1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Luận văn) nghiên cứu tổng hợp vật liệu composite nife2o4 graphen oxit biến tính ứng dụng làm chất xúc tác quang phân hủy chất hữu cơ ô nhiễm trong môi trường nước

134 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 134
Dung lượng 3,6 MB

Nội dung

i LỜI CAM ĐOAN Tơi xin cam đoan cơng trình kết nghiên cứu riêng tôi, thực hướng dẫn khoa học PGS TS Nguyễn Thị Vƣơng Hoàn TS Lê Thị Thanh Thúy Các số liệu, kết nêu luận văn trung thực chưa công bố cơng trình nghiên cứu Tơi xin chịu tránh nhiệm nghiên cứu Học Viên a lu n n va p ie gh tn to Nguyễn Thị Thúy d oa nl w f an nv a lu oi lm ul at nh z z om l.c gm @ an Lu n va ac th si ii LỜI CẢM ƠN Tơi xin bày tỏ lịng biết ơn sâu sắc tới PGS TS Nguyễn Thị Vƣơng Hoàn TS Lê Thị Thanh Thúy – tận tình hướng dẫn, giúp đỡ, bảo động viên tơi hồn thành tốt luận văn Trong q trình thực luận văn nhận nhiều quan tâm tạo điều kiện Thầy, Cô khoa Khoa học tự nhiên - Trường Đại học Quy Nhơn Tơi xin bày tỏ lịng cảm ơn chân thành tới quý Thầy, Cô a lu Tôi xin chân thành cảm ơn gia đình, bạn bè tập thể lớp Cao học Hóa n n va K21 ln động viên, khích lệ tinh thần suốt q trình học tập Mặc dù cố gắng thời gian thực luận văn cịn p ie gh tn to nghiên cứu khoa học hạn chế kiến thức thời gian, kinh nghiệm nghiên cứu nên không oa nl w tránh khỏi thiếu sót Rất mong nhận thơng cảm ý kiến đóng góp quý báu từ quý Thầy, Cơ để luận văn hồn thiện d Tơi xin chân thành cảm ơn! a lu nv Bình Định, tháng năm 2020 f an Học Viên oi lm ul nh at Nguyễn Thị Thúy z z om l.c gm @ an Lu n va ac th si iii MỤC LỤC Trang Trang phụ bìa LỜI CAM ĐOAN……………………………………………………………i LỜI CẢM ƠN……………………………………………………………….ii MỤC LỤC………………………………………………………………… iii DANH MỤC CHỮ VIẾT TẮT, KÍ HIỆU……………………………… vi a lu DANH MỤC CÁC BẢNG…………………………………………………vii n DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ………………………………….viii n va tn to MỞ ĐẦU Chƣơng 1: TỔNG QUAN p ie gh 1.1 Tổng quan graphit oa nl w 1.2 Tổng quan graphen oxit graphen oxit biến tính 1.2.1 Graphen oxit (GO) d 1.2.2 Graphen oxit biến tính 12 nv a lu 1.3 Vật liệu ferrite spinel NiFe2O4 16 f an 1.3.1 Cấu trúc vật liệu ferrite spinel 16 oi lm ul 1.3.2 Tính chất từ vật liệu ferrite spinel 17 1.3.3 Các yếu tố ảnh hưởng đến tính chất từ hệ hạt nano ferrite nh spinel 18 at z 1.3.4 Các phương pháp tổng hợp vật liệu ferrite spinel MFe2O4 25 z gm @ 1.3.5 Ứng dụng ferrite spinel MFe2O4 28 1.4 Vật liệu nanocomposite MFe2O4/GO GO biến tính 28 om l.c 1.5 Giới thiệu xúc tác quang 30 1.5.1 Khái niệm xúc tác quang 30 an Lu 1.5.2 Cơ chế phản ứng quang xúc tác 31 n va ac th si iv 1.6 Giới thiệu thuốc nhuộm hoạt tính RhB MB 37 1.6.1 Thuốc nhuộm hoạt tính RhB 37 1.6.2 Xanh metylen (MB) 38 Chƣơng 2: PHƢƠNG PHÁP NGHIÊN CỨU VÀ THỰC NGHIỆM 40 2.1 Thực nghiệm 40 2.1.1 Thiết bị hóa chất 40 2.1.2 Tổng hợp vật liệu 41 2.2 Các phƣơng pháp nghiên cứu 43 a lu 2.2.1 Phương pháp nhiễu xạ tia X (XRD)… 43 n 2.2.2 Phương pháp quang phổ hồng ngoại (FT-IR) 45 va n 2.2.3 Phương pháp quang phổ tia X phân tán lượng (EDX) 46 p ie gh tn to 2.2.4 Ảnh hiển vi điện tử quét (SEM) 47 2.2.5 Phương pháp hiển vi điện tử truyền qua (TEM) 47 2.2.6 Phổ quang điện tử tia X (EDX) 48 oa nl w 2.2.7 Từ kế mẫu rung (VSM) 49 2.2.8 Phương pháp phân tích nhiệt 49 d nv a lu 2.2.9 Phương pháp đẳng nhiệt hấp phụ - khử hấp phụ nitơ (BET) 50 f an 2.2.10 Phương pháp phổ phản xạ khuếch tán tử ngoại – khả kiến (UV- oi lm ul Vis DRS) 50 2.3 Khảo sát hoạt tính quang xúc tác phản ứng phân hủy RhB 53 at nh 2.3.1 Xây dựng đường chuẩn 53 z 2.3.2.Khảo sát hoạt tính quang xúc tác vật liệu phản ứng z @ phân hủy RhB 55 gm 2.3.3 Nghiên cứu động học trình xúc tác 59 om l.c Chƣơng 3: KẾT QUẢ VÀ THẢO LUẬN 62 3.1 Đặc trƣng vật liệu 62 an Lu 3.1.1 Vật liệu niken ferrite (NF) 62 n va ac th si v 3.1.2 Vật liệu graphen oxit, graphen oxit biến tính 69 3.1.3 Vật liệu composite NF/ GO-N NF/ GO-N,S 77 3.2 hảo sát hoạt t nh úc tác quang vật liệu 91 3.2.1 hảo sát thời gian đạt cân b ng hấp phụ 91 3.2.2 Đánh giá hoạt tính xúc tác quang vật liệu phản ứng phân hủy RhB 92 3.2.3 hảo sát yếu tố ảnh hưởng đến hiệu suất xúc tác quang vật liệu 94 a lu 3.3 Nghiên cứu động học phản ứng quang úc tác vật liệu n composite NF/GO-N,S 97 n va 3.4 Nghiên cứu chế phản ứng 100 tn to 3.5 tái sử dụng vật liệu 103 p ie gh ẾT LUẬN VÀ IẾN NGHỊ 105 I KẾT LUẬN 105 oa nl w II KIẾN NGHỊ 107 DANH MỤC CƠNG TRÌNH KHOA HỌC ĐÃ CƠNG BỐ 108 d nv a lu TÀI LIỆU THAM KHẢO 109 f an QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN THẠC SĨ( Bản sao) oi lm ul at nh z z om l.c gm @ an Lu n va ac th si vi DANH MỤC CÁC TỪ VIẾT TẮT, Í HIỆU AOPs Q trình oxi hóa nâng cao (Advance Oxidation Process) BET Phương pháp đẳng nhiệt hấp phụ - khử hấp phụ nitơ (BnenceuerEmmett- Teller) CB Vùng dẫn (Conduction Band) e CB- Electron quang sinh (Photoelectron electron) EDX Phương pháp phổ tán xạ lượng tia X (Energy Dispersive XRay Spectroscopy) a lu n n va Năng lượng vùng cấm (Band gap energy) GO Graphen oxit (Graphene oxide) h+VB Lỗ trống quang sinh (Optical birth hole) HĐBM Hoạt động bề mặt (Surface active agent) p ie gh tn to Eg Phương pháp phổ hồng ngoại (Infrared Spectroscopy) IR NF Xanh Methylen oa nl w MB Niken ferrite (NiFe2O4) d Rhodamine B SEM Phương pháp hiển vi điện tử quét (Scanning Electron f an nv a lu RhB Microscopy) Hiển vi điện tử truyền qua (Transmission Electron Microscopy) oi lm Phổ hấp thụ phân tử (Ultraviolet-visible) nh UV-Vis ul TEM at UV-Vis DRS Phương pháp phổ phản xạ khuếch tán tử ngoại-khả kiến z z (Ultraviolet-visible Diffuse Reflectance Spectra) gm Vùng hóa trị (Valence band) @ VB Từ kế mẫu rung (Vibrating Sample Magnetmeter) XPS Phổ quang điện tử tia X( X-ray photoelectron spectroscopy-XPS) XRD Nhiễu xạ tia X( X-Ray Diffraction) om l.c VSM an Lu n va ac th si vii DANH MỤC CÁC BẢNG BIỂU Bảng 1 Thơng số bán kính số ion kim loại ·························· 16 Bảng Phân bố ion vị trí cấu trúc spine ······················ 17 Bảng Tính chất từ số hệ hạt nano có hình dạng khác nhau.····· 19 Bảng Ảnh hưởng thành phần đến tính chất từ ····················· 22 Bảng Thế oxi hóa chất oxy hóa điển hình ························· 33 Bảng Các loại hóa chất sử dụng đề tài ························ 40 Bảng 2 Các thí nghiệm chuẩn bị xây dựng đường chuẩn RhB·············· 53 a lu n Bảng Các thí nghiệm chuẩn bị xây dựng đường chuẩn MB ·············· 54 n va Bảng Thành phần nguyên tử nguyên tố có NF ·················· 67 p ie gh tn to Bảng Thành phần phần trăm nguyên tử nguyên tố graphit; GO GO-N, GO-N,S ······················································· 77 Bảng 3 Các thông số đặc trưng của NF/GO-N NF/GO-N,S ········ 82 oa nl w Bảng Phần trăm nguyên tố mẫu NF; NF/GO; NF/GO-N; NF/GO-N,S ······························································ 83 d a lu Bảng Năng lượng vùng cấm vật liệu ······························· 93 f an nv Bảng Hằng số tốc độ k phản ứng theo mơ hình Langmuir – Hinshelwood ····························································· 98 ul oi lm Bảng Hằng số tốc độ phản ứng theo mơ hình Langmuir – nh Hinshelwood ··························································· 100 at Bảng Hiệu suất xúc tác quang chất xúc tác NF/GO-N,S với chất z z dập tắt ··································································· 102 om l.c gm @ an Lu n va ac th si viii DANH MỤC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Cấu trúc tinh thể kim cương graphit (3D)······················ Hình Sơ đồ tạo Graphen oxit từ graphit ······································ Hình Cấu trúc GO theo Lerf – Klinowski ······························· Hình Liên kết hydro lớp graphit oxit ······························ 10 Hình Cấu tạo liên kết nguyên tử nitrogen N-graphene········· 13 Hình Cấu trúc hình thành vật liệu nanocomposite MnO2/N-GO····· 14 Hình Sơ đồ tổng hợp graphen dopping N,S ································· 15 a lu n Hình 8.Cấu trúc tinh thể củaferrite spinel ······································ 16 n va Hình Sự phụ thuộc Ms vào nồng độ pha tạp Zn2+ hệ nano tn to ZnxM1-x Fe2O4 (M=Fe, Mn) ············································· 21 p ie gh Hình 10 Sự phụ thuộc mômen từ vào từ trường H (a) H/T (b) nhiệt độ khác hạt nano Fe có kích thước D = 4,4 nm ···· 23 oa nl w Hình 11 Lực kháng từ phụ thuộc vào kích thước hạt···················· 24 Hình 12 Đường M(H) với kích thước khác (a) phụ thuộc lực d a lu kháng từ vào kích thước hệ hạt nano Fe3O4 300 K (b) ···· 25 f an nv Hình 13 Đường M(H) với kích thước khác (a) phụ thuộc lực ul kháng từ vào kích thước mẫu Co0,4Fe2,6O4(b) ··············· 25 oi lm Hình 14 Cơ chế phản ứng xúc tác quang hóa dị thể ························· 32 nh Hình 15 Sơ đồ biểu diễn chế oxi hóa ······································ 34 at Hình 16 Sơ đồ biểu diễn chế khử ··········································· 35 z z Hình 17 Cơ chế xúc tác quang vật liệu biến tính A B chất bán @ gm dẫn ····················································································· 36 om l.c Hình 18 Cơng thức hóa học RhB ·········································· 38 Hình 1.19 Công thức 3,7-bis(Dimethylamino)-phenothiazin-5-ium an Lu chloride (hay xanh metylen) ··········································· 38 n va ac th si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an ix Hình Sơ đồ nhiễu xạ Rơnghen ··············································· 44 Hình 2 Sơ đồ tia tới tia························································ 44 Hình Độ tù peak phản xạ gây kích thước hạt ···················· 44 Hình Phổ UV- Vis RhB ··················································· 53 Hình Đường chuẩn Rhodamine B (RhB) ······························· 54 Hình Phổ UV- Vis MB ···················································· 55 Hình Đường chuẩn xanh metylen (MB) ································ 55 Hình Giản đồ XRD NF nung nhiệt độ 3500C (a), 4000C (b), a lu 4500C (c), 5000C (d) 7000C (e) ······································ 62 n Hình 3.2 Giản đồ phân tích nhiệt NF ········································· 63 n va Hình 3 Ảnh TEM mẫu NF-4500C (a), NF-5000C (b) NF-7000C tn to (c) ·········································································· 64 p ie gh Hình Giản đồ XRD NF tỉ lệ mol Fe3+ Ni2+ khác nhau······ 65 Hình Phổ EDX vật liệu NF tỉ lệ khác nhau······················ 66 oa nl w Hình Đường cong từ trễ mẫu NF tổng hợp tỉ lệ mol Fe3+ Ni2+ khác nhau···························································· 67 d nv a lu Hình Đồ thị biểu diễn phụ thuộc C/Co theo thời gian vật liệu NF f an tỉ lệ ································································· 68 oi lm ul Hình Phổ XPS tồn phần (a), Ni2p (b), Fe2p (c) O1s (d) vật liệu NF 2,0:1,0 ································································· 70 at nh Hình Giản đồ nhiễu xạ tia X GO; GO-N1,0 ; GO-N1,5 z GO-N2,0 ·································································· 71 z Hình 10 Giản đồ nhiễu xạ tia X GO; GO-N,S1,0 ; GO-N,S1,5 gm @ GO-N,S2,0 ···························································· 72 om l.c Hình 11 Phổ FT-IR mẫu GO mẫu GO-N-1; GO-N-1,5 ; GO-N-2,0 ································································ 74 an Lu Hình 12 Phổ FT-IR mẫu GO mẫu GO-N,S1,0 ; GO-N,S1,5; n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an x GO-N,S2,0 ······························································ 74 Hình 3.13 Đồ thị biểu diễn phụ thuộc C/Co theo thời gian mẫu vật liệu GO-N tỉ lệ khác ············································ 75 Hình 14 Đồ thị biểu diễn phụ thuộc C/Co theo thời gian mẫu vật liệu GO-N,S tỉ lệ khác ···································· 76 Hình 15 Giản đồ nhiễu xạ tia X GO, NF, NF/GO-N NF/ GO-N,S ····························································· 78 Hình 16 Phổ IR GO; GO-N; GO-N,S; NF; NF– GO-N a lu NF– GO-N,S ··························································· 78 n Hình 17 Ảnh SEM composite NF/GO-N, NF/GO-N,S ············ 79 n va Hình 18 Ảnh TEM composite NF/GO-N NF/GO-N,S ········· 80 tn to Hình 19 Đường đẳng nhiệt hấp phụ- khử hấp phụ N2 77 K NF/GO-N p ie gh NF/GO-N,S ·························································· 80 Hình 20 Đường cong từ trễ NF, NF/GO-N NF/GO-N,S ············ 81 oa nl w Hình 21 Phổ XPS toàn phần NF, NF/GO NF/GO-N; NF/GO-N,S ··· ·························································································· 82 d nv a lu Hình 22 Phổ XPS phân giải cao C1s NF/GO-N,S ················ 84 f an Hình 23 Phổ XPS phân giải cao O1s NF/GO-N,S ················ 84 oi lm ul Hình 24 Phổ XPS Fe2p NF, NF/GO-N, NF/GO-N,S ············ 85 Hình 25 Phổ XPS Ni2p NF/GO-N,S ······························· 86 at nh Hình 26 Phổ XPS N1s, S2p NF/GO-N,S ························· 87 z Hình 27 Phổ XPS phân giải cao O1s NF, NF/GO-N, z @ NF/GO-N,S······························································ 88 gm Hình 28 Phổ UV-Vis trạng thái rắn NF, NF/GO-N NF/GO-N,S··· 89 om l.c Hình 29 Đồ thị phụ thuộc (F(R)hϑ)2 theo lượng ánh sáng bị hấp thụ NF, NF/GO-N NF/GO-N,S ························· 90 an Lu Hình 30 Dung lượng hấp phụ RhB theo thời gian mẫu NF, GO-N, n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 109 TÀI LIỆU THAM HẢO TÀI LIỆU TIẾNG VIỆT [1] Lê Thị Mai Hoa, Hà Quang Ánh, Lê Hà Giang, Nguyễn Kế Quang, Ngô Tiến Quyết, Quản Thị Thu Trang Vũ Anh Tuấn, Study on dye reactive RR 195 photodegradation ability from aqueous solution by CoFe2O4/ GO composite, Tạp chí Xúc tác hấp phụ, ISSN 0866-7411, T4, N0 2, 39-44 (2015) [2] Lê Thị Mai Hoa, Hà Quang Ánh, Lê Hà Giang, Nguyễn Kế Quang, a lu Đào Đức Cảnh, Nguyễn Thị Phương, Trần Thị Kim Hoa, Đặng Tuyết n Phương Vũ Anh Tuấn, Synthesis, characterization and application n va of novel MnFe2O4- rGO composite in photocatalytic degradation of tn to reactive dye, Proceedings of IWNA 2015,11-14 November 2015, Vung p ie gh Tau, Viet Nam pp 513-516 [3] Nguyễn Hữu Đức (2008), Vật liệu từ cấu trúc nano điện t spin, Nhà oa nl w xuất đại học Quốc gia Hà Nội: pp 49-53 [4] Nguyễn Hữu Hiếu, Đặng Thị Minh Kiều, Phan Thị Hoài Diễm, Tổng hợp d lý nước thải, Tạp chí phát triển nv a lu Fe3O4/ graphen oxit nanocomposit để x f an KH&CN, tập 18, số T6, 212-220 (2015) oi lm ul [5] Nguyen Thi Vuong Hoan , Nguyen Ngoc Minh, Thoi Thi Kim Nhi, Nguyen Van Thang, Vu Anh Tuan , Vo Thang Nguyen, Nguyen Mau Thanh, Nguyen at nh Van Hung and Dinh Quang Khieu, TiO2/Diazonium/Graphene Oxide z Composites: Synthesis and Visible-Light-Driven Photocatalytic Degradation z Methylene Blue, Journal of Nanomaterials Volume 2020, Article ID 4350125, 15 pages gm @ of om l.c [6] Nguyen Thi Vuong Hoan, Nguyen Thi Anh Thu, Hoang Van Duc, Nguyen Duc Cuong, Dinh Quang Khieu, and Vien Vo, Fe3O4/Reduced Graphene an Lu Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 110 Removal , Journal of Chemistry, Volume 2016, Article ID 2418172, 10 pages [7] Phan Văn Tường (2007 ), Vật liệu vô cơ, Nhà xuất đại học Quốc gia Hà Nội: pp 52-54.59 [8] Thân Đức Hiền, Lưu Tuấn Tài (2008), Từ học vật liệu từ, Nhà xuất đại học Bách Khoa - Hà Nội: pp 158, 108-111,162-163 TÀI LIỆU THAM HẢO TIẾNG ANH [9] AbdElmoula, M., Optical, electrical and catalytic properties of titania a lu nanotubes 2011, Northeastern University n n va [10] Ai, W., et al., Nitrogen and sulfur codoped graphene: multifunctional i‐ion batteries and oxygen tn to electrode materials for high‐performance reduction reaction Advanced Materials, 2014 26(35): p 6186-6192 p ie gh [11] Angelakeris, M., Magnetic nanoparticles: A multifunctional vehicle for oa nl w modern theranostics Biochimica et Biophysica Acta (BBA)-General Subjects, 2017 1861(6): p 1642-1651 d [12] Ariharan, A., B Viswanathan, and V Nandhakumar, Nitrogen doped a lu graphene as potential material for hydrogen storage Graphene, 2017 6(2): p nv f an 41-60 oi lm ul [13] Badr, Y and M Mahmoud, Enhancement of the optical properties of poly vinyl alcohol by doping with silver nanoparticles Journal of applied polymer nh science, 2006 99(6): p 3608-3614 at z [14] Bai, S., et al., One-pot solvothermal preparation of magnetic reduced z p 2337-2346 gm @ graphene oxide-ferrite hybrids for organic dye removal Carbon, 2012 50(6): om l.c [15] Becerril, H.A., et al., Evaluation of solution-processed reduced graphene oxide films as transparent conductors ACS nano, 2008 2(3): p 463-470 an Lu [16] Biddinger, E.J., D Von Deak, and U.S Ozkan, Nitrogen-containing carbon n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 111 nanostructures as oxygen-reduction catalysts Topics in Catalysis, 2009 52(11): p 1566-1574 [17] Boroski, M., et al., Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries Journal of hazardous materials, 2009 162(1): p 448-454 [18] Boukhvalov, D.W., Oxidation of a graphite surface: the role of water The Journal of Physical Chemistry C, 2014 118(47): p 27594-27598 [19] Casanovas, J., et al., Origin of the large N1s binding energy in X-ray a lu photoelectron spectra of calcined carbonaceous materials Journal of the n American Chemical Society, 1996 118(34): p 8071-8076 n va [20] Chandel, N., et al., Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 tn to photocatalysts supported onto nitrogen doped graphene for photocatalytic p ie gh degradation of toxic dyes Arabian Journal of Chemistry, 2020 13(2): p 4324-4340 oa nl w [21] Channu, V., R Bobba, and R Holze, Graphite and graphene oxide electrodes for lithium ion batteries Colloids and Surfaces A: Physicochemical and d nv a lu Engineering Aspects, 2013 436: p 245-251 f an [22] Chen, D., M Sivakumar, and A.K Ray, Heterogeneous photocatalysis in oi lm ul environmental remediation Developments in Chemical Engineering and Mineral Processing, 2000 8(5‐6): p 505-550 at nh [23] Cong, Y., et al., Carbon and nitrogen-codoped TiO2 with high visible light z photocatalytic activity Chemistry Letters, 2006 35(7): p 800-801 z gm @ [24] De Montferrand, C., et al., Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential 6157 om l.c labels for multiparametric detection Acta biomaterialia, 2013 9(4): p 6150- an Lu [25] Deng, H., et al., Monodisperse magnetic single‐crystal ferrite microspheres n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 112 Angewandte Chemie, 2005 117(18): p 2842-2845 [26] Ewels, C and M Glerup, Nitrogen doping in carbon nanotubes Journal of nanoscience and nanotechnology, 2005 5(9): p 1345-1363 [27] Fang, Y., et al., CuO/TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials Bulletin of Materials Science, 2012 35(4): p 495-499 [28] Feng, J., et al., Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles Journal of Alloys and Compounds, a lu 2011 509(37): p 9093-9097 n [29] Feng, T., et al., One-dimensional nanostructured TiO2 for photocatalytic n va degradation of organic pollutants in wastewater International Journal of tn to Photoenergy, 2014 2014 p ie gh [30] Finegold, L and J.L Cude, Biological Sciences: One and Two-dimensional Structure of Alpha-Helix and Beta-Sheet Forms of Poly (L-Alanine) shown by oa nl w Specific Heat Measurements at Low Temperatures (1.5–20 K) Nature, 1972 238(5358): p 38-40 d nv a lu [31] Friedmann, D., C Mendive, and D Bahnemann, TiO2 for water treatment: f an parameters affecting the kinetics and mechanisms of photocatalysis Applied oi lm ul Catalysis B: Environmental, 2010 99(3-4): p 398-406 [32] Fu, C., et al., Evaluation and characterization of reduced graphene oxide z Sci, 2013 8(5): p 6269-6280 at nh nanosheets as anode materials for lithium-ion batteries Int J Electrochem z [33] Fu, Y and X Wang, Magnetically separable ZnFe2O4–graphene catalyst and gm @ its high photocatalytic performance under visible light irradiation Industrial om l.c & engineering chemistry research, 2011 50(12): p 7210-7218 [34] Fu, Y., et al., Combination of cobalt ferrite and graphene: high-performance recyclable visible-light photocatalysis an Lu and Applied Catalysis B: n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 113 Environmental, 2012 111: p 280-287 [35] Fu, Y., et al., Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage Industrial & engineering chemistry research, 2012 51(36): p 11700-11709 [36] Garg, R., N.K Dutta, and N.R Choudhury, Work function engineering of graphene Nanomaterials, 2014 4(2): p 267-300 [37] Geng, D., et al., Nitrogen doping effects on the structure of graphene Applied Surface Science, 2011 257(21): p 9193-9198 a lu [38] Gernjak, W., et al., Photo-Fenton treatment of water containing natural n phenolic pollutants Chemosphere, 2003 50(1): p 71-78 n va [39] Glaze, W.H., J.-W Kang, and D.H Chapin, The chemistry of water treatment tn to processes involving ozone, hydrogen peroxide and ultraviolet radiation 1987 p ie gh [40] Groves, M., et al., Improving platinum catalyst binding energy to graphene oa nl w 219 through nitrogen doping Chemical Physics Letters, 2009 481(4-6): p 214- [41] Guo, H.-L., et al., A green approach to the synthesis of graphene nanosheets d nv a lu ACS nano, 2009 3(9): p 2653-2659 f an [42] Hashimzade, F., et al., Prediction of half-metallic properties in TlCrS2 and oi lm ul TlCrSe2 based on density functional theory Journal of Magnetism and Magnetic Materials, 2017 435: p 69-75 at nh [43] He, Y., et al., Enhanced photodegradation activity of methyl orange over Z- z scheme type MoO3–gC3N4 composite under visible light irradiation Rsc z gm @ Advances, 2014 4(26): p 13610-13619 [44] Herzer, G., Grain size dependence of coercivity and permeability in p 1397-1402 om l.c nanocrystalline ferromagnets IEEE Transactions on magnetics, 1990 26(5): an Lu [45] Hou, Y., et al., ZnFe2O4 multi-porous microbricks/graphene hybrid n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 114 photocatalyst: facile synthesis, improved activity and photocatalytic mechanism Applied Catalysis B: Environmental, 2013 142: p 80-88 [46] Houshiar, M., et al., Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties Journal of Magnetism and Magnetic Materials, 2014 371: p 43-48 [47] Howe, R., Recent developments in photocatalysis Developments in Chemical Engineering and Mineral Processing, 1998 6(1‐2): p 55-84 a lu [48] Hummers Jr, W.S and R.E Offeman, Preparation of graphitic oxide Journal n of the american chemical society, 1958 80(6): p 1339-1339 n va [49] Iannicelli-Zubiani, E.M., et al., Enhanced lanthanum adsorption by amine tn to modified activated carbon Chemical Engineering Journal, 2018 341: p 75- p ie gh 82 [50] Jang, J.t., et al., Critical enhancements of MRI contrast and hyperthermic oa nl w effects by dopant‐controlled magnetic nanoparticles Angewandte Chemie International Edition, 2009 48(7): p 1234-1238 d nv a lu [51] Kaden, W.E., et al., Size-dependent oxygen activation efficiency over Pd f an n/TiO2 (110) for the CO oxidation reaction Journal of the American Chemical oi lm ul Society, 2010 132(38): p 13097-13099 [52] Khan, M.M., D Pradhan, and Y Sohn, Nanocomposites for visible light- at nh induced photocatalysis 2017: Springer z [53] Khan, M.M., S.F Adil, and A Al-Mayouf, Metal oxides as photocatalysts z gm @ 2015, Elsevier [54] Khan, Z.U., A Kausar, and H Ullah, A review on composite papers of Processing strategies, properties, and om l.c graphene oxide, carbon nanotube, polymer/GO, and polymer/CNT: relevance an Lu Technology and Engineering, 2016 55(6): p 559-581 Polymer-Plastics n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 115 [55] Kiani, M., et al., Spinel nickel ferrite nanoparticles supported on nitrogen doped graphene as efficient electrocatalyst for oxygen reduction in fuel cells Materials Express, 2017 7(4): p 261-272 [56] Kim, D., et al., Synthesis of uniform ferrimagnetic magnetite nanocubes Journal of the American Chemical Society, 2009 131(2): p 454-455 [57] Krishnamoorthy, K., et al., The chemical and structural analysis of graphene oxide with different degrees of oxidation Carbon, 2013 53: p 38-49 [58] Kubelka, P and F Munk, An article on optics of paint layers Z Tech Phys, a lu 1931 12(593-601): p 259-274 n [59] Kumar, P.R., et al., Enhanced properties of porous CoFe2O4 –reduced n va graphene oxide composites with alginate binders for Li-ion battery tn to applications New Journal of Chemistry, 2014 38(8): p 3654-3661 p ie gh [60] Kumar, S.V., et al., High performance magnetically separable graphene/zinc oxide nanocomposite Materials Letters, 2013 93: p 411-414 oa nl w [61] Lee, J.-H., et al., Artificially engineered magnetic nanoparticles for ultra- sensitive molecular imaging Nature medicine, 2007 13(1): p 95-99 d nv a lu [62] Li, W., et al., Evidence for the active species involved in the photodegradation f an process of methyl orange on TiO2 The Journal of Physical Chemistry C, oi lm ul 2012 116(5): p 3552-3560 [63] Li, Y., et al., Nitrogen and sulfur co-doped porous carbon nanosheets derived at nh from willow catkin for supercapacitors Nano energy, 2016 19: p 165-175 z [64] Li, Z., et al., Superstructured assembly of nanocarbons: fullerenes, nanotubes, z @ and graphene Chemical reviews, 2015 115(15): p 7046-7117 raphene‐ ike Carbon from gm [65] Lin, Y., et al., Nitrogen and Sulfur Co‐Doped om l.c Industrial Dye Wastewater for Use as a High‐Performance Supercapacitor Electrode Global Challenges, 2019 3(11): p 1900043 an Lu [66] Lingamdinne, L.P., et al., Porous graphene oxide based inverse spinel nickel n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 116 ferrite nanocomposites for the enhanced adsorption removal of arsenic RSC advances, 2016 6(77): p 73776-73789 [67] Liu, B., et al., Nitrogen-doped banana peel–derived porous carbon foam as binder-free electrode for supercapacitors Nanomaterials, 2016 6(1): p 18 [68] Liu, R., et al., Synthesis and bactericidal ability of TiO2 and Ag-TiO2 prepared by coprecipitation method International Journal of Photoenergy, 2012 2012 [69] Maciel, R., G Sant’Anna Jr, and M Dezotti, Phenol removal from high a lu salinity effluents using Fenton’s reagent and photo-Fenton reactions n Chemosphere, 2004 57(7): p 711-719 n va [70] Marcano, D.C., et al., Improved synthesis of graphene oxide ACS nano, 2010 tn to 4(8): p 4806-4814 p ie gh [71] Mei, J and L Zhang, Anchoring high-dispersed MnO2 nanowires on nitrogen doped graphene as electrode materials for supercapacitors Electrochimica oa nl w Acta, 2015 173: p 338-344 [72] Mokhtar Mohamed, M., et al., Nitrogen graphene: A new and exciting d nv a lu generation of visible light driven photocatalyst and energy storage f an application ACS omega, 2018 3(2): p 1801-1814 oi lm ul [73] Neppolian, B., et al., Graphene oxide based Pt–TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency at nh Ultrasonics sonochemistry, 2012 19(1): p 9-15 z [74] Nica, V., et al., Calorimetric method for the determination of Curie z Condensed Matter, 2008 20(20): p 204115 gm @ temperatures of magnetic nanoparticles in dispersion Journal of Physics: om l.c [75] Noh, S.-h., et al., Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis Nano letters, 2012 12(7): an Lu p 3716-3721 n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 117 [76] Nyangiwe, N.N., et al., Free-green synthesis and dynamics of reduced graphene sheets via sun light irradiation Graphene, 2015 4(03): p 54 [77] Ortiz-Qui onez, J.-L., U Pal, and M.S Villanueva, Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co–Ni ferrite nanoparticles fabricated by low-temperature solution combustion process ACS omega, 2018 3(11): p 14986-15001 [78] Ou, C.F., The effect of graphene/Ag nanoparticles addition on the performances of organic solar cells Journal of Materials Science and a lu Chemical Engineering, 2015 n [79] Pare, B., et al., ZnO assisted photocatalytic degradation of acridine orange in n va aqueous solution using visible irradiation Desalination, 2008 232(1-3): p tn to 80-90 p ie gh [80] Park, S., et al., Hydrazine-reduction of graphite-and graphene oxide carbon, 2011 49(9): p 3019-3023 oa nl w [81] Parsons, S., Advanced oxidation processes for water and wastewater treatment 2004: IWA publishing d nv a lu [82] Qin, T., et al., 3D flexible O/N Co-doped graphene foams for supercapacitor f an electrodes with high volumetric and areal capacitances Journal of Power oi lm ul Sources, 2016 336: p 455-464 [83] Rajeshwar, K., et al., Heterogeneous photocatalytic treatment of organic dyes at nh in air and aqueous media Journal of photochemistry and photobiology C: z photochemistry reviews, 2008 9(4): p 171-192 z gm @ [84] Rehman, S., et al., Strategies of making TiO2 and ZnO visible light active Journal of hazardous materials, 2009 170(2-3): p 560-569 om l.c [85] Robertson, A.W and J.H Warner, Atomic resolution imaging of graphene by transmission electron microscopy Nanoscale, 2013 5(10): p 4079-4093 an Lu [86] Salazar-Alvarez, G., et al., Cubic versus spherical magnetic nanoparticles: n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 118 the role of surface anisotropy Journal of the American Chemical Society, 2008 130(40): p 13234-13239 [87] Samoilova, R.I., A.R Crofts, and S.A Dikanov, Reaction of superoxide radical with quinone molecules The Journal of Physical Chemistry A, 2011 115(42): p 11589-11593 [88] Shan, H., et al., Sulfur/nitrogen dual-doped porous graphene aerogels enhancing anode performance of lithium ion batteries Electrochimica Acta, 2016 205: p 188-197 a lu [89] Shi, L., et al., Nitrogen-doped carbon nanoparticles for oxygen reduction n prepared via a crushing method involving a high shear mixer Materials, n va 2017 10(9): p 1030 tn to [90] Sikhwivhilu, L.M., S.S Ray, and N.J Coville, Influence of bases on p ie gh hydrothermal synthesis of titanate nanostructures Applied Physics A, 2009 94(4): p 963-973 oa nl w [91] Smith, R.A., Semiconductors 1978 [92] Song, Q and Z.J Zhang, Shape control and associated magnetic properties of d nv a lu spinel cobalt ferrite nanocrystals Journal of the American Chemical Society, f an 2004 126(19): p 6164-6168 oi lm ul [93] Song, Z., W Ran, and F Wei, One-step approach for the synthesis of CoFe2O4@ rGO core-shell nanocomposites as efficient adsorbent for removal at nh of organic pollutants Water Science and Technology, 2017 75(2): p 397- z 405 z [94] Su, J., et al., Fe3O4–graphene nanocomposites with improved lithium storage gm @ and magnetism properties The Journal of Physical Chemistry C, 2011 om l.c 115(30): p 14469-14477 [95] Sun, D., J Yang, and X Yan, Hierarchically porous and nitrogen, sulfur- an Lu codoped graphene-like microspheres as a high capacity anode for lithium ion n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 119 batteries Chemical Communications, 2015 51(11): p 2134-2137 [96] Sun, L., et al., Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation Journal of alloys and compounds, 2013 564: p 55-62 [97] Sun, Q and S Kim, Synthesis of nitrogen-doped graphene supported Pt nanoparticles catalysts and their catalytic activity for fuel cells Electrochimica Acta, 2015 153: p 566-573 [98] Suresh, S., A Prakash, and D Bahadur, The role of reduced graphene oxide a lu on the electrochemical activity of MFe2O4 (M= Fe, Co, Ni and Zn) n nanohybrids Journal of Magnetism and Magnetic Materials, 2018 448: p 43- n va 51 tn to [99] Suwanchawalit, C and V Somjit, Hydrothermal synthesis of magnetic p ie gh CoFe2O4-Graphene nanocomposite with enhanced photocatalytic Tabit, R., et al., Magnetic CoFe2O4 nanoparticles supported on graphene oa nl w [100] performance Digest J Nanomater Biostruc, 2015 10: p 769-777 oxide (CoFe2O4/GO) with high catalytic activity for peroxymonosulfate d Thu, N.T.A., et al., Electrochemical determination of paracetamol using oi lm ul [101] f an 1351-1360 nv a lu activation and degradation of rhodamine B RSC advances, 2018 8(3): p Fe3O4/ reduced graphene-oxide-based electrode Journal of Nanomaterials, at Tian, Z., et al., Facile synthesis of highly conductive sulfur-doped reduced z [102] nh 2018 2018 z 1125-1130 Torrent, J and V Barrón, Diffuse reflectance spectroscopy of iron oxides om l.c [103] gm @ graphene oxide sheets Physical Chemistry Chemical Physics, 2016 18(2): p Encyclopedia of surface and Colloid Science, 2002 1: p 1438-1446 an Lu [104] Turtelli, R.S., et al., Interplay between the cation distribution and n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 120 production methods in cobalt ferrite Materials Chemistry and Physics, 2012 132(2-3): p 832-838 [105] Ullah, K., et al., A facile and fast synthesis of novel composite Pt– graphene/ TiO2 with enhanced photocatalytic activity under UV/Visible light Chemical engineering journal, 2013 231: p 76-83 [106] Vafayi, L., S Gharibe, and S Afshar, Development of a Mild Hydrothermal Method toward Preparation of ZnS Spherical Nanoparticles 2013 a lu [107] Vaidyanathan, G and S Sendhilnathan, Characterization of n Co1− xZnxFe2O4 nanoparticles synthesized by co-precipitation method Physica n va B: Condensed Matter, 2008 403(13-16): p 2157-2167 tn to [108] Valix, M., W Cheung, and G McKay, Preparation of activated carbon p ie gh using low temperature carbonisation and physical activation of high ash raw Wang, D., et al., Enhanced photoelectrocatalytic activity of reduced oa nl w [109] bagasse for acid dye adsorption Chemosphere, 2004 56(5): p 493-501 graphene oxide/TiO2 composite films for dye degradation Chemical d Wang, H., T Maiyalagan, and X Wang, Review on recent progress in f an [110] nv a lu engineering journal, 2012 198: p 547-554 oi lm ul nitrogen-doped graphene: synthesis, characterization, and its potential applications Acs Catalysis, 2012 2(5): p 781-794 Wang, L., et al., Adsorption capability for Congo red on nanocrystalline at nh [111] z MFe2O4 (M= Mn, Fe, Co, Ni) spinel ferrites Chemical Engineering Journal, gm @ [112] z 2012 181: p 72-79 Wang, Y., et al., N-Doping of plasma exfoliated graphene oxide via om l.c dielectric barrier discharge plasma treatment for the oxygen reduction reaction Journal of Materials Chemistry A, 2018 6(5): p 2011-2017 an Lu [113] Wu, L., et al., Monolayer Assembly of Ferrimagnetic CoxFe3–xO4 n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 121 Nanocubes for Magnetic Recording Nano letters, 2014 14(6): p 3395-3399 [114] Wu, X., et al., PEG-assisted hydrothermal synthesis of CoFe2O4 nanoparticles with enhanced selective adsorption properties for different dyes Applied Surface Science, 2016 389: p 1003-1011 [115] Xing, S., et al., Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2 Applied Catalysis B: Environmental, 2011 107(3-4): p 386-392 [116] Yang, L and B Kruse, Revised Kubelka–Munk theory I Theory and a lu application JOSA A, 2004 21(10): p 1933-1941 n [117] Ying, J.Y., C.P Mehnert, and M.S Wong, Synthesis and applications of n va supramolecular‐templated mesoporous materials Angewandte Chemie tn to International Edition, 1999 38(1‐2): p 56-77 p ie gh [118] Zhang, L and Z Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells The Journal of Physical Chemistry C, [119] oa nl w 2011 115(22): p 11170-11176 Zhang, L.-L., et al., Corrigendum to" Insight into cobalt-doping in d nv a lu Li2FeSiO4 cathode material for lithium-ion battery"[J Power Sources 274C Zhang, X.-J., et al., Enhanced microwave absorption property of reduced oi lm ul [120] f an (2014) 194-202] JPS, 2015 278: p 826-827 graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride Zhao, G., et al., Few-layered graphene oxide nanosheets as superior z [121] at nh ACS applied materials & interfaces, 2014 6(10): p 7471-7478 z technology, 2011 45(24): p 10454-10462 Zhu, S., et al., Sonochemical fabrication of Fe3O4 nanoparticles on om l.c [122] gm @ sorbents for heavy metal ion pollution management Environmental science & reduced graphene oxide for biosensors Ultrasonics sonochemistry, 2013 an Lu 20(3): p 872-880 n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an 122 [123] B., Zhen G., Muir B.W., Moffat B.A., Harbour P., Murray K.S., Moubaraki Suzuki K., Madsen I., Agron-Olshina N., Waddington L (2011),Comparative 171 study of magnetic behavior of spherical and cubicsuperparamagneticironoxide nanoparticles, The Journal of Physical Chemistry C, 115: pp 327–334 a lu n n va p ie gh tn to d oa nl w f an nv a lu oi lm ul at nh z z om l.c gm @ an Lu n va ac th Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn si C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn

Ngày đăng: 31/07/2023, 20:16

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN