Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 146 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
146
Dung lượng
3,01 MB
Nội dung
webtoan.com CHUYÊN ĐỀ - PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ A MỤC TIÊU: * Hệ thống lại dạng tốn phương pháp phân tích đa thức thành nhân tử * Giải số tập phân tích đa thức thành nhân tử * Nâng cao trình độ kỹ phân tích đa thức thành nhân tử B CÁC PHƯƠNG PHÁP VÀ BÀI TẬP I TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ: Định lí bổ sung: + Đa thức f(x) có nghiệm hữu tỉ có dạng p/q p ước hệ số tự do, q ước dương hệ số cao + Nếu f(x) có tổng hệ số f(x) có nhân tử x – + Nếu f(x) có tổng hệ số hạng tử bậc chẵn tổng hệ số hạng tử bậc lẻ f(x) có nhân tử x + f(1) f(-1) + Nếu a nghiệm nguyên f(x) f(1); f(- 1) khác a - a + số nguyên Để nhanh chóng loại trừ nghiệm ước hệ số tự Ví dụ 1: 3x2 – 8x + Cách 1: Tách hạng tử thứ 3x2 – 8x + = 3x2 – 6x – 2x + = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2) Cách 2: Tách hạng tử thứ nhất: 3x2 – 8x + = (4x2 – 8x + 4) - x2 = (2x – 2)2 – x2 = (2x – + x)(2x – – x) = (x – 2)(3x – 2) webtoan.com Trang webtoan.com Ví dụ 2: x – x - Ta nhân thấy nghiệm f(x) có x = 1; 2; 4 , có f(2) = nên x = nghiệm f(x) nên f(x) có nhân tử x – Do ta tách f(x) thành nhóm có xuất nhân tử x – Cách 1: x – x – = x x x x x x x x( x 2) 2( x 2) = x 2 x2 x 2 Cách 2: x x x3 x x3 x ( x 2)( x x 4) ( x 2)( x 2) = x x x ( x 2) ( x 2)( x x 2) Ví dụ 3: f(x) = 3x3 – 7x2 + 17x – Nhận xét: 1, 5 không nghiệm f(x), f(x) khơng có nghiệm ngun Nên f(x) có nghiệm nghiệm hữu tỉ Ta nhận thấy x = nghiệm f(x) f(x) có nhân tử 3x – Nên f(x) = 3x3 – 7x2 + 17x – = x3 x x x 15 x 3x3 x x x 15 x 2 = x (3x 1) x(3x 1) 5(3x 1) (3x 1)( x x 5) 2 Vì x x ( x x 1) ( x 1) với x nên khơng phân tích thành nhân tử Ví dụ 4: x3 + 5x2 + 8x + webtoan.com Trang webtoan.com Nhận xét: Tổng hệ số hạng tử bậc chẵn tổng hệ số hạng tử bậc lẻ nên đa thức có nhân tử x + x3 + 5x2 + 8x + = (x3 + x2 ) + (4x2 + 4x) + (4x + 4) = x2(x + 1) + 4x(x + 1) + 4(x + 1) = (x + 1)(x2 + 4x + 4) = (x + 1)(x + 2)2 Ví dụ 5: f(x) = x5 – 2x4 + 3x3 – 4x2 + Tổng hệ số nên đa thức có nhân tử x – 1, chia f(x) cho (x – 1) ta có: x5 – 2x4 + 3x3 – 4x2 + = (x – 1)(x4 - x3 + x2 - x - 2) Vì x4 - x3 + x2 - x - nghiệm ngun khơng có nghiệm hữu tỉ nên khơng phân tích Ví dụ 6: x4 + 1997x2 + 1996x + 1997 = (x4 + x2 + 1) + (1996x2 + 1996x + 1996) = (x2 + x + 1)(x2 - x + 1) + 1996(x2 + x + 1) = (x2 + x + 1)(x2 - x + + 1996) = (x2 + x + 1)(x2 - x + 1997) Ví dụ 7: x2 - x - 2001.2002 = x2 - x - 2001.(2001 + 1) = x2 - x – 20012 - 2001 = (x2 – 20012) – (x + 2001) = (x + 2001)(x – 2002) II THÊM , BỚT CÙNG MỘT HẠNG TỬ: Thêm, bớt số hạng tử để xuất hiệu hai bình phương: Ví dụ 1: 4x4 + 81 = 4x4 + 36x2 + 81 - 36x2 = (2x2 + 9)2 – 36x2 = (2x2 + 9)2 – (6x)2 = (2x2 + + 6x)(2x2 + – 6x) = (2x2 + 6x + )(2x2 – 6x + 9) Ví dụ 2: x8 + 98x4 + = (x8 + 2x4 + ) + 96x4 webtoan.com Trang webtoan.com 2 4 = (x + 1) + 16x (x + 1) + 64x - 16x2(x4 + 1) + 32x4 = (x4 + + 8x2)2 – 16x2(x4 + – 2x2) = (x4 + 8x2 + 1)2 - 16x2(x2 – 1)2 = (x4 + 8x2 + 1)2 - (4x3 – 4x )2 = (x4 + 4x3 + 8x2 – 4x + 1)(x4 - 4x3 + 8x2 + 4x + 1) Thêm, bớt số hạng tử để xuất nhân tử chung Ví dụ 1: x7 + x2 + = (x7 – x) + (x2 + x + ) = x(x6 – 1) + (x2 + x + ) = x(x3 - 1)(x3 + 1) + (x2 + x + ) = x(x – 1)(x2 + x + ) (x3 + 1) + (x2 + x + 1) = (x2 + x + 1)[x(x – 1)(x3 + 1) + 1] = (x2 + x + 1)(x5 – x4 + x2 - x + 1) Ví dụ 2: x7 + x5 + = (x7 – x ) + (x5 – x2 ) + (x2 + x + 1) = x(x3 – 1)(x3 + 1) + x2(x3 – 1) + (x2 + x + 1) = (x2 + x + 1)(x – 1)(x4 + x) + x2 (x – 1)(x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)[(x5 – x4 + x2 – x) + (x3 – x2 ) + 1] = (x2 + x + 1)(x5 – x4 + x3 – x + 1) Ghi nhớ: Các đa thức có dạng x3m + + x3n + + như: x7 + x2 + ; x7 + x5 + ; x8 + x4 + ; x5 + x + ; x8 + x + ; … có nhân tử chung x2 + x + III ĐẶT BIẾN PHỤ: Ví dụ 1: x(x + 4)(x + 6)(x + 10) + 128 = [x(x + 10)][(x + 4)(x + 6)] + 128 = (x2 + 10x) + (x2 + 10x + 24) + 128 Đặt x2 + 10x + 12 = y, đa thức có dạng (y – 12)(y + 12) + 128 = y2 – 144 + 128 = y2 – 16 = (y + 4)(y – 4) = ( x2 + 10x + )(x2 + 10x + 16 ) = (x + 2)(x + 8)( x2 + 10x + ) webtoan.com Trang webtoan.com Ví dụ 2: A = x + 6x + 7x – 6x + Giả sử x ta viết 1 + 2 2 x + 6x + 7x – 6x + = x ( x + 6x + – x x ) = x [(x + x ) + 6(x - x ) + 2 ] 1 2 Đặt x - x = y x + x = y2 + 2, A = x (y + + 6y + 7) = x (y + 3) = (xy + 3x) = [x(x - x )2 + 3x]2 = (x2 + 3x – 2 2 1)2 Chú ý: Ví dụ giải cách áp dụng đẳng thức sau: A = x4 + 6x3 + 7x2 – 6x + = x4 + (6x3 – 2x2 ) + (9x2 – 6x + ) = x4 + 2x2(3x – 1) + (3x – 1)2 = (x2 + 3x – 1)2 Ví dụ 3: 2 2 A = ( x y z )( x y z ) ( xy yz +zx) ( x y z ) 2( xy yz +zx) ( x y z ) ( xy yz +zx)2 = 2 Đặt x y z = a, xy + yz + zx = b ta có 2 A = a(a + 2b) + b2 = a2 + 2ab + b2 = (a + b)2 = ( x y z + xy + yz + zx)2 4 2 2 2 2 Ví dụ 4: B = 2( x y z ) ( x y z ) 2( x y z )( x y z ) ( x y z ) Đặt x4 + y4 + z4 = a, x2 + y2 + z2 = b, x + y + z = c ta có: B = 2a – b2 – 2bc2 + c4 = 2a – 2b2 + b2 - 2bc2 + c4 = 2(a – b2) + (b –c2)2 2 2 2 Ta lại có: a – b2 = - 2( x y y z z x ) b –c2 = - 2(xy + yz + zx) Do đó; 2 2 2 B = - 4( x y y z z x ) + (xy + yz + zx)2 webtoan.com Trang webtoan.com = x y y z z x x y y z z x x yz xy z xyz 8 xyz ( x y z ) 3 3 Ví dụ 5: (a b c) 4(a b c ) 12abc Đặt a + b = m, a – b = n 4ab = m2 – n2 m2 - n a3 + b3 = (a + b)[(a – b)2 + ab] = m(n2 + ) Ta có: m3 + 3mn 4c3 3c(m - n ) C = (m + c) – = 3( - c3 +mc2 – mn2 + cn2) = 3[c2(m - c) - n2(m - c)] = 3(m - c)(c - n)(c + n) = 3(a + b - c)(c + a - b)(c - a + b) III PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH: Ví dụ 1: x4 - 6x3 + 12x2 - 14x + Nhận xét: số 1, 3 không nghiệm đa thức, đa thức khơng có nghiệm ngun củng khơng có nghiệm hữu tỉ Như đa thức phân tích thành nhân tử phải có dạng (x2 + ax + b)(x2 + cx + d) = x4 + (a + c)x3 + (ac + b + d)x2 + (ad + bc)x + bd a c ac b d 12 ad bc 14 đồng đa thức với đa thức cho ta có: bd 3 Xét bd = với b, d Z, b 1, 3 với b = d = hệ điều kiện trở thành a c ac a 3c 14 bd 3 2c ac 8 c a Vậy: x4 - 6x3 + 12x2 - 14x + = (x2 - 2x + 3)(x2 - 4x + 1) webtoan.com Trang webtoan.com Ví dụ 2: 2x - 3x - 7x + 6x + Nhận xét: đa thức có nghiệm x = nên có thừa số x - ta có: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(2x3 + ax2 + bx + c) a b 2a c 2b 6 = 2x4 + (a - 4)x3 + (b - 2a)x2 + (c - 2b)x - 2c 2c 8 a 1 b c Suy ra: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(2x3 + x2 - 5x - 4) Ta lại có 2x3 + x2 - 5x - đa thức có tổng hệ số hạng tử bậc lẻ bậc chẵn nahu nên có nhân tử x + nên 2x3 + x2 - 5x - = (x + 1)(2x2 - x 4) Vậy: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(x + 1)(2x2 - x - 4) Ví dụ 3: 12x2 + 5x - 12y2 + 12y - 10xy - = (a x + by + 3)(cx + dy - 1) = acx2 + (3c - a)x + bdy2 + (3d - b)y + (bc + ad)xy – ac 12 bc ad 10 3c a 5 bd 12 3d b 12 a 4 c 3 b d 2 12x2 + 5x - 12y2 + 12y - 10xy - = (4 x - 6y + 3)(3x + 2y - 1) BÀI TẬP: Phân tích đa thức sau thành nhân tử: 1) x3 - 7x + 2) x3 - 9x2 + 6x + 16 3) x3 - 6x2 - x + 30 10) 64x4 + y4 11) a6 + a4 + a2b2 + b4 - b6 webtoan.com 12) x + 3xy + y3 - Trang webtoan.com CHUYÊN ĐỀ 2: HOÁN VỊ, TỔ HỢP A MỤC TIÊU: * Bước đầu HS hiểu chỉnh hợp, hoán vị tổ hợp * Vận dụng kiến thức vào ssó tốn cụ thể thực tế * Tạo hứng thú nâng cao kỹ giải toán cho HS B KIẾN THỨC: I Chỉnh hợp: định nghĩa: Cho tập hợp X gồm n phần tử Mỗi cách xếp k phần tử tập hợp X ( k n) theo thứ tự định gọi chỉnh hợp chập k n phần tử Số tất chỉnh hợp chập k n phần tử kí hiệu A k n Tính số chỉnh chập k n phần tử A k n = n(n - 1)(n - 2)…[n - (k - 1)] webtoan.com Trang webtoan.com II Hoán vị: Định nghĩa: Cho tập hợp X gồm n phần tử Mỗi cách xếp n phần tử tập hợp X theo thứ tự định gọi hoán vị n phần tử Số tất hoán vị n phần tử kí hiệu Pn Tính số hốn vị n phần tử Pn = ( n! : n giai thừa) A n n = n(n - 1)(n - 2) …2 = n! III Tổ hợp: Định nghĩa: Cho tập hợp X gồm n phần tử Mỗi tập X gồm k phần tử n phần tử tập hợp X ( k n) gọi tổ hợp chập k n phần tử Số tất tổ hợp chập k n phần tử kí hiệu C k n Tính số tổ hợp chập k n phần tử C k n = A n n n(n - 1)(n - 2) [n - (k - 1)] k! : k! = C Ví dụ: Ví dụ 1: Cho chữ số: 1, 2, 3, 4, a) có số tự nhiên có ba chữ số, chữ số khác nhau, lập ba chữ số b) Có số tự nhiên có chữ số, chữ số khác nhau, lập chữ số webtoan.com Trang webtoan.com c)Có cách chọn ba chữ số chữ số Giải: a) số tự nhiên có ba chữ số, chữ số khác nhau, lập ba chữ số chỉnh hợp chập phần tử: A = 5.(5 - 1).(5 - 2) = = 60 số b) số tự nhiên có chữ số, chữ số khác nhau, lập chữ số hoán vị cua phần tử (chỉnh hợp chập phần tử): A 5 = 5.(5 - 1).(5 - 2).(5 - 3).(5 - 4) = = 120 số c) cách chọn ba chữ số chữ số tổ hợp chập phần tử: C 5.(5 - 1).(5 - 2) 5.4.3 60 10 3! 3.(3 - 1)(3 - 2) = nhóm Ví dụ 2: Cho chữ số 1, 2, 3, 4, Dùng chữ số này: a) Lập số tự nhiên có chữ số khơng có chữ số lặp lại? Tính tổng số lập b) lập số chẵn có chữ số khác nhau? c) Lập số tự nhiên có chữ số, hai chữ số kề phải khác d) Lập số tự nhiên có chữ số, chữ số khác nhau, có hai chữ số lẻ, hai chữ số chẵn Giải webtoan.com Trang 10