Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 92 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
92
Dung lượng
2,45 MB
Nội dung
CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự – Hạnh phúc ĐƠN YÊU CẦU CÔNG NHẬN SÁNG KIẾN TÊN SÁNG KIẾN GIẢI PHÁP MỚI XÂY DỰNG VÀ PHÁT TRIỂN HỆ THỐNG CÁC BÀI TOÁN CỰC TRỊ HÌNH HỌC GIẢI TÍCH TRONG KHƠNG GIAN Đồng tác giả: Phạm Thành Trung – Tổ trưởng chuyên môn tổ Toán – Tin trường THPT Nho Quan B Bùi Việt Hùng – Phó hiệu trưởng trường THPT Nho Quan B Ninh Bình, tháng 10 năm 2019 skkn CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự - Hạnh phúc ĐƠN YÊU CẦU CÔNG NHẬN SÁNG KIẾN Kính gửi: Sở Giáo dục Đào tạo tỉnh Ninh Bình Nhóm tác giả sáng kiến: Chúng tơi gồm: Trình TT Họ tên Nơi Chức độ cơng tác danh chun mơn Tỷ lệ % đóng góp vào việc Ghi tạo sáng kiến Tổ Phạm Thành Trung THPT Nho trưởng Quan B chuyên Đại học 50% Thạc sỹ 50% Đồng tác giả môn Bùi Việt Hùng THPT Nho Quan B Phó hiệu trưởng Đồng tác giả Là đồng tác giả đề nghị xét công nhận sáng kiến: “Giải pháp xây dựng phát triển hệ thống tốn cực trị hình học giải tích khơng gian” - Phụ lục Lĩnh vực áp dụng sáng kiến: Toán học Các từ viết tắt: - THPT: Trung học phổ thông - SGK: Sách giáo khoa Nội dung sáng kiến Thực trạng giải pháp cũ thường làm - Hạn chế giải pháp cũ 1 Thực trạng Trong chương trình tốn THPT tốn cực trị, đặc biệt toán cực trị hình học ln tốn khiến học sinh gặp nhiều khó khăn lúng skkn túng Các tốn chương trình SGK lớp 12 hành viết sơ sài chủ yếu dừng lại mức độ thông hiểu Các dạng tập sách viết theo dạng tự luận, bố trí rời rạc đan xen tồn nội dung chương trình Hình học giải tích khơng gian Trong kỳ thi THPT Quốc gia đề thi minh họa Bộ giáo dục Đào tạo ba năm vừa qua, nội dung đánh giá mức độ vận dụng, vận dụng cao Với toán cực trị hình khơng gian, hệ thống câu hỏi khai thác cách khéo léo vận dụng nhiều kiến thức Để giải toán học sinh phải nắm kiến thức hình giải tích mà cịn phải biết kết hợp khéo léo với tính chất hình học, tính chất véc tơ khơng gian để xử lý Theo thống kê 80% học sinh trường THPT Nho Quan B tham gia thi đại học khơng giải tốn thuộc mức độ vận dụng vận dụng cao dạng toán Bên cạnh với dạng tập địi hỏi học sinh phải tư duy, phân tích, nhìn nhận tốn nhiều góc độ khác nhau, biết vận dụng nhiều kiến thức liên quan Do giảng dạy phần kiến thức thuộc nội dung giáo viên gặp phải nhiều khó khăn việc định hướng hướng dẫn học sinh tiếp cận lời giải cho toán Giải pháp cũ thường làm Trong sách giáo khoa hành nội dung tập liên quan sơ sài, chưa định hướng lời giải cho học sinh Các toán dừng lại mức độ vận dụng trực tiếp lý thuyết vào giải trực tiếp, chưa có gắn kết logic dạng toán Các toán cho dạng tự luận Nội dung tập đơn dừng lại khuôn khổ tốn tính mà chưa có gắn kết toán kỹ vận dụng ý nghĩa hình học Các tập SGK Sách tập chủ yếu rèn kỹ tính tốn biến đổi Với hệ thống tập vậy, học sinh cần luyện tập làm nhiều tập giải Với câu hỏi cực trị Sách giáo khoa sách tập đưa lời giải theo hướng cố định khơng có phân tích sở để hướng đến lời giải skkn Hệ thống sách trắc nghiệm thị trường tràn lan, viết chủ yếu với hình thức phân dạng đưa vào nhiều câu hỏi chủ yếu giúp em luyện tập củng cố dạng toán nêu, chưa thực mở cho học sinh hướng phát triển thơng qua dạng tốn cụ thể Do ngồi việc phải nhớ nhiều dạng tốn em cịn phải nhớ cách làm chi tiết cho dạng Điều khiến em cảm thấy khó khăn trình ghi nhớ vận dụng Hơn với tốn địi hỏi có suy luận liên kết kiến thức em không xử lý Do vấn đề đặt học sinh làm tập thường có lời giải theo dạng tốn cố định Với tốn cực trị khn khổ sách giáo khoa khơng đề cập đến để xử lý dạng toán học sinh cần phải linh hoạt kết hợp kiến thức học trước, chương trước chí kiến thức lớp Do đối diện với toán đề thi hầu hết em không đủ khả để giải dẫn tới tình trạng học sinh chán nản, không hứng thú vào việc nghiên cứu giải dạng tập Điều minh chứng kỳ hầu hết em bỏ câu hỏi có liên quan đến nội dung Hạn chế giải pháp cũ - Với việc đưa hệ thống dạng toán cố định mặc định sẵn phương pháp giải tương ứng khiến học sinh vất vả việc nhớ dạng toán phương pháp tương ứng cho dạng - Trong tập khác đề cho không dạng chuẩn học sinh cách định hướng tìm lời giải - Khi thực theo giải pháp cũ hầu hết học sinh không làm toán mà yếu tố đề cho dạng suy luận - Hệ thống tập chưa thực phù hợp với hình thức thi trắc nghiệm Bài tập nặng yếu tố ghi nhớ tính tốn theo cơng thức khơng phát huy lực sáng tạo người học Việc khắc sâu đặc điểm tính chất phát triển kiến thức học việc sử lí tình tốn cụ thể gặp nhiều hạn chế - Với xu dạy học mới, giải pháp cũ bộc lộ nhược điểm rõ rệt, khơng phát huy tính chủ động, sáng tạo học sinh q trình giải tốn Bên cạnh với việc cung cấp q nhiều dạng tốn phương pháp tài liệu khiến học skkn sinh phải chịu áp lực lớn trình học tập, phải ghi nhớ lượng kiến thức lớn Điều khiến em sáng tạo hứng thú học tập Đặc biệt để làm tập theo dạng học sinh phải nhớ nhiều công thức đại lượng liên hệ cách máy móc Với cách tiếp cận toán giải pháp cũ học sinh thụ động Trong trình làm tập học sinh khơng tìm đượchứng thú tự giác Học sinh không nghĩ suy độc lập sáng tạo Giải pháp mới: Sáng kiến hình thành theo dạng chủ đề dạy học Hệ thống lý thuyết trình bày cách đọng ngắn gọn Các dạng tập xây dựng cách hệ thống, có phân chia mức độ Bài tập thiết kế theo hình thức trắc nghiệm để tạo điều kiện cho học sinh có khả phát huy hết lực thân Với bố cục sáng kiến chia thành phẩn rõ ràng Thứ việc trình lại hệ thống kiến thức chương trình sách giáo khoa mà tối thiểu học sinh cần nắm Mỗi phần kiến thức học sinh tiếp nhận có dạng tập vận dụng với mức độ yêu cầu khác để học sinh luyện tập Nêu định hướng số phương pháp để giải tập đề thi đại học với kiến thức Giúp học sinh vận dụng trực tiếp kiến thức học vào sử lý tốn liên quan, hình thành đường tư liên tục kỹ vận dụng kiến thức vào tình cụ thể Trong trình hình thành lời giải có phân tích cách tư đường tìm lời giải sở giả thiết từ giúp học sinh tạo thói quen tư liên kết gặp tốn lạ 4.3 Tính mới, tính sáng tạo: - Sáng kiến phân tích lời giải tư để hình thành đường đến lời giải cách tự nhiên Liên kết dạng toán giúp học sinh hình thành suy luận hợp lý, tổng quát toán theo nhiều hướng khác - Các tốn nhóm tác giả chia theo trình tự nội dung kiến thức trình bày sách giáo khoa để đảm bảo cho học sinh dễ dàng tiếp cận skkn từ cung cấp kiến thức lý thuyết Bài tập ví dụ minh họa xếp theo hệ thống kiến thức phân dạng mức độ từ nhận biết, thông hiểu, vận dụng vận dụng cao - Giải pháp nhằm giúp học sinh giảm bớt gánh nặng trình học tập: Kiến thức cần thiết nằm khuôn khổ sách giáo khoa hành, nhớ nhiều dạng tập cách máy móc, khơng phải tốn q trình mua tài liệu tham khảo - Khi tiếp cận cách học theo giải pháp mới, học sinh tự chủ động tìm lời giải độc lập cho tốn dựa lượng kiến thức có sẵn Do học sinh chủ động linh hoạt trước tốn khơng phải áp đặt theo khn mẫu định sẵn - Giáo viên dựa vào kết quen thuộc sách giáo khoa đề cho học sinh cách chủ động không trùng lặp - Các giải pháp nêu sử dụng phần lớn kiến thức mà học sinh học lớp Sự liên kết phần kiến thức với định hướng ban đầu khiến cho toán trở nên quen thuộc dễ tiếp cận Việc vận dụng cách phù hợp vào tốn cụ thể ln tạo mẻ quen thuộc với học sinh Các tập vận dụng giải pháp toán xuất tài liệu tham khảo Đề thi đại học năm gần tiếp cận cách hoàn toàn mẻ đồng thời gần gũi với mức độ suy luận em học sinh Hiệu kinh tế xã hội dự kiến đạt Hiệu kinh tế: - Học sinh sử dụng nhiều tài liệu việc sử dụng phương pháp khác Có thể tự sáng tạo giải toán khác theo phương pháp Thời gian nghiên cứu học tập tương đối phù hợp Các em học sinh dựa vào phân tích tốn sáng kiến để tìm lời giải cho tốn khác, tránh tình trạng học thêm tràn lan vừa tốn vừa không mang lại hiệu cao skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Hiệu xã hội Giải pháp cũ + Chưa mang tính thực tiễn cao: Kiến thức trình bày cịn nặng, thiên việc giải tập Hệ thống tập chưa phù hợp với phương châm đổi giáo dục Các tập cực trị không gian cịn sơ sài nặng hình thức tự luận Giải pháp + Có tính thực tiễn cao: Kiến thức nằm SGK hành Sáng kiến tập trung vào việc phân tích tư giúp học sinh tìm lời giải Hệ thống ví dụ tập mang tính sáng tạo, đáp ứng yêu cầu đổi Bài tập xây dựng kết hợp tự luận trắc nghiệm + Học sinh bị động tiếp cận + Học sinh chủ động, sáng tạo toán Phải đọc học nhiều dẫn học tập Phát huy hứng thú đến áp lực học tập Phải ghi nhớ niềm đam mê học tập nhiều nội dung kiến thức + Việc trình bày nội dung + Kiến thức đơn giản, khơng cần học sách tham khảo cịn nặng kiến thêm Học sinh tự học theo thức khiến học sinh khó hiểu dẫn đến phương pháp nghiên cứu mà sáng kiến tình trạng học sinh học thêm tràn lan hướng dẫn gây xúc cho gia đình xã hội + Các tốn kỳ thi Đại học + Các toán đề thi Đại học và Cao đẳng năm gần Cao đẳng năm gần khơng nằm dạng tốn áp dụng sáng kiến tương đối đơn trình bày sách tham khảo giản, giải cách dễ dàng + Giáo viên lúng túng việc lựa - Giúp giáo viên việc dạy học chọn tập, chọn dạng toán vừa đảm theo phương pháp mới, xác định bảo tính hệ thống chương trình vừa nội dung trọng tâm bài, giáo đảm bảo đáp ứng đổi viên sử dụng tài liệu tham khảo, kiểm tra đánh giá giúp cho giáo viên giảm bớt nhiều công sức việc soạn bài, chuẩn bị lên lớp + Chưa đáp ứng yêu cầu đổi + Chú trọng vào việc phát triển giáo dục Học sinh phụ thuộc vào giáo lực, phương pháp tiếp cận đa dạng, khả viên phương pháp, phải ghi nhớ vận dụng thực tiễn cao tái nội dung phương pháp Khả vận dụng thực tiễn thấp Điều kiện khả áp dụng: 6.1 Điều kiện áp dụng: Sáng kiến: “Giải pháp xây dựng phát triển hệ thống tốn cực trị hình học giải tích khơng gian” mà nhóm tác giả trình bày dễ dàng áp dụng thực tế, phù hợp với giáo viên, học sinh trung học phổ thông Không Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an hữu ích với học sinh ơn thi đại học mà hiệu với học sinh đại trà khác, giúp em nâng cao khả tư giải vấn đề liên quan 6.2 Khả áp dụng: Sáng kiến nhóm tác giả sử dụng trình giảng dạy, tài liệu tham khảo cho em học sinh, thầy cô q trình ơn thi học sinh giỏi, thi THPT Quốc gia trường THPT Nho Quan B áp dụng cho trường THPT tỉnh Qua sáng kiến cho thấy toán cực trị Hình giải tích khơng gian tiếp cận với nhiều đối tượng học sinh, với tảng kiến thức giới hạn nội dung chương trình sách giáo khoa hành Do khả áp dụng sáng kiến vào thực tế khả quan dễ thực Kết luận : Sáng kiến “Giải pháp xây dựng phát triển hệ thống tốn cực trị hình học giải tích khơng gian” mà nhóm tác giả học hỏi đúc rút trình giảng dạy trường THPT Nho Quan B Sáng kiến thực bước đổi trình hướng dẫn học sinh tự học, tự nghiên cứu Khi triển khai sáng kiến cho học sinh thuộc lớp giảng dạy tạo niềm tin, say mê hứng thú cho em học sinh Các em học sinh chủ động sáng tạo việc phân tích tốn, dự đốn tính chất định hướng lời giải cho toán Trong q trình giảng dạy tơi hướng dẫn cho học sinh nắm ý tưởng bản, thuật toán thường dùng việc giải toán liên quan công thức dạng tốn mà hình thức cho ta nghĩ đến hướng giải đường khác Thông qua việc phân tích hướng tìm tịi suy nghĩ khác cho đề toán nhằm rèn luyện cho em học sinh khả tư thông qua cách tiếp cận phát mối liên hệ đại lượng, phát tính chất hướng giải đặc trưng cho loạt tập dạng Mấu chốt quan trọng theo xu biết khai thác triệt để giả thiết, vận dụng yếu tố có mặt giả thiết tính chất cho giả thiết xây dựng nên mối quan hệ đại lượng liên quan Từ tìm đường giải toán Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Khi tiếp cận với phương pháp số em học sinh giỏi cảm thấy thích thú, ham mê tìm tịi phát đơi đưa đến cách giải sáng tạo linh hoạt nhiều Các em khơng phải bó buộc suy nghĩ, phải cố gắng để nhớ nhiều dạng toán, phương pháp cụ thể mà cần nắm vững kết hợp tốt toán SGK Thông qua tiết dạy lớp, tiết ôn tập triển khai nội dung sáng kiến hầu hết học sinh nhiệt tình tham gia Đặc biệt trình xây dựng hình thành nên lời giải toán, em chủ động sáng tạo Điều cho thấy việc áp dụng sáng kiến q trình giảng dạy góp phần vào việc đổi phương pháp giảng dạy Sáng kiến áp dụng năm học giảng dạy lớp 12, học sinh đồng tình đạt số kết quả, đặc biệt tốn có vận dụng tính chất liên quan khai thác trực tiếp từ giả thiết Các em hứng thú học tập hơn, lớp có hướng dẫn kỹ em học sinh với mức học trung bình cứng trở lên có kỹ giải tập thuộc dạng Học sinh biết áp dụng tăng rõ rệt ` Việc áp dụng cải tiến giúp học sinh giảm áp lực học tập, giáo viên thoát khỏi cách trình bày hàn lâm lí thuyết, chất lượng học tập học sinh tăng, góp phần đẩy mạnh nâng cao chất lượng giáo dục Xin chân thành cám ơn! Ninh Bình, ngày 02 tháng 05 năm 2020 ĐẠI DIỆN NHÓM TÁC GIẢ Phạm Thành Trung Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an PHỤ LỤC SÁNG KIẾN Phần MÔ TẢ NỘI DUNG SÁNG KIẾN: Sáng kiến thiết kế theo dạng chủ đề dạy học nhóm tác giả áp dụng q trình giảng dạy ơn tập nhà trường Tùy theo mức độ học sinh lớp mà tác giả đưa vào phần nội dung để giảng dạy cho phù hợp với tình hình thực tiễn Nội dung sáng kiến chia thành chủ đề dạy học sở mảng kiến thức có liên quan đến Mỗi mảng kiến thức liên quan trình bày khoa học với hệ thống ví dụ phân thành mức độ từ vận dụng vận dụng cao để thích hợp cho đối tượng học sinh khác trường THPT Nho Quan B Với chủ đề dạy học thiết kế theo cấu trúc: Tóm tắt lại kiến thức sở, công thức thường sử dụng có ví dụ minh họa cho dạng cụ thể Trong ví dụ ngồi lời giải tác giả đưa thêm hướng suy luận mô tả đường để dẫn đến lời giải cách tự nhiên Sáng kiến nguồn tài liệu cho thầy q trình giảng dạy tư liệu để em học sinh tự học cách tốt Các em học sinh đọc lời giải hướng dẫn suy luận ví dụ từ vận dụng vào làm tập hệ thống tập trình bày sáng kiến Phần XÂY DỰNG VÀ PHÁT TRIỂN HỆ THỐNG CÁC BÀI TỐN CỰC TRỊ HÌNH HỌC GIẢI TÍCH TRONG KHƠNG GIAN Trong phần nhóm tác giả nêu số dạng toán quen thuộc đồng thời phân tích đặc điểm dạng tốn tốn phát triển có liên quan Trình tự phần thiết kế theo sơ đồ: Dạng toán – Phương pháp – Ví dụ ( Có lời giải, phân tích bình luận) – Bài tập áp dụng 2.1 CÁC BÀI TOÁN CỰC TRỊ XÂY DỰNG DỰA TRÊN KIẾN THỨC VỀ TÂM TỶ CỰ CỦA HỆ ĐIỂM CHO TRƯỚC 2.1.1 Các kiến thức tâm tỷ cự hệ điểm: 2.1.1.1 Khái niệm tâm tỷ cự: Cho hệ n điểm A1 , A2 , , An n số thực k1 , k , , kn thoả mãn k1 k2 kn k Khi đó: k IA k IA k n IAn * Tồn điểm I cho: 1 2 Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Đường thẳng có phương trình tham số véctơ phương Đường thẳng , qua điểm có có phương trình tham số véctơ phương , qua điểm có Suy Vì và Câu Trong chéo nên bán kính nhỏ mặt cầu tiếp xúc hai đường thẳng không gian , cho mặt phẳng Tọa độ điểm khoảng cách từ điểm A B có tâm Khoảng cách từ Khoảng cách từ Phương trình nằm mặt cầu bán kính thuộc : đến cho nên lớn cắt qua vng góc với Ta có: Mà: Thử lại ta thấy: cầu D đến mặt phẳng mặt đạt giá trị nhỏ lớn C Lời giải Mặt cầu đến mặt phẳng nên Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn thỏa yêu cầu toán C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Câu Trong không gian , cho mặt phẳng mặt cầu Giá trị điểm cho đạt GTNN A Lời giải B C D Ta có: Đường thẳng qua Tọa độ giao điểm vng góc với có pt: , Ta có: Vậy: Câu Trong không gian , cho điểm không gian thỏa mãn A Lời giải Khi độ dài B điểm thay đổi lớn bằng? C D Gọi Ta có: mặt cầu tâm bán kính Khi Câu 10 Cho mặt cầu , Gọi đường thẳng đồng thời tiếp xúc với hai mặt cầu trên, cắt đoạn thẳng nối tâm hai mặt Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an cầu cách gốc tọa độ tổng A Lời giải khoảng lớn Nếu bao nhiêu? B C có tâm , bán kính có tâm , bán kính Ta có: , vectơ phương D tiếp xúc với điểm Vì tiếp xúc với hai mặt cầu, đồng thời cắt đoạn thẳng nối hai tâm xúc với hai mặt cầu phải tiếp Mặt khác Khi đó, nên có vectơ phương Suy , Vậy 2.7 CÁC BÀI TỐN XÂY DỰNG DỰA TRÊN CÁC ƯỚC LƯỢNG VỀ HÌNH HỌC 2.7.1 Các ví dụ: Ví dụ Trong khơng gian , cho tứ diện thỏa mãn , tiếp tứ diện với A Lời giải Chọn B B , ; Giá trị nhỏ bán kính mặt cầu ngoai C D A M I B D N C Đặt Gọi ; , ; trrung điểm Theo giả thiết ta có tam giác cân hay tam giác Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Chứng minh tương tự ta có Gọi trung điểm Mặt khác ta lại có tiếp tứ diện nên tâm mặt cầu ngoại Ta có Mặt khác đường trung tuyến tam giác nên Vậy Với Vậy Ví dụ Trong không gian với hệ tọa độ Mặt cầu , qua , , , , cho ba điểm , đồng thời cắt ba tia Gọi H trực tâm tam giác , , ba điểm phân biệt Tìm giá trị nhỏ với A Lời giải Chọn A Gọi B , Gọi Gọi , tâm mặt cầu trung điểm C D , bán kính mặt cầu , ta có : Ta có : Chứng minh tương tự ta có: , Ta có : phương trình mặt phẳng vectơ pháp tuyến Vì tứ diện có cạnh từ đơi vng góc nên phương trình đường thẳng (cố định) Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Vậy nhỏ Khi đó : hình chiếu Phương trình mặt phẳng qua vng góc Ví dụ Trong khơng gian với hệ tọa độ thẳng lên Gọi Mặt cầu qua hai điểm B là : , , cho hai điểm có vectơ phương A Lời giải lên , , , đường hình chiếu có diện tích nhỏ C D Chọn C Từ dựng đường thẳng song song với Gọi hình chiếu vng góc Ta có Gọi khơng đổi bán kính mặt cầu Ta có Diện tích mặt cầu nhỏ với , Diện tích nhỏ mặt cầu Ví dụ Trong không gian với hệ tọa độ , cho mặt phẳng , đường thẳng mặt cầu đường thẳng thay đổi cắt mặt cầu hai điểm hai điểm thuộc mặt phẳng trị lớn biểu thức A B Một cho Lời giải Chọn B Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn , C cho Gọi song song với D , Giá C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Mặt cầu Gọi có tâm bán kính trung điểm bán kính Gọi nên thuộc mặt cầu tâm trung điểm , Mặt khác ta có nên Gọi hình chiếu lên Vậy để lớn thì lớn qua Vậy nằm mặt phẳng cắt mặt cầu nên lớn 2.7.2 Bài tập áp dụng: Câu Trong không gian , cho điểm giao mặt phẳng Ta có mặt cầu Gọi , , đường trịn mặt cầu Hỏi có điểm lớn nhất? A Lời giải Chọn A , thuộc đường trịn B có tâm đường thẳng qua cho C bán kính vng góc với Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn đạt giá trị D ta có C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Tâm đường tròn giao tuyến Thấy , tam giác giao điểm , nên A J E B C M TH1: Xét thuộc cung nhỏ Lấy điểm thuộc đoạn (do góc nội tiếp chắn cung Ta có (vì cộng với góc cho mà ) suy tam giác ) nên đạt giá trị lớn giá trị lớn đường kính tức Vậy trường hợp có điểm thỏa mãn đạt điểm cung nhỏ TH2 TH3: Xét thuộc cung nhỏ vai trị bình đẳng đỉnh tam giác hoàn toàn tương tự trường hợp có điểm thỏa mãn Vậy có ba điểm Câu thuộc đường trịn Trong không gian , cho tứ diện Trên cạnh , tích khối tứ diện mặt phẳng cho , đạt giá trị lớn có , lấy điểm nhỏ , , , cho thể Tìm phương trình A B C Lời giải Chọn A D Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an A D' B' C' D C Ta có Dấu xảy Suy qua song song nên có véctơ pháp tuyến phương trình Câu là : Trong không gian với hệ tọa độ điểm thiết diện dạng A Lời giải Chọn B , , cho mặt cầu Gọi với mặt cầu mặt phẳng qua hai điểm , cho có diện tích nhỏ Khi viết phương trình Tính B C I H A Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn B K D C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Mặt cầu có tâm bán kính Ta có , nằm mặt cầu Gọi lên thiết diện hình chiếu Ta có diện tích thiết diện lớn Mà Ta có qua vng góc với trung điểm Vậy Vậy Trong không gian với hệ tọa độ Mặt cầu biệt hình chiếu Vậy Câu Do diện tích thiết diện nhỏ suy suy qua , , , , cho ba điểm , , đồng thời cắt ba tia Gọi H trực tâm tam giác , , ba điểm phân Tìm giá trị nhỏ với A Lời giải Chọn D B Gọi , Gọi Gọi C , tâm mặt cầu trung điểm D , bán kính mặt cầu , ta có : Ta có : Chứng minh tương tự ta có: , Ta có : phương trình mặt phẳng hay vectơ pháp tuyến Vì tứ diện có cạnh từ nhỏ đơi vng góc nên phương trình đường thẳng Vậy (cố định) hình chiếu Khi đó phương trình mặt phẳng qua lên vng góc là : Câu Trong không gian với hệ tọa độ , cho hai điểm , Hai điểm thay đổi đoạn , cho đường thẳng chia tam giác phần có diện tích Khi ngắn trung điểm đoạn Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn , thành hai có tọa độ C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an A B C D Lời giải Chọn A Ta có , , , , Ta có Ta có Dấu xảy Khi , Vậy trung điểm Câu Trong hệ tọa độ có tọa độ cho , vng góc với mặt phẳng điểm , A Lời giải Chọn A lên , Mặt phẳng cho mặt phẳng thỏa mãn thể tích tứ diện B Nhận thấy tam giác nhỏ Mặt phẳng có trọng tâm điểm cắt cạnh C , skkn , có phương trình: nên hình chiếu Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn , D Khi qua C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Vì Vì , cố định nên thể tích , nhỏ thẳng hàng nên , suy Đẳng thức xảy hay Khi mặt phẳng nhỏ qua nhận vectơ pháp tuyến, Câu Trong khơng gian với hệ tọa độ , xét đường thẳng qua điểm vng góc với mặt phẳng Tính khoảng cách nhỏ điểm điểm cách đường thẳng trục A B C tới điểm D Lời giải Chọn A Vì đường thẳng song với trục qua điểm vng góc với mặt phẳng nằm mặt phẳng Xét mặt phẳng qua có khoảng cách đến điểm cách đường thẳng Mặt phẳng qua Đoạn nhỏ : hình chiếu vng góc tới điểm suy Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn Khi , Vậy tập mặt phẳng có véc tơ pháp tuyến khoảng cách nhỏ điểm đến mặt phẳng trục song đường vng góc chung mặt phẳng trung trực điểm nằm hợp điểm Dễ thấy nên có phương trình: lên Do khoảng cách từ C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an PHẦN III ĐỐI CHỨNG THỰC NGHIỆM SƯ PHẠM Mục đích thực nghiệm Thực nghiệm sư phạm tiến hành nhằm kiểm tra tính khả thi hiệu số hệ thống câu hỏi tập xây dựng nhằm bồi dưỡng lực tự học cho học sinh Qua việc tiến hành thực nghiệm, so sánh đối chiếu kết từ rút học, điều chỉnh hợp lý nội dung kiến thức phương pháp giảng dạy theo định hướng phát huy lực học sinh Nội dung thực nghiệm Nội dung kiến thức dạy thực nghiệm: Dạy thử nghiệm số hệ thống câu hỏi tập xây dựng phần đầu sáng kiến theo hướng phát huy tính tích cực học sinh, tạo hứng thú để học sinh chủ động tiến hành hoạt động tư tương tự hóa, tổng quát hóa … từ bồi dưỡng lực giải toán cho học sinh THPT Đối tượng thực nghiệm: Học sinh lớp 12 trường THPT Nho Quan B lớp có học sinh đăng ký thi Đại học khối A, A1 B, D Số lượng học sinh lớp 35 Lớp thực nghiệm 12D, lớp đối chứng 12B Trình độ nhận thức hai lớp đánh giá tương đương Hai lớp học gồm em học sinh có học lực Đặc điểm đối tượng thực nghiệm: Là học sinh khu vực nông thôn, vùng sâu Điều kiện kinh tế cịn khó khăn Học sinh có điều kiện tiếp xúc với Internet mạng xã hội việc tiếp cận kiến thức cịn khó khăn Đánh giá thực nghiệm a) Kiểm tra Sau hoàn thành đợt thực nghiệm sư phạm, để đánh giá kết thực nghiệm tác giả tiến hành cho học sinh bao gồm hai đối tượng: Lớp học sinh có chất lượng gồm hai lớp 12B, 12D (được đánh giá tương đương nhau) làm kiểm tra 60 phút với đề kiểm tra Nội dung đề kiểm tra sau: * Đề kiểm tra: TRƯỜNG THPT NHO QUAN B BÀI KIỂM TRA KIẾN THỨC CÁC TÍNH CHẤT VỀ TỔ TỐN - TIN CỰC TRỊ TRONG KHÔNG GIAN Thời gian làm bài: 60 phút không kể thời gian giao đề Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Đề thi gồm 15 câu trang b) Đánh giá kết thực nghiệm Về thái độ học tập học sinh Học sinh hứng thú việc học tập theo hướng phát huy tính tích cực, bồi dưỡng lực tự học, học sinh người chủ động lĩnh hội kiến thức Học sinh hút vào hoạt động cách chủ động, tích cực, sáng tạo nhằm lĩnh hội tri thức Đa số em nắm vững kiến thức có ý thức hồn thành hoạt động cơng việc mà giáo viên giao cho Về kết kiểm tra: Điểm/Lớp Yếu TB Khá Giỏi Đối chứng 12B 20,3% 47,4% 20,9% 11,4% Thực nghiệm 12D 6,6% 36,3% 35,2% 21,9% Phân tích kết kiểm tra Lớp đối chứng có 77,7% đạt điểm từ trung bình trở lên, có 32,3% đạt khá, giỏi Lớp thực nghiệm có 93,4% đạt điểm từ trung bình trở lên, 57,1% đạt khá, giỏi Nhận xét Các lớp đối chứng: Khả tiếp cận tốn có tính tư duy, sáng tạo chưa cao, nhiều em trình bày lời giải cịn nhiều thiếu sót Đặc biệt với số dạng toán lạ mà trước đề cho dạng tự luận thường khơng xuất hầu hết học sinh thuộc lớp đối chứng ( Cả lớp học sinh lớp học sinh trung bình, yếu) cảm thấy bỡ ngỡ hầu hết không giải đặc biệt số toán có hình thức lạ so với dạng tập trình bày SKG Khi giáo viên vấn em nội dung câu hỏi có đề đại phận học sinh lớp đối chứng có nhận xét đề lạ, em khơng biết tiếp cận tốn theo hướng Các lớp thực nghiệm: Khả vận dụng linh hoạt hơn, có sáng tạo Một số em trình bày lời giải gọn gàng, rõ ràng, lập luận chặt chẽ Hầu hết em biết vận dụng lý thuyết để trả lời câu hỏi cách sáng tạo logic Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn skkn C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn