1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phương trình hệ phương trình đại số

44 214 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 44
Dung lượng 1,05 MB

Nội dung

Chuyên đề hệ phương trình đại số giúp chúng ta có thêm nhiều kĩ năng trong việc giải hệ phương trình-một trong các phần kiến thức quan trọng hay gặp trong các kì thi đại học

Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 1 PHƯƠNG TRÌNHHỆ PHƯƠNG TRÌNH ĐẠI SỐ I. PHƯƠNG TRÌNH ax + b = 0. * Các bước giải và biện luận: i) a = 0 = b : Mọi x là nghiệm a = 0  b : Vô nghiệm ii) a  0 : Phương trình gọi là phương trình bậc nhất, có nghiệm duy nhất: b x a   * Nhận xét: Phương trình ax + b = 0 có hơn một nghiệm khi và chỉ khi mọi x là nghiệm, khi và chỉ khi a = b = 0. * Các phương trình chuyển về phương trình ax + b = 0 : 1. Phương trình có ẩn ở mẫu: PP Giải: Đặt ĐK mẫu thức khác không. Quy đồng, bỏ mẫu. Giải phương trình. Đối chiếu kết quả với điều kiện. Kết luận nghiệm. VD1. Giải và biện luận phương trình: 2 2 1 2 1 4 x m x x x m      HD. ĐK: 1 , 2 4 m x x   2 2 1 2 1 4 x m x x x m      2 2 2 2 4 9 2 4 1 9 2 1 x mx m x mx m         (1) i) m = 0: (1) vô nghiệm ii) 0 m  : 2 2 1 (1) 9 m x m    . 2 2 1 9 m x m   là nghiệm của phương trình đã cho  2 2 2 1 1 9 2 2 1 9 4 m m m m m             2 2 2 4 2 9 8 4 9 m m m m           2 2 1 4 9 2 0 2, 4 4 2 m m m m m m                    1 4 2 m m          KL:  1 0, 4 2 m m m          : 2 2 1 9 m x m    1 0 2 : 4 m m m       Vô nghiệm. VD2. Giải và biện luận phương trình: 1 1 ( ) 1 a b a b ax bx a b x        Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 2 HD. ĐK: ax-1 0 bx-1 0 (a+b)x-1 0         ax 1 (1) bx 1 (2) (a+b)x 1 (3)          Phương trình tương đương:   2 2 2 2 2 2 2 ( ) ( ) 1 ( ) 1 2 ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 2 0 ( ) 2 0 0 (4) ( ) 2 0 (5) abx a b a b abx a b x a b x ab a b x a b x abx a b ab a b x a b x a b ab a b x abx x ab a b x ab x ab a b x ab                                        i) (4) cho x = 0 là nghiệm với mọi a, b. ii) Giải (5): + a = 0:  x là nghiệm của (5). b = 0:  x là nghiệm của phương trình đã cho. 0 b  : 1 x b   của phương trình đã cho. + b = 0:  x là nghiệm của (5). a = 0:  x là nghiệm của phương trình đã cho. 0 a  : 1 x a   của phương trình đã cho. + a = - b: (5)  0x + 2b 2 = 0. b = 0:  x là nghiệm của phương trình đã cho. 0 b  : (5) vô nghiệm. Phương trình đã cho có nghiệm x = 0. + 0 a   0 b  : a b    2 (5) x a b    . 2 x a b   là nghiệm của phương trình đã cho khi chỉ khi: 2 1 2 1 2 1 a b a a b b a b a b                 a b   . KL.  a = b = 0:  x  a = 0  b: 1 x b    b = 0  a: 1 x a   Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 3  a  0, a  0, a  b, a  - b: 2 x a b    a  0, a  0, a = b, a = - b: x = 0 * Bài tập luyện tập. Bài 1. Giải và biện luận theo m phương trình : ( 1) ( 1) 1 0 3 m x m x x x m        Bài 2. Giải và biện luận theo a, b phương trình : ax b x b x a x a      Bài 3. Giải và biện luận theo a, b phương trình : a b x b x a    Bài 4. Giải và biện luận theo a, b phương trình : 2 2 1 ( 1) 1 1 1 ax b a x x x x        Bài 5. Giải và biện luận theo a, b phương trình : 1 1 1 2 1 2 x a x a x b x b x a x a x b x b                  Bài 6. Giải và biện luận theo a, b phương trình : a x b x a x b x a x b x a x b x            . 2. Phương trình có giá trị tuyệt đối. Dạng 1. ( ) ( ) f x g x  PP Giải: Phương trình tương đương ( ) ( ) ( ) ( ) f x g x f x g x       Dạng 2. ( ) ( ) f x g x  PP Giải: Cách 1: Phương trình tương đương ( ) ( ) ( ) 0 ( ) ( ) ( ) 0 f x g x g x f x g x g x                   Cách 2: Phương trình tương đương ( ) ( ) ( ) 0 ( ) ( ) ( ) 0 f x g x f x f x g x f x                   Vấn đề là ở chỗ, ở cách 1, ta phải giải bất phương trình ( ) 0 g x  ; ở cách 2, ta phải giải bất phương trình ( ) 0 f x  . Tuỳ thuộc vào bậc của f(x) hay g(x) để lựa chọn thích hợp. Dạng 3. Nhiều giá trị tuyệt đối. Ta phá giá trị tuyệt đối theo định nghĩa, và giải phương trình trên từng tập con. Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 4 VD. Giải phương trình 2 1 3 2 2 3 10 x x x       HD. 1 3 2 1 0 ; 3 0 3; 2 3 0 2 2 x x x x x x              3 2  1 2 3 2 1 x  1 - 2x 1 - 2x 2x - 1 2x - 1 3 x  3 - x 3 - x 3 - x x - 3 2 2 3 x  - 4x - 6 4x + 6 4x + 6 4x + 6 VT x + 10 - 7x - 2 - 3x - 4 - x - 10 i) 3 2 x   : x + 10 = 1  x = - 9 : Thoả ii) 3 1 2 2 x    : - 7x - 2 = 1  x = 3 7  : Thoả 3i) 1 3 2 x   : - 3x - 4 = 1  x = 5 3  : Không thoả 4i) 3 x  : - x - 10 = 1  x = - 11: Không thoả 3. Phương trình có căn thức. Dạng 1. ( ) ( ) f x g x  Biến đổi tương đương ( ) ( ) f x g x  ( ) ( ) ( ) 0 (hay g(x) 0) f x g x f x        ("hay" ở đây có nghĩa là sự thay thế, lựa chọn một trong hai, lựa chọn bất phương trình đơn giản hơn) Dạng 2. ( ) ( ) f x g x  Biến đổi tương đương ( ) ( ) f x g x  2 ( ) ( ) ( ) 0 f x g x g x       Dạng 3. Nhiều căn thức không thuộc các dạng trên.  Bình phương hai vế nhiều lần theo nguyên tắc: 2 2 0, 0 : A B A B A B      2 2 0, 0 : A B A B A B       Ngoài phương pháp biến đổi tương đương nói trên, các phương trình chuyển về bậc nhất có thể giải bằng cách biến đổi về tích,đặt ẩn phụ hay sử dụng các phương pháp khác (Xem Phương trình không mẫu mực) VD. Giải phương trình: 1 1 x x    (XBang) HD. Cách 1(Biến đổi tương đương): 1 1 1 1 x x x x        Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 5   2 2 1 2 0 1 (1 ) 1 1 2 1 0 1 0 1 x x x x x x x x x x x x                                  0 0 1 5 0 1 2 0 1, 2 1 0 1 x x x x x x x x x x                                     Cách 2(Biến đổi tương đương): 2 2 1 1 1 1 1 1 1 1 1 4 4 2 4 x x x x x x x x                             Cách 3(Biến đổi về dạng tích):     1 1 ( 1) 1 0 1 1 1 0 x x x x x x x x x x                  Cách 4(Đặt ẩn phụ): Đặt    1 1 1 0 1 y x y x y x x y x y y x x y                      II. PHƯƠNG TRÌNH ax 2 + bx + c = 0. 1. Các bước giải và biện luận. i) a = 0: Phương trình trở thành: bx + c = 0 b = 0 = c : Mọi x là nghiệm b = 0  c : Vô nghiệm b  0 : Phương trình trở thành phương trình bậc nhất, có nghiệm duy nhất: c x b   ii) a  0: Phương trình đã cho gọi là phương trình bậc hai. 2 2 1 4 , ' 2 b ac b ac               < 0 ( '  < 0): Phương trình vô nghiệm.   = 0 ( '  = 0): Phương trình có hai nghiệm bằng nhau 2 b x a     > 0 ( '  > 0): Phương trình có hai nghiệm phân biệt: 1,2 1 ' 2 x 2 b b a a               * Nhận xét: Phương trình ax 2 + bx + c = 0 có hơn hai nghiệm khi và chỉ khi mọi x là nghiệm, khi và chỉ khi a = b = c = 0. 2. Dấu các nghiệm của phương trình ax 2 + bx + c = 0 ( a  0). Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 6 Đặt P = c a , S = b a   P < 0: Phương trình có hai nghiệm 1 2 0 x x    1 2 1 2 0 0 0 0 x x P x x                1 2 0 0 0 0 x x P S             ,  1 2 0 0 0 0 x x P S             *** Chú ý: i) P = 0  1 2 0, x x S   ii) 1 2 1 2 x 0 0 x0 x P xS              ; 1 2 1 2 x 0 0 x0 x P xS              3i) 1 2 0 0 S x x          4i) Các dấu hiệu cần, nhiều khi rất cần cho việc xét dấu các nghiệm:  S < 0 : Nếu phương trình có nghiệm thì có ít nhất một nghiệm âm.  S > 0 : Nếu phương trình có nghiệm thì có ít nhất một nghiệm dương VD. Tìm tất cả các giá trị m sao cho phương trình sau có không ít hơn 2 nghiệm âm phân biệt: 4 3 2 1 0 x mx x mx      . HD. Thấy ngay x = 0 không thoả phương trình. Chia hai vế của phương trình cho 2 0 x  : 2 2 1 1 1 0 x mx m x x       2 2 1 1 1 0 x m x x x            (1) Đặt 2 1 1 0 x X x Xx x       (2) 2 2 2 1 2, 2 x X X x      (1) trở thành 2 1 0 X mX    (3) (3) có hai nghiệm trái dấu với mọi m. Với 2 X  thì (2) có hai nghiệm cùng dấu, nên để có nghiệm âm thì X < 0 Suy ra X < -2. Tóm lại phương trình (3) phải có hai nghiệm 1 2 2 0 X X     Nếu được dùng định lý đảo về dấu của tam thức bậc hai thì cần và đủ là: Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 7 2 ( 2) 0 3 3 2 0 2 ( ) 1 f m m f X X mX              Nhưng chương trình hiện hành không có định lý đảo về dấu của tam thức bậc hai, nên: Cách 1: Đặt X + 2 = Y  Y < 0: 2 2 2 1 0 ( 2) ( 2) 1 0 ( 4) 3 2 0 X mX Y m Y Y m Y m                Phương trình này có hai nghiệm trái dấu chỉ khi 3 - 2m < 0  m > 3 2 . Cách 2: 2 2 1 1 0 X X mX m X       Đặt 2 2 2 2 2 2 1 2 1 1 ( ) '( ) 0, 0 X X X X f X f X X X X X              . Thấy ngay phương trình có nghiệm X < - 2 khi chỉ khi m > 3 2 . 3. So sánh nghiệm của phương trình ax 2 + bx + c = 0 ( a  0) với một số thực khác không. 3.1. Nếu dùng định lý đảo về dấu của tam thức bậc hai. Đặt f(x) = ax 2 + bx + c = 0 ( a  0) 1 2 1 2 1 2 1 2 1 2 af( )<0 x 0 af( )>0 0 af( )>0 af( )>0 0 ; 0 S S 2 2 x x x x x x x x x                                                     ***Một số điều kiện cần và đủ về nghiệm của f(x) = ax 2 + bx + c = 0 ( a  0) 3.1.1. f(x) có nghiệm thuộc   ;   : Cần và đủ để f(x) có đúng 1 nghiệm thuộc   ;   là một trong 4 điều kiện: x -  - 2 2 +  f '(X) - - f(X) +  3 2 - 3 2 -  Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 8 ( ) ( ) 0 f f       ( ) 0 ; f S                ( ) 0 ; f S                0 ; 2 b a             Cần và đủ để f(x) có đúng 2 nghiệm thuộc   ;   : Nếu không cần phải tách bạch như thế thì cần và đủ để f(x) có nghiệm thuộc   ;   : 3.1.2. f(x) có nghiệm thuộc   ;   : Cần và đủ để f(x) có đúng 1 nghiệm thuộc   ;   là một trong bốn điều kiện: ( ) ( ) 0 f f       ( ) 0 ; f S                ( ) 0 ; f S                0 ; 2 b a             Cần và đủ để f(x) có đúng 2 nghiệm thuộc   ;   là : 3.1.3. f(x) có nghiệm thuộc   ;   : Cần và đủ để f(x) có đúng 1 nghiệm thuộc   ;   là một trong ba điều kiện: ( ) 0 af    ( ) 0 f S           0 2 b a            0 ( ) 0 ( ) 0 2 af af S                     ( ) ( ) 0 0 ( ) 0 ( ) 0 2 f f af af S                                  0 ( ) 0 ( ) 0 2 af af S                     Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 9 Cần và đủ để f(x) có đúng 2 nghiệm thuộc   ;   : 3.1.4. f(x) có nghiệm thuộc [ ; )   : Cần và đủ để f(x) có đúng 1 nghiệm thuộc [ ; )   là một trong ba điều kiện: a ( ) 0 f    ( ) 0 f S           0 2 b a            Cần và đủ để f(x) có đúng 2 nghiệm thuộc [ ; )   : 3.1.5. f(x) có nghiệm thuộc   ;   : Cần và đủ để f(x) có đúng 1 nghiệm thuộc   ;   là một trong ba điều kiện: ( ) 0 af    ( ) 0 f S           0 2 b a            Cần và đủ để f(x) có đúng 2 nghiệm thuộc   ;   : 3.1.6. f(x) có nghiệm thuộc ( ; ]   : Cần và đủ để f(x) có đúng 1 nghiệm thuộc ( ; ]   là một trong ba điều kiện: ( ) 0 af    ( ) 0 f S           0 2 b a            Cần và đủ để f(x) có đúng 2 nghiệm thuộc ( ; ]   : 0 ( ) 0 2 af S                 0 ( ) 0 2 af S                 0 ( ) 0 2 af S               0 ( ) 0 2 af S               Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Trần Xuân Bang - GV Trường THPT Chuyên Quảng Bình Phương trìnhHệ phương trình Đại số 10 3.2. Nếu không dùng định lý đảo về dấu của tam thức bậc hai.  Phương pháp tốt nhất là khảo sát sự biến thiên của hàm số (xem VD ở phần trên)  Nếu chỉ so sánh nghiệm với một số thực  khác không thì có thể đặt y = x -  . VD. Tìm a để phương trình sau có hơn 1 nghiệm thuộc 0; 2        : 2 2 (1 ) tan 1 3 0 cos a x a x      HD. 2 2 2 1 2 (1 ) tan 1 3 0 (1 ) 1 1 3 0 cos os cos a x a a a x c x x                    2 1 2 (1 ) 4 0 os cos a a c x x     (1) Đặt 1 (1; ) cos X X x     (1)  2 (1 ) 2 4 0 a X X a     (2) Phương trình đã cho có hơn một nghiệm thuộc 0; 2         phương trình (2) có hai nghiệm (1; ) X   . Cách 1. Đặt X - 1 = Y > 0 : (2) trở thành 2 2 (1 )( 1) 2( 1) 4 0 (1 ) 2 3 1 0 a Y Y a a Y aY a             (3) (3) có hai nghiệm dương 2 1 1 0 1 4 4 1 0 ' 0 2 3 1 0 10 1 2 3 0 0 1 a a a a a a P a a S a                                            Cách 2. Không phải khi nào cũng có thể nhận ra X = 2 là một nghiệm của (2). Nhưng nếu nhận ra được thì: Với 1 a  thì nghiệm kia là 2 2 2 1 1 a a a     . Ta phải có 2 1 1 2 2 1 a a a a             1 3 1 1 0 3 1 1 2 1 2 a a a a a                      Có thể dùng phương pháp phần bù: Tìm các giá trị tham số để phương trình có nghiệm thì ta tìm các giá trị làm cho phương trình vô nghiệm. VD. Tìm tất cả các giá trị m để phương trình sau có nghiệm: 4 3 2 4 2 4 1 0 x x mx x      [...]... được c để hệ có nghiệm Bài 8 Biết rằng hệ phương trình sau có nghiệm: ax  by  c  bx  cy  a cx  ay  b  Chứng minh a3  b3  c 3  3abc V HỆ PHƯƠNG TRÌNH BẬC CAO 1 Hệ có một phương trình bậc nhất Phương pháp: PP thế (Rút x hoặc y từ phương trình bậc nhất thay vào phương trình bậc hai) VD Cho hệ phương tr×nh  x 3  y 3  m( x  y )  x  y  1 1) Giải hệ khi m = 3 2) Tìm m để hệ có 3 nghiệm... a  0  y2  (ĐHHuế - A97) Chứng minh hệ có nghiệm duy nhất khi a > 0 Còn đúng khơng khi a < 0 ? (2x+y)2  5(4 x 2  y 2 )  6(2 x  y )2  0  Bài 4 Giải hệ phương trình  1 2 x  y  2 x  y  0  (ĐHXD - A97)  x  y  xy  11 Bài 5 Giải hệ phương trình  Bài 6 Giải hệ phương trình Bài 7 Giải hệ phương trình Bài 8 Giải hệ phương trình Bài 9 Giải hệ phương trình (ĐHQGHN - D2000) 2 2  x  y  3(... VD2 Cho hệ phương trình  1) Giải hệ khi a = 1 2 2) Tìm a để hệ có nghiệm VD3 Giải các hệ phương trình: x  y  1 1)  3 3 2 2 x  y  x  y Trần Xn Bang - GV Trường THPT Chun Quảng Bình Phương trìnhHệ phương trình Đại số 25 Trần Xn Bang - GV Trường THPT Chun Quảng Bình  x3  y 3  1  5 5 2 2 x  y  x  y  2)   2 y ( x 2  y 2 )  3x  2 2  x( x  y )  10 y  VD4 Giải hệ phương trình. .. Bình Phương trìnhHệ phương trình Đại số 34 Trần Xn Bang - GV Trường THPT Chun Quảng Bình * Bài tập luyện tập Bài 1 Giải và biện luận theo m phương trình: x 2  2m  2 x 2  1  x 1 2 Bài 2 Giải và biện luận theo a phương trình: x  x   x  1 0 4 Bài 3 Giải và biện luận theo m phương trình: x 2  2mx  1  2  m Bài 4 Giải và biện luận theo a phương trình: a  x  a  a  x Bài 5 Giải phương trình: ... Giải hệ phương trình  (ĐH An Ninh A99) x2  y2  1  1  4  x2 y 2   x y 7   1  x xy Bài 7 Giải hệ phương trình  y   x xy  y xy  78  x  y  xy  m Bài 8 Cho hệ phương trình  2 2 x  y  m a) Giải hệ khi m = 5 b) Tìm tất cả các giá trị m để hệ có nghiệm  x  y  x2  y 2  8 Bài 9 Cho hệ phương trình   xy ( x  1)( y  1)  m Trần Xn Bang - GV Trường THPT Chun Quảng Bình Phương trình. .. 82  2 2 x  y  9 Bài 1 Giải hệ phương trình    x  1  10  x  y  10  y  1  y 3 3 y  Trần Xn Bang - GV Trường THPT Chun Quảng Bình Phương trìnhHệ phương trình Đại số 30 (Bộ đề thi TS) Trần Xn Bang - GV Trường THPT Chun Quảng Bình Bài 2 Giải hệ phương trình x2 + a2 = y2 + b2 =(x - b)2 + (y - b)2 (Bộ đề thi TS)  a3 7x  y  2  0  x Bài 3 Cho hệ phương trình   3 x  7 y  a  0 ... Phương trìnhHệ phương trình Đại số 20 (ĐH Hàng Hải A99) Trần Xn Bang - GV Trường THPT Chun Quảng Bình a) Giải hệ khi m = 12 b) Tìm tất cả các giá trị m để hệ có nghiệm  x  y  xy  a Bài 10 Cho hệ phương trình  2 2  x y  xy  3a  8 a) Giải hệ khi a = 7 2 b) Tìm tất cả các giá trị a để hệ có nghiệm  x  y  xy  m  1 Bài 11 Cho hệ phương trình  2 2  x y  xy  m a) Giải hệ khi m = 2 b)... 13 Giải hệ phương trình:  y   y       2 ( xy )  xy  6 Trần Xn Bang - GV Trường THPT Chun Quảng Bình Phương trìnhHệ phương trình Đại số 31 (ĐH Cơng Đồn - A2000) Trần Xn Bang - GV Trường THPT Chun Quảng Bình Bài 14 Tìm tất cả các giá trị m để hệ sau có hai nghiệm phân biệt:  x 3  y 2  7 x 2  mx   3 2 2  y  x  7 y  my  (ĐH Vinh - A2000) VI Phương trìnhhệ phương trình khơng... mẫu mực (Xem phương trình khơng mẫu mực) VII Phương trình lượng giác (Xem phương trình lượng giác) VIII Phương trình vơ tỷ 1 Đưa phương trình về dạng tích VD Giải phương trình: x 2  2 x  x  6  4 HD Ta có phương trình đã cho tương đương với ( x  1)2  ( x  1)  5  5 t 2  (t  5)  (t  t  5)  0 (t  t  5)(t  t  5  1)  0      t  x  1 t  x  1   2 Giải phương trình trên từng... 2 b) Tìm tất cả các giá trị m để hệ có ít nhất một nghiệm (x;y) sao cho x > 0, y > 0 4 Hệ phương trình đối xứng loại 2:  f ( x, y )  0 trong đó nếu thay đổi vai trò của x, y  g ( x, y )  0 Là hệ phương trình dạng  cho nhau thì phương trình này trở thành phương trình kia và ngược lại Vai trò của x, y trong từng phương trình khơng như nhau nhưng trong hệ phương trình thì như nhau:  f ( x, y )  . biện luận theo m phương trình : ( 1) ( 1) 1 0 3 m x m x x x m        Bài 2. Giải và biện luận theo a, b phương trình : ax b x b x a x a      Bài 3. Giải và biện luận theo a, b. a b x b x a    Bài 4. Giải và biện luận theo a, b phương trình : 2 2 1 ( 1) 1 1 1 ax b a x x x x        Bài 5. Giải và biện luận theo a, b phương trình : 1 1 1 2 1 2 x a x a. 1 2 . Bài 5. Giải và biện luận theo a, b hệ phương trình: ( ) ( ) (2 ) (2 ) a b x a b y a a b x a b y b            Bài 6. Giải và biện luận theo a hệ phương trình: 6 (2 )

Ngày đăng: 06/06/2014, 13:52

TỪ KHÓA LIÊN QUAN

w