Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 122 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
122
Dung lượng
640,16 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BÀI TOÁN PARABOLIC LIÊN QUAN ĐẾN SỰ XUYẾN THẤU CỦA TỪ TRƯỜNG TRONG MỘT VẬT CHẤT LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Không gian Sobolev không gian vectơ hàm số với chuẩn tổng chuẩn L p hàm số với đạo hàm bậc Các đạo hàm hiểu theo nghĩa yếu thích hợp để làm khơng gian trở thành đầy đủ khơng gian Banach Nó đặt theo tên nhà toán học Nga L Sobolev Sự quan trọng không gian Sobolev nằm kiện nghiệm phương trình vi phân thường nằm khơng gian Sobolev không gian thông thường hàm số liên tục với đạo hàm hiểu theo nghĩa thông thường 494 2 Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm Abel với phép tốn cộng, R nửa nhóm với phép tốn nhân phép tốn nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép tốn A) Định nghĩa Ideal trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa ideal trái, vừa ideal phải gọi ideal vành R Cho I ideal vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I 2.0.1 Định lý đồng cấu vành Định nghĩa Cho R, R′ hai vành Ánh xạ f : R → R′ gọi đồng cấu vành f bảo toàn hai phép toán cộng nhân R, nghĩa f (x + y) = f (x) + f (y), f (xy) = f (x)f (x), với x, y ∈ R 2.0.2 Một số kết liên quan Một vài tính chất đại số ∆U -vành Mệnh đề Cho R vành 2-nguyên thủy Nếu vành đa thức R[x] ∆U -vành, R ∆U -vành Chứng minh R vành 2-nguyên thủy, theo Mệnh đề ??, ∆(R[x]) = ∆(R) + J(R[x]) Mặt khác ta có J(R[x]) = I[x] với I iđêan lũy linh R Bây giờ, ta giả sử R[x] ∆U -vành Khi U (R) ⊆ U (R[x]) = + ∆(R[x]) = + ∆(R) + I[x], điều có nghĩa U (R) ⊆ + ∆(R) + I = + ∆(R) ⊆ U (R), I iđêan lũy linh (nên I ⊆ ∆(R)) Do U (R) = + ∆(R), hay R ∆U -vành Mệnh đề Cho R vành m ∈ N (1) R ∆U -vành R[x]/xm R[x] ∆U -vành (2) R ∆U -vành vành chuỗi lũy thừa R[[x]] ∆U -vành Chứng minh (1) Điều suy từ Mệnh đề 45 (5), từ xR[x]/xm R[x] ⊆ J(R[x]/xm R[x]) (R[x]/xm R[x])/(xR[x]/xm R[x]) ∼ = R (2) Ta xét (x) = xR[[x]] iđêan R[[x]] Khi (x) ⊆ J(R[[x]]) Vì R ∼ = R[[x]]/(x) nên (2) suy từ Mệnh đề 45 (5) Bổ đề Cho R, S vành i : R → S, ϵ : S → R đồng cấu vành thỏa mãn ϵi = idR Khi đó, khẳng định sau (1) ϵ(∆(S)) ⊆ ∆(R) (2) Nếu S ∆U -vành, R ∆U -vành (3) Nếu R ∆U -vành ker ϵ ⊆ ∆(S), S ∆U -vành Chứng minh (1) Dễ thấy, ϵ(U (S)) ⊆ U (R) U (R) = ϵi(U (R)) ⊆ ϵ(U (S)) nên ϵ(U (S)) = U (R) Lấy a ∈ ∆(S) Rõ ràng, a + U (S) ⊆ U (S), ϵ(a) + ϵ(U (S)) ⊆ ϵ(U (S)) ϵ(a) + U (R) ⊆ U (R) Điều có nghĩa ϵ(a) ∈ ∆(R) Do đó, ϵ(∆(S)) ⊆ ∆(R) (2) Cho S ∆U -vành Khi U (S) = + ∆(S), theo (1) U (R) = ϵ(U (S)) = + ∆(S) ⊆ + ∆(R) Do U (R) = + ∆(R) (3) Giả sử R ∆U -vành Ta phải ϵ−1 (U (R)) ⊆ + ∆(S), điều có nghĩa U (S) = + ∆(S) Thật vậy, với y ∈ ϵ−1 (U (R)), ta lấy ϵ(y) ∈ U (R) = 1+∆(R), R ∆U -vành Suy y −1 = i(x)+v , v tùy ý thuộc ker(ϵ) x ∈ ∆(R) Lấy tùy ý u khả nghịch thuộc S Lưu ý x + U (R) ⊆ U (R) Ta có ϵ(i(x) + u) = x + ϵ(u) ∈ x + ϵ(U (S)) = x + U (R) ⊆ U (R) = ϵ(U (S)) i(x) + u = u′ + a u′ ∈ U (S) a ∈ ker(ϵ) Suy y − + u = u′ + a + v ∈ U (S) + ker(ϵ) ⊆ U (S) + ∆(S) theo giả thuyết Từ U (S) + ∆(S) ⊆ U (S) với vành có đơn vị S , ta có y − + u ∈ U (S) với u ∈ U (S) Điều có nghĩa y − ∈ ∆(S) hay y ∈ + ∆(S) Ta có điều phải chứng minh Cho vành R nhóm G, ta ký hiệu vành nhóm X R G RG Một phần tử tùy ý α ∈ RG có dạng α = rg g rg ∈ R g∈G Giả sử R vành M vị nhóm, RM gọi vành vị nhóm định nghĩa giống vành nhóm Mệnh đề Cho R vành, M vị nhóm RM vành vị nhóm Nếu RM ∆U -vành R ∆U -vành Chứng minh Ta xét quan hệ bao hàm ι : R → RM (ι(r) = re với e phần tử đơn vị vị nhóm ! M ) ϵ : RM → R đồng cấu mở rộng X X xác định ϵ rm m = rm ([?] Mệnh đề II.3.1) Khi ta đủ m∈M m∈M điều kiện để áp dụng Bổ đề (2) Ta có kết quả, vành đa thức R[X] ∆U -vành R ∆U -vành Với vành đa thức vành giao hoán, ta kết tốt Ta biết R vành giao hốn có đơn vị f = a0 + a1 x + · · · + an xn ∈ R[x] f khả nghịch R[x] a0 khả nghịch R a1 , a2 , , an phần tử lũy linh trong R Từ nhận xét ta có mệnh đề sau Mệnh đề Cho R vành giao hốn có đơn vị Vành đa thức R[x] R ∆U R ∆U Không gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm |f (x) − f (y)| : x, y ∈ A, x ̸= y Lip(f ) = Lip(f, A) := sup |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét Từ mệnh đề ?? suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét (i) không Ω khơng lồi p Ví dụ: Cho Ω = {(x, y) ∈ R : y < |x|, x2 + y < 1} ( y β y > f (x, y) := y ≤ với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0, x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L x 1/β √ , Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn x > y > L điều mấu thuẫn với bất đẳng thức trước (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) Mặc dù không gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo khơng N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) không gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (1) Ta phải tính đầy đủ Cho (fh )h dãy Cauchy (Lip(Ω), ∥.∥Lip ), nghĩa với ϵ > tồn h = h(ϵ) ∈ N thỏa mãn |fh (x) − fk (y)| + |fh (x) − fk (y) − fh (z) + fk (z)| ≤ |y − z| (2) ∥fh − fk ∥∞ + Lip(fh − fk ) = ∥fh − fk ∥Lip ≤ ϵ ∀k > h > h, x, y, z ∈ Ω với y ̸= z Theo (??) (??), suy tồn L > thỏa mãn Lip(fh ) ≤ L ∀h, theo (??), (fh )h dãy Cauchy (C0 (Ω), ∥.∥∞ ) (3) Khi đó, tồn f ∈ C0 (Ω) thỏa mãn fh → f Ω Theo (??), ta Lip(f ) ≤ L, f ∈ Ω Lấy qua giới hạn (??), k → ∞, ϵ > tồn h = h(ϵ) ∈ N cho |fh (x) − f (x)| + fh (y) − f (y) − fh (z) + f (z) ≤ϵ y−z ∀h > h, x, y, z ∈ Ω, y ̸= z Điều có nghĩa lim ∥fh − f ∥Lip = h→∞ Từ tập hợp hàm đa thức chứa Lip(Ω), Lip(Ω) vô hạn chiều Cuối cùng, ta cần phải chứng minh không gian Hilbert, lập luận tương tự trường hợp trước, cách sử dụng đẳng thức hình bình hành Theo hệ mệnh đề ?? ta kết sau Hệ Bao hàm C1 (Ω) ⊂ Lip(Ω) ánh xạ song Lipszhitz, nghĩa ∥f ∥C1 ≤ ∥f ∥Lip ≤ L∥f ∥C1 L ∀f ∈ C1 (Ω), nghiêm ngặt, biết Ω ⊂ Rn tập lồi, mở bị chặn Đặc biệt, C1 (Ω) khơng gian đóng (Lip(Ω), ∥.∥Lip ) Chứng minh Ta chứng minh khẳng định trường hợp n = Ω = (a, b) Theo mệnh đề ?? nhận xét ?? (ii), ta cần quan hệ bao hàm phép đẳng cự Điều suy Bài tập Nếu f ∈ C1 ([a, b]) ∥f ∥Lip = ∥f ∥C1 Tính compact Lip(Ω) Định lý Cho Ω ⊂ Rn tập mở bị chặn, giả sử F = BLip(Ω) := {f ∈ Lip(Ω) : ∥f ∥Lip ≤ 1} Khi BLip(Ω) compact (Lip(Ω), ∥.∥∞ ) Chứng minh Ta cần F compact (C0 (Ω), ∥.∥∞ ) Áp dụng định lý Arzelà - Ascoli (Định lý 24) Chứng minh (i) F bị chặn (C0 (Ω), ∥.∥∞ ): hiển nhiên theo định nghĩa X 1⩽l⩽ ni −1 |CDn (ril )| 1⩽l⩽ ni −1 n l̸= 2i = |Dn | + X n i |CDn (ril+j s)| = 0⩽l⩽ ni −1 − |R1 | = 2n + n n i −2 = n2 , i 4n n U n2 ,il+j = i i Từ suy X x∈Ui,j n2 4n n(n + 2i + 4) |CDn (x)| = 2n + + = i i i Áp dụng Mệnh đề 30 ta có X Pr(Ui,j , Dn) = |Ui,j ||Dn | |CDn (x)| = x∈Ui,j n(n + 2i + 4) n + 2i + = 2n i 4n 2n i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính lại độ giao hốn tương đối nhóm nhóm nhị diện D3 D4 cách áp dụng Mệnh đề Ví dụ (i) Với n = 3, xét nhóm nhị diện D3 (cho Ví dụ 6) Các nhóm D3 R1 = ⟨r⟩, R3 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩; D3 Khi 3+1 3+3 = , Pr(R3 , D3 ) = = 1; 2·3 2·3 3+1 Pr(T0 , D3 ) = Pr(T1 , D3 ) = Pr(T2 , D3 ) = = ; 2·3 Pr(D3 , D3 ) = Pr(D3 ) = Pr(R1 , D3 ) = 62 (ii) Với n = 4, xét nhóm nhị diện D4 (cho Ví dụ 7) Các nhóm D4 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩; D4 Khi 4+2·2 4+4 4+2·1 = , Pr(R2 , D4 ) = = 1, Pr(R4 , D4 ) = = 1; 2·4 2·4 2·4 4+2 Pr(T0 , D4 ) = Pr(T1 , D4 ) = Pr(T2 , D4 ) = Pr(T3 , D4 ) = = ; 2·4 4+2·2+4 Pr(U2,0 , D4 ) = Pr(U2,1 , D4 ) = = ; Pr(D4 , D4 ) = Pr(D4 ) = 4·4 Pr(R1 , D4 ) = 17 Nhóm nhị diện Mệnh đề 29 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) = n+k 2n n n lẻ, n chẵn k ∤ , n + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) = n+1 n lẻ, 2n n + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) = n+i+2 4n n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n 63 Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề 47 ta có |Rk | = Do k Rk = ⟨r ⟩ = n n = (n, k) k n r ⩽ l ⩽ − k kl Khi X X |CDn (x)| = |CDn (1)| + |CDn (rkl )| 1⩽l⩽ nk −1 x∈Rk Ta xét hai trường hợp n sau Trường hợp 1: n lẻ Theo Mệnh đề 48 ta có X |CDn (rkl )| = 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + n k x∈Rk n k − |R1 | − |R1 | = 2n + n k −1 n= n(n + k) k Áp dụng Mệnh đề 30 ta có Pr(Rk , Dn ) = X n+k n+k n = |CDn (x)| = n |Rk ||Dn | k 2n 2n x∈Rk k Trường hợp 2: n chẵn Ta xét hai trường hợp k n Trường hợp 2a: k ∤ Khi đó, theo Mệnh đề 48 ta có X |CDn (rkl )| = 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + x∈Rk n k n k − |R1 | − |R1 | = 2n + n k −1 n= n(n + k) k 64 Áp dụng Mệnh đề 30, ta có X n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k n Trường hợp 2b: k | Khi đó, theo Mệnh đề 48 ta có n X X n |CDn (rkl )| = |Dn |+ − |R1 | |CDn (rkl )| =