1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Surface plasmon excitations

24 213 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 5,5 MB

Nội dung

Bề mặt plasmon

Excitation Lecture 10: Surface Plasmon Excitation nm Summary The dispersion relation for surface plasmons • Useful for describing plasmon excitation & propagation This lecture: ! !p !sp k sp Coupling light to surface plasmon-polaritons • Using high energy electrons (EELS) • Kretschmann geometry k //, SiO2 ! = " d sin # = k sp c • Grating coupling • Coupling using subwavelength features • A diversity of guiding geometries E kSiO2 H Θ k sp Dispersion Relation Surface-Plasmon Polaritons Plot of the dispersion relation 1/ "# ! ! $ • Last page: k x = % m d & c ' !m + !d ( !r • Plot of the dielectric constants: !d • Note: k x ! " when εm = −εd "! d Define: ω = ωsp when εm = −εd 1/ & ! ! ' " • Low ω: k x = lim ) m d * c ! m #$% + ! m + ! d , Dielectric Metal !p !sp kx = " ( !d c ! !sp ! ! "d c Light line in dielectric • Solutions lie below the light line! (guided modes) kx Dispersion Relation Surface-Plasmon Polaritons Dispersion relation bulk and surface plasmons !SP , Air "SP ,! Metal/air Metal/dielectric with εd d • Note: Higher index medium on metal results in lower ωsp !p ω = ωsp when:" m = # = #" d ! 2 p ! # ! = #" d ! 2 !p !2 = 1+ "d != !p 1+ "d Excitation Surface-Plasmon Polaritons (SPPs) with Light Problem SPP modes lie below the light line • No coupling of SPP modes to far field and vice versa (reciprocity theorem) • Need a “trick” to excite modes below the light line Trick 1: Excitation from a high index medium • Excitation SPP at a metal/air interface from a high index medium n = nh ! !sp ! =c k !e ! c = k nh kh > ksp k Air k sp kh k • SPP at metal/air interface can be excited from a high index medium! • How does this work in practice ? Excitation Surface-Plasmon Polaritons with Light Kretschmann geometry (Trick 1) k sp • Makes use of SiO2 prism k //,SiO2 • Create evanescent wave by TIR θ • Strong coupling when k//,SiO2 to ksp From dispersion relation E kSiO2 H • Reflected wave reduced in intensity ! !sp ! =c k ! c = k n !e Note: we are matching energy and momentum k Air k sp k SiO2 k Surface-Plasmon is Excited at the Metal/Air Interface Kretschmann geometry k sp , Air Θ E ! • Makes use of SiO2 prism k sp , SiO2 • Enables excitation surface plasmons at the Air/Metal interface k SiO2 H • Surface plasmons at the metal/glass interface can not be excited! Light line air Light line glass !sp , AIR !sp , SiO2 Surface plasmon Metal/Air interface Surface plasmon Metal/Glass interface !e k //, SiO2 = " d k Air k SiO2 k sp , Air k sp , SiO2 k ! sin # = k sp c Quantitative Description of the Coupling to SPP’s Calculation of reflection coefficient • Assume plane polarized light • Find case of no reflection d E • Solve Maxwell’s equations for • Solution (e.g transfer matrix theory! ) R= Plane polarized light p are ik where r the amplitude reflection coefficients p r p E E D H = p 01 p 12 p p 01 12 r + r exp (2ik z1d ) + r r exp (2ik z1d ) "k k # "k k # rikp = % zi $ zk & % zi + zk & ' !i !k ( ' !i !k ( Also known as Fresnel coefficients (p 95 optics, by Hecht) Notes: Light intensity reflected from the back surface depends on the film thickness There exists a film thickness for perfect coupling (destructive interference between two refl beams) When light coupled in perfectly, all the EM energy dissipated in the film) Dependence on Film Thickness Critical angle Θ E R H laser detector θ Raether, “Surface plasmons” • Width resonance related to damping of the SPP • Light escapes prism below critical angle for total internal reflection • Technique can be used to determine the thickness of metallic thin films Quantitative Description of the Coupling to SPP’s Intuitive picture: A resonating system ' • When ! m >> !r …well below ωsp: "! d • and '' ' ! m

Ngày đăng: 31/05/2014, 17:30

TỪ KHÓA LIÊN QUAN