∀x ∈ R\{1}... 2 = 0 : Vô lí Vậy không có tiếp tuyến nào của (C) đi qua I ( −1,0 ) XI ) DỰ BỊ 2 KHỐI D năm 2005: x 2 + 3x + 3 1 Khảo sát sự biến thi n và vẽ đồ thò của hàm số y = x +1 x 2 + 3x + 3 2 Tìm m để phương trình = m có 4 nghiệm phân biệt x +1 Giải: x 2 + 3x + 3 1/ Khảo sát y = (C ) x +1 • MXĐ: D = R \ {−1} • y' = x 2 + 2x 2 ( x + 1) ,y' = 0 ⇔ x 2 + 2x = 0 ⇔ x = 0 v x = −2 • Bảng biến thi n : x -∞ -2 y' +... 2/ Ta có y ' = x 2 − 2mx + m 2 − 1 ( x − m )2 Hàm số (*) có 2 cực trò nằm về 2 phía trục tung ⇔ y / = 0 có 2 nghiệm trái dấu ⇔ P = m 2 − 1 < 0 ⇔ m < 1 ⇔ − 1 < m < 1 IX ) DỰ BỊ 2 KHỐI A năm 2005: x2 + x + 1 1 Khảo sát sự biến thi n và vẽ đồ thò ( C ) của hàm số y = x +1 2 Viết phương trình đường thẳng đi qua điểm M (- 1; 0) và tiếp xúc với đồ thò ( C ) Giải: x2 + x + 1 1/ Khảo sát và vẽ đồ thò y = . với mọi x ≠ m p − . Do đó hàm luôn đồng biến ( hoặc nghòch biến) trong từng khoảng xác đònh; nên được gọi là hàm nhất biến. ĐỀ TOÁN ÔN TỔNG HP HÀM HỮU TỈ Cho hàm số y = mx )2mm(mx2x)1m( 232 − −−−−+ . không đổi. Cách khác: Ta có: 1 2 JP . IE = 1 2 JQ . IF = S 2 không đổi ⇒ JP . IE . JQ . IF = S 2 không đổi mà IE . IF không đổi nên JP . JQ không đổi. CÁC ĐỀ THI ĐẠI HỌC. ( DỰ TRỮ ) VỀ HÀM HỮU TỈ TỪ NĂM 2002 ĐẾN NĂM 2005 I ) ĐẠI HỌC, CAO ĐẲNG - KHỐI A - DỰ BỊ 2 - NĂM 2002 Cho hàm số: y = 2x mx2x 2 − +− (1) (m là tham số) 1. Xác đònh m để hàm số (1) nghòch