1. Trang chủ
  2. » Luận Văn - Báo Cáo

Sử dụng hàm cực đại vào bài toán phân biệt và phân chùm

80 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 80
Dung lượng 505,12 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: SỬ DỤNG HÀM CỰC ĐẠI VÀO BÀI TOÁN PHÂN BIỆT VÀ PHÂN CHÙM LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Bài toán bất đẳng thức biến phân vấn đề quan trọng Toán học ứng dụng, bắt đầu nghiên cứu từ thập kỷ 60 kỷ trước gắn liền với cơng trình G.Stampacchia Philip Hartman Những nghiên cứu bất đẳng thức biến phân liên quan đến việc giải toán biến phân, tốn điều khiển tối ưu tốn có dạng phương trình đạo hàm riêng 109 2 Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, lấy u, v ∈ U (R), ta có + u ∈ ∆(R) − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) hay U (R) + U (R) ⊆ ∆(R) Ngược lại, giả sử U (R) + U (R) ⊆ ∆(R), suy U (R) + U (R) = ∆(R) (vì ∆(R) ⊂ U (R) + U (R)) hay + ∆(R) = U (R) Vậy R ∆U -vành Mệnh đề sau trình bày số tính chất ∆U -vành Mệnh đề Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R thể, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R) (do N (R) ⊆ ∆(R)); (4) R hữu hạn Dedekind; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể áp dụng cho Z = Z(R) tâm R Chứng minh (1) Từ Mệnh đề 49 ta dễ dàng suy ∈ ∆(R) (2) Nếu R thể ∆(R) = Vì R U J -vành nên ta suy ∼ R = F2 (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành nên 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi phần tử − ba lũy đẳng R, [b(1 − ba)]2 = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆(R) Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) iđêan, ∆(R/I) = ∆(R)/I theo Mệnh đề 53 Giả sử R ∆U -vành Khi đó, u + I ∈ U (R/I), ta có u ∈ U (R) u ∈ + ∆(R) Suy u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆U -vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Từ giả thiết U (T ) = U (R) ∩ T suy ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) suy + ∆(T ) ⊆ U (T ) hay T ∆U -vành Định lý Vành ma trận Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (:⇒) Giả sử Mn (R) ∆U -vành n > Đầu tiên ta chứng minh R thể, tức phần  tử khác không  khả nghịch Lấy bất 0 − a     0 0    kỳ a ∈ R, a = ̸ 0, ta có X =      ∈ Mn (R) X =    0 Do Mn (R) ∆U -vành, ta lấy X ∈ ∆(Mn (R)) Lấy phần tử khả nghịch     0 0       0   ∈ Mn (R) Khi In −U X =           0 a 0 0 khả nghịch Mn (R), hay a ∈ U (R) Do đó, R thể ∼ Tiếp  theo, ta chứng  minh R = F2 Lấy a ∈ R, a ̸= a ̸= Lấy a 0 0 a 0      0 X=  ∈ Mn (R) Khi X khả nghịch Vì Mn (R)       0 a 0    U =    0 0 0   0   1−a 0  − a        ∆U -vành nên ta có In − X =   ∈ ∆(Mn (R))       0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2     1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết,  ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2   X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms)  r m r  : r ∈ R m ∈ M Mở rộng tầm thường T (R, M ) đẳng cấu với vành   R M Hơn nữa, kiểm tra vành ma trận × R T (R, R) ∼ = R[x]/(x ) Theo Mệnh đề ??, có tập phần tử khả nghịch mở rộng tầm thường T (R, M ) T (U (R), M ), ∆(T (R, M )) = T (∆(R), M )   A M A, B vành, Morita context gồm thành phần N B B NA song mơđun, tồn tích context M ×N → A  A M N × M → B với (ω, z) = ωz (z, ω) = zω , thỏa mãn vành A MB N B kết hợp với phép  toán trên ma trận A M Morita context gọi tầm thường tích context N B tầm thường, nghĩa M N = N M = (xem [?], trang 1993) Ta có   A M N B A M N B  ∼ = T (A × B, M ⊕ N )  Morita context tầm thường theo [?]  Định lý Cho M (R, R) song môđun Vành R ∆U -vành T (R, M ) ∆U -vành   u m Chứng minh (:⇒) Lấy u¯ = ∈ U (T (R, M )) = T (U (R), M ), u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R) u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy  a ¯= 0   + a m a  ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy Hệ 1.Giả sửM (R, S) song mơđun Khi vành ma trận tam giác dạng R M S ∆U -vành R S ∆U -vành Hệ R ∆U -vành vành ma trận tam giác Tn (R) ∆U -vành, n ≥ ĐỊNH LÝ CAUCHY Định lý (Định lý Cauchy) Giả sử hàm số f g liên tục [a, b], khả vi khoảng (a, b) g ′ (x) ̸= với x ∈ (a, b) Khi tồn c ∈ (a, b) cho: f ′ (c) f (b) − f (a) = ′ g(b) − g(a) g (c) Chứng minh Trước hết ta nhận xét g(a) ̸= g(b) Nghĩa công thức kết luận định lý ln ln có nghĩa Thật vậy, giả sử g(a) = g(b) Khi theo định lý Rolle, tồn ξ ∈ (a, b) cho g ′ (ξ) = Điều mâu thuẫn với giả thiết g ′ (x) ̸= với x ∈ (a, b) Xét hàm số F (x) = [f (a) − f (b)]g(x) − [g(a) − g(b)]f (x) Do hàm f (x), g(x) liên tục đoạn [a, b] khả vi khoảng (a, b) nên hàm số F (x) có tính chất Mặt khác, F (a) = F (b) Theo định lý Rolle, tồn c ∈ (a, b) cho F ′ (c) = Nhưng ta có F ′ (x) = [f (a) − f (b)]g ′ (x) − [g(a) − g(b)]f ′ (x) Suy F ′ (c) = [f (a) − f (b)]g ′ (c) − [g(a) − g(b)]f ′ (c) = Từ ta nhận điều phải chứng minh Nhận xét Định lý Lagrange trường hợp riêng định lý Cauchy g(x)=x Chú ý: Các định lý Rolle, Lagrange, Cauchy khơng cịn điều kiện giả thiết không thỏa mãn Nghĩa hàm f g không khả vi khoảng (a, b) hay khơng liên tục đoạn [a, b] định lý khơng Nhóm quaternion suy rộng Mệnh đề Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn = 1, s−1 rs = r−1 ⟩ với n ⩾ H nhóm Q4n Khi (i) Nếu H = Rk với k|2n, ⩽ k ⩽ 2n  n+k   k | n, 2n Pr(H, Q4n ) =   2n + k k ∤ n 4n (ii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Pr(H, Q4n ) = n+i+2 4n Chứng minh (i) Giả sử H = Rk với k|2n, ⩽ k ⩽ 2n Theo Mệnh đề 37 ta có 2n 2n = (2n, k) k |Rk | = Do 52 Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆ Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) ideal, ∆(R/I) = ∆(R)/I Giả sử R ∆U vành Khi u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆(U )vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Giả thiết U (T ) = U (T ) ∩ T nghĩa ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) Định lý 30 Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (⇒:) Giả sử Mn (R) ∆U -vành n > Đầu  tiên ta chứng  0 − a     0 0    minh R division Lấy a ∈ R, a ̸= 0, ta có X =     0 Mn (R) X = DoMn (R) ∆U -vành, ta lấy X ∈∆(Mn (R)) Lấy U=  0 1 0 0 0 0 0          0     ∈ M (R) Khi I − U X =     n n             0 0 0 a khả nghịch Mn (R), hay a ∈ U (R) Do đó, R division ∈    53 ∼ Tiếp  minh R = F2 Lấy a ∈ R, a ̸= a ̸= Lấy  theo, ta chứng a 0 0 a 0      0 X=  ∈ Mn (R) Khi X khả nghịch Vì Mn (R)       0 a   1−a 0  − a        ∆U -vành nên ta có In − X =   ∈ ∆(Mn (R))       0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2     1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết,  ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2   X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề 23 Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Định lý 31 Cho M (R, R) song môđun Vành R ∆U -vành 54 T (R, M ) ∆U -vành   u m Chứng minh (:⇒) Lấy u¯ = ∈ U (T (R, M )) = T (U (R), M ), u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R) u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy  a ¯= 0   + a m a  ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy Hệ 14 Giả sử  M là(R, S) song mơđun Khi vành ma trận R M tam giác dạng ∆U -vành R S S ∆U -vành Hệ 15 R ∆U -vành vành ma trận tam giác Tn (R) ∆U -vành, n ≥ 24.2 Một vài tính chất đại số ∆U -vành Nhớ lại rằng, vành R gọi vành 2-primal nguyên tố N (R) Mệnh đề 24 Cho R vành 2-primal Nếu vành đa thức R[x] ∆U vành, R ∆U -vành Chứng minh R vành 2-primal, theo [10, Mệnh đề 19], ∆(R[x]) = ∆(R) + J(R[x]) Mặt khác ta có J(R[x]) = I[x] với I iđêan lũy linh R Bây giờ, ta giả sử R[x] ∆U -vành Khi U (R) ⊆ U (R[x]) = + ∆(R[x]) = + ∆(R) + I[x], điều có nghĩa U (R) ⊆ + ∆(R) + I = + ∆(R) ⊆ U (R), I iđêan lũy linh (nên I ⊆ ∆(R)) Do U (R) = + ∆(R), hay R ∆U -vành Mệnh đề 25 Cho R vành m ∈ N (1) R ∆U -vành R[x]/xm R[x] ∆U -vành 55 (2) R ∆U -vành vành chuỗi lũy thừa R[[x]] ∆U -vành Chứng minh (1) Điều suy từ Mệnh đề 2.4(5), từ xR[x]/xm R[x] ⊆ J(R[x]/xm R[x]) (R[x]/xm R[x])/(xR[x]/xm R[x]) ∼ = R (2) Ta xét (x) = xR[[x]] iđêan R[[x]] Khi (x) ⊆ J(R[[x]]), R ∼ = R[[x]]/(x), kết suy từ Mệnh đề 2.4(5) Bổ đề Cho R, S vành i : R → S, ϵ : S → R đồng cấu thỏa ϵi = idR (1) ϵ(∆(S)) ⊆ ∆(R) (2) Nếu S ∆U -vành, R ∆U -vành (3) Nếu R ∆U -vành ker ϵ ⊆ ∆(S), S ∆U -vành Chứng minh (1) Dễ thấy, ϵ(U (S)) ⊆ U (R) U (R) = ϵi(U (R)) ⊆ ϵ(U (S)) Lấy a ∈ ∆(S) Rõ ràng, a + U (S) ⊆ U (S), ϵ(a) + ϵ(U (S)) ⊆ ϵ(U (S)) ϵ(a) + U (R) ⊆ U (R) Điều có nghĩa ϵ(a) ∈ ∆(R) Do đó, ϵ(∆(S)) ⊆ ∆(R) (2) Cho S ∆U -vành Khi U (S) = + ∆(S), theo (1) U (R) = ϵ(U (S)) = + ∆(S) ⊆ + ∆(R) Do U (R) = + ∆((R) (3) Giả sử R ∆U -vành Ta phải ϵ−1 (U (R)) ⊆ + ∆(S), điều có nghĩa U (S) = + ∆(S) Với y ∈ ϵ−1 (U (R)), ta lấy ϵ(y) ∈ U (R) = + ∆(R), R ∆U -vành Suy y − = i(x) + v , v tùy ý thuộc ker(ϵ) x ∈ ∆(R) Lấy tùy ý u khả nghịch thuộc S Lưu ý x + U (R) ⊆ U (R) Ta có ϵ(i(x) + u) = x + ϵ(u) ∈ x + ϵ(U (S)) = x + U (R) ⊆ U (R) = ϵ(U (S)) i(x) + u = u′ + a u′ ∈ U (S) a ∈ ker(ϵ) Suy y − + u = u′ + a + v ∈ U (S) + ker(ϵ) ⊆ U (S) + ∆(S) theo giả thuyết Từ U (S) + ∆(S) ⊆ U (S) với vành có đơn vị S , ta có y − + u ∈ U (S) với u ∈ U (S) Điều có nghĩa y − ∈ ∆(S) hay y ∈ + ∆(S) Ta có điều phải chứng minh Mệnh đề 26 Cho R vành, M monoid RM monoid ring Nếu RM ∆U -vành, R ∆U -vành Mệnh đề 27 Cho R vành giao hốn có đơn gị Vành đa thức R[x] R ∆U R ∆U 56 24.3 Tính chất ∆U lớp vành Mệnh đề 28 Các điều kiện sau tương đương vành R (1) R ∆U -vành (2) Tất clean elements R ∆-clean Định lý 32 Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Với a ∈ R, ta có a − a2 ∈ ∆(R) a − e ∈ ∆(R) e lũy đẳng, e ∈ R; (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean Bổ đề 10 Nếu R vành unit-regular ∆(R) = Định lý 33 Cho R vành, điều sau tương đương (1) R regular ∆U -vành (2) R strongly regular ∆U -vành (3) R unit-regular ∆U -vành (4) R có identity x2 = x (R vành Boolean) Định lý 34 Cho R vành, điều sau tương đương (1) R semiregular ∆U -vành (2) R exchange ∆U -vành (3) R/J(R) vành Boolean Hệ 16 Cho R ∆U -vành, điều sau tương đương (1) R semiregular ring (2) R exchange ring (3) R clean ring 57 25 KHÔNG GIAN CÁC HÀM KHẢ TÍCH Định lý 35 Cho Ω ⊂ Rn tập mở Khi (Lp (Ω), ∥.∥Lp ) tách ≤ p < ∞ không tách p = ∞ Ta cần hai kết để chứng minh định lý ??: trước kết topo (Urysohn’s Lemma) sau quan hệ xấp xỉ không gian hàm liên tục Lp Định nghĩa 20 Cho (X, τ ) khơng gian topo Khi C0c (X) := {f : X → R liên tục spt(f ) compact (X, d)} spt(f ) := Bao đóng{x ∈ X : f (x) ̸= 0} Bổ đề 11 (Bổ đề Urysohn) Cho X compact địa phương không gian metric, cho K ⊂ X V ⊂ X , K compact V mở thỏa mãn K ⊂ V Khi đó, tồn hàm φ ∈ C0c (X) thỏa mãn ≤ φ ≤ 1, φ ≡ K spt(φ) ⊂ V Định lý 36 (Xấp xỉ Lp hàm liên tục) Cho Ω ⊂ Rn tập mở Khi C0c (Ω) trù mật (Lp (Ω), ∥.∥Lp ), biết ≤ p < ∞ Chứng minh định lý 58 dựa hai kết tảng xấp xỉ hàm đo được, ta cần nhớ lại Định lý 37 (Xấp xỉ hàm đơn giản) Cho (X, M) không gian đo cho f : X → [0, +∞] hàm đo Khi tồn dãy hàm đơn giản đo sh : X → [0, +∞], (h = 1, 2, ) thỏa mãn tính chất (i) ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ f ; (ii) lim sh (x) = f (x), ∀x ∈ X h→∞ Z Đặc biệt, f ∈ L (X, µ), nghĩa f dµ < ∞, sh → f X L1 (X, µ), nghĩa Z |f − sh |dµ → ∥f − sh ∥L1 (X,µ) := X 58 Định lý 38 (Lusin - Dạng không gian metric compact địa phương) Cho µ độ đo Radon compact địa phương, không gian metric tách X Cho f : X → R hàm đo cho tồn tập Borel A ⊂ X với µ(A) < ∞, f (x) = ∀x ∈ X \A |f (x)| < ∞ µ− hầu khắp nơi x ∈ X Khi đó, với ϵ > 0, tồn g ∈ C0c (X) cho µ({x ∈ X : f (x) ̸= g(x)}) < ϵ Hơn nữa, g chọn cho supx∈X |g(x)| ≤ sup |f (x)| x∈X Chứng minh cho định lý Ta chia chứng minh định lý thành hai bước Bước 1: Ta chứng minh răng, ∀ϵ > 0, ∀f ∈ Lp (Ω) tồn hàm đơn giản đo s : Ω → R cho |{x ∈ Ω : s(x) ̸= 0} < ∞| (đặc biệt s ∈ Lp (Ω), ∀p ∈ [1, ∞]); (3) ∥f − s∥Lp < ϵ (4) Đầu tiên, giả sử f ≥ Ω Theo xấp xỉ hàm không âm đo phương pháp hàm đơn giản (Định lý 59), tồn dãy hàm đơn giản đo sh : Ω → [0, +∞], (h = 1, 2, ) cho ≤ s1 ≤ s2 ≤ ≤ sk ≤ ≤ f ; lim sh (x) = f (x) h→∞ (5) ∀x ∈ Ω (6) Từ (58) ta sh ∈ Lp (Ω) |s ∈ Ω : sh (x) ̸= 0| < ∞ ∀h, (7) ∥sh − f ∥ ≤ 2f Ω, ∀h (8) Theo (59) (61), ta cso thể áp dụng định lý hội theo Lebesgue, ≤ p < ∞, ta lim ∥sh − f ∥Lp = h→∞ (9) 59 Cho ϵ > 0, từ (62), tồn h = h(ϵ) ∈ N cho ∥sh − f ∥Lp < ϵ Nếu ta định nghĩa s := sh , theo (56) (57) Trường hợp tổng quát f : Ω → R chứng minh tách f = + f − f − áp dụng (56) (57), tách thành f + f − Bước 2: Ta ∀ϵ > 0, ∀f ∈ Lp (Ω), ∃g ∈ C0c (Ω) cho ∥f −g∥Lp < ϵ ϵ Cho f hàm đơn giản đo thỏa mãn (56) (57) với ϵ ≡ ký hiệu A := {x ∈ Ω : s(x) ̸= 0} Giả sử ∥s∥∞ > 0, khơng s ≡ ∈ C0c (Ω) kết thúc chứng minh Áp dụng định lý Lusin cho hàm s, tồn hàm g ∈ C0c (Ω) thỏa mãn |Ac | = |{x ∈ Ω : s(x) ̸= g(x)}| < ϵp , 4p ∥s∥p∞ (10) với |g(x)| ≤ ∥x∥∞ x ∈ Ω (11) Chú ý ∥f − g∥Lp ≤ ∥f − s∥Lp + ∥s − g∥Lp < Bây ta đánh giá ∥s − g∥Lp Z Z ∥s − g∥pLp = |s − g|p dx = Ω ϵ + ∥s − g∥Lp |s − g|p dx ≤ 2p ∥s∥p∞ |Aϵ | < Aϵ (12) ϵp 2p (13) Vì (65) (66) kết thúc chứng minh Chứng minh định lý ?? Ta cần chứng minh (C0c (Ω), ∥.∥∞ ) tách (14) Thật vậy, ta giả sử rằng, từ (67), ta (Lp (Ω), ∥.∥∞ ) tách được, biết ≤ p < ∞ Đầu tiên, giả sử Ω bị chặn Cho D ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm được, ta chứng minh D trù mật (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞ (15) Từ định lý 58, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho ϵ ∥f − g∥Lp < (16) 60 D trù mật, tồn e g ∈ D cho ∥g − e g ∥∞ < ϵ 2|Ω|1/p Nhớ lại Bài tập ∥f ∥Lp ≤ |Ω|1/p ∥f ∥∞ , ∀f ∈ L∞ (Ω), biết |Ω| < ∞ Điều nghĩa ϵ ∥g − g∥Lp ≤ |Ω1/p |∥g − g∥∞ < (17) Do gợi ý (69) (70) ám (68) Bây giả sử Ω không bị chặn Theo kết biết topo, tồn dãy (Ωh )h tập mở bị chặn cho Ωh ⊂ Ωh ⊂ Ωh+1 Ω= ∪∞ h=1 Ωh Hơn nữa, ý C0c (Ω) = ∪∞ h=1 Cc (Ωh ) (18) Theo (67) tồn tập Dh ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm Cho D := ∪∞ h=1 Dh (68) giữ Từ định lý 58, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho (69) Từ K := spt(g) tập compact chứa Ω, tồn h = h(g) = ϵ ∈ N cho K ⊂ Ωh Điều có nghĩa g ∈ C0c (Ωh ) ta có kết luận bước trước Bây ta chứng minh (67) Nhớ lại (C0 (K), ∥.∥∞ ) tách được, biết K ⊂ Rn tập compact (định lý 17) Cho (Ωh ) dãy tập mở bị chặn Rn Theo định nghĩa, C0c (Ωh ) ⊂ (C0 (Ω), ∥.∥∞ ) Vì (C0 (Ω), ∥.∥∞ ) tách nên với h, tồn tập D ⊂ (C0 (Ωh ), ∥.∥∞ ) trù mật đếm (19) 61 Bây giờ, theo bổ đề Urysohn, ta sửa tập hợp hàm D eh ⊂ C0c (Ω) đẻ họ cho tập hợp hàm đếm D e D := ∪∞ h=1 Dh ⊂ (Cc (Ω), ∥.∥inf ty ) đếm trù mật (20) Áp dụng bổ đề Urysohn với K := Ωh−1 , V = Ωh cho φh ∈ C0 (Ω) cho ≤ φh (x) ≤ 1, ∀x ∈ Ω, φh (x) = 1, ∀x ∈ Ωh−1 spt(φh ) ⊂ Ωh xác định g ∈ Dh , g : Ωh → R, định nghĩa e g : Ω → R hàm ( g(x) x ∈ Ωh e g (x) := , nếux ∈ Ω \ Ωh cho e := {φhe D g : g ∈ D} e (h ∈ N) D := ∪∞ h=1 D Ta chứng minh (73) Theo cách xây dựng, D đếm Vì ta cần chứng minh trù mật (C0c , ∥.∥∞ ) Sửa ϵ > 0, f ∈ C0c (Ω) cho K := spt(f ) ⊂ Ω compact Tồn h0 ∈ N cho K ⊂ Ωh0 ⊂ Ωh0 +1 Điều có nghĩa f ∈ C0c (Ωh0 ) ⊂ C0 (Ωh0 ) ⊂ C0 (Ωh0 +1 ) Theo (72), tồn f1 ∈ Dh0 +1 cho ∥f − f1 ∥∞,Ω := sup |f (x) − f1 (x)| < ϵ (21) x∈Ω Từ f ≡ Ωh0 +1 \ Ωh0 từ (74), suy |f1 (x)| < ϵ sup (22) x∈Ωh0 +1 \Ωh0 eh0 +1 , theo (74) (75) ta Bây ta định nghĩa f2 := φh0 +1 fe1 ∈ D ∥f − f2 ∥∞,Ω = sup |f (x) − f2 (x)| = x∈Ω sup |f (x) − φh0 +1 f (x)| ≤ x∈Ωh0 +1 ( max ) sup |f (x) − f1 (x)|, x∈Ωh0 sup x∈Ωh0 +1 \Ωh0 |f1 (x)| < ϵ 62 Như (73) Cuối ta chứng minh (L∞ (Ω), ∥.∥L∞ ) khơng tách Ta tìm họ rời không đếm Ui : i ∈ I tập mở L∞ (Ω) Cho a ∈ Ω cho ωa := B(a, ) > với B(a, ) ⊂ Ω Định nghĩa o n Ua := f ∈ L∞ (Ω) : ∥f − χωa ∥L∞ < a ∈ I := Ω Chú ý • Ua mở (L∞ (Ω), ∥.∥L∞ ), ∀a ∈ Ω: hiển nhiên • Ua ∩ Ub = ∅ a ̸= b, thật vậy, theo phản chứng, f ∈ Ua ∩ Ub , điều nghĩa ∥χωa − χωb ∥L∞ ≤ ∥χωa − f ∥L∞ + ∥f − χωb ∥L∞ < 1 + = 2 Mặt khác ∥χωa − χωb ∥L∞ = a ̸= b, mâu thuẫn • I = Ω khơng đếm 26 Định lý tồn cho hệ thống tuyến tính Định lý 39 (Định lý tồn cho hệ thống tuyến tính) Cho I đoạn thực giả sử A ∈ C(I, Mn (F)), B ∈ C(I, F n ) Cho τ ∈ I, ξ ∈ F n tồn giải pháp X (IV P) đoạn I Chứng minh Cho t ∈ I , giả sử J = [c; d] đoạn bị chặn I cho τ, π ∈ J , Bởi định lý 7.3 tồn hàm Xj khác biệt đoạn [a, b] cho XJt (s) = A(s)XJ (s) + B(s), XJ (τ ) = ξ, s∈J 63 Định nghĩa X(t) = Xj(t) Nếu ta chọn J1 = [c1 , c2 ] ⊂ I cho τ, t ∈ J1 , J1 ∩ J đoạn bị chặn chứa τ, t kết áp dụng cho đoạn cho thấy XJ1 (s) = XJ (s), s ∈ J1 ∩ J Đặc biệt, XJ1 (t) = XJ (t) Để định nghĩa X(t) không phụ thuộc vào J chọn Vì X có tính khả vi [a, b] thỏa mãn X ′ (t) = A(t)X(t) + B(t), X(τ ) = ξ, t∈I Nó giải pháp (IV P) đoạn I Nó nhất, Y mơt giải pháp I t thuộc I có đoạn nhỏ J chứa τ, t kết cho J ngụ ý X(t) = Y (t) Trước tiếp tục phát triển lý thuyết, xem xét ví dụ khác Xét toán với n = : x′ = 3t2 x, x(0) = 1, t∈R Phương trình tích phân tương ứng Z t 3s2 x(s)ds = (T x)(t), x(t) = + t ∈ R Nếu x0 (t) = 1, t Z 3s2 xm (s)ds, xm+1 (t) = + m = 0, 1, Do Z x1 (t) = + t 3s2 ds = + t3 , t Z 3s2 [1 + s3 ]ds = + t3 + t6 /2, x2 (t) = + Z x3 (t)1 + t 3s2 [1 + s3 + s6 /2]ds = + t3 + t6 /2 + t9 /6, Và quy nạp cho thấy xm = + t3 + (t3 )2 (t3 )3 (t3 )m + + ··· + 3! m! 64 Chúng ta nhận xm (i) môt tổng riêng cho việc triển khai dãy số hàm x(t) = et Dãy số hội tụ đến x(t) cho t thuộc R, hàm x(t) kết vấn đề Nhìn lại phương pháp chứng minh định lý 7.3, khơng khó để nhận thấy lựa chọn hàm liên tục ban đầu X0 (t) dần đến giải pháp X(t) Thực sự, bất đẳng thức áp dụng Z t |Xm+1 (t) − Xm | ≤ ∥A∥∞ |Xm (s) − Xm−1 (s)|ds, m ≥ 1, t ∈ I τ Sự khác biệt phát sinh khác biệt ban đầu Xi (t) − X0 (t) Ước lượng thu từ lập luận quy nạp sau trở thành h im |Xm+1 (t) − Xm | ≤ ∥X1 − X0 ∥∞ ∥A∥∞ [t − τ ] /m! Phần lại lập luận diễn trước đây, đưa giải pháp X(t) (7.2) Nếu (IV P) xem xét đoạn I nào, ta ước lượng khoảng cách Xm (t) X(t) đoạn nhỏ J = [a, b] nằm I chứa τ Với k > m ∥X − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥Xk − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥(Xk − Xk−1 ) + (Xk−1 − Xk−2 ) + · · · + (Xm+1 − Xm )∥∞,J Và sử dụng bất đẳng thức tam giác lấy giới hạn (7.10) ngụ ý ∥X − Xm ∥∞,J ≤ ∞ X ∥Xk+1 − Xk ∥∞,J , (7.11) k=m ≤ ∥X1 − X0 ∥∞,J ∞ h X ∥A∥∞,J [b − τ ] im /m! k=m Tất nhiên, chuỗi cuối lại phần lại chuỗi cho hàm mũ (∥A∥∞,J [b − τ ]) Do (7.11) ngụ ý Xm → X định mức tối đa J Chúng tơi tóm tắt định lý sau 65 Định lý 40 (Định nghĩa xấp xỉ liên tiếp bởi) Z t Xm+1 (t) = ξ + [A(s)Xm (s) + B(s)]ds, t∈I τ Tại X0 ∈ C(I, F n ) tùy ý Nếu X(t) giải pháp (IV P) I , Xm → X đồng ∥X − Xm ∥∞,J → 0, k→∞ Trên đoạn nhỏ J ⊂ I chứa τ 27 Tính liên tục giải pháp Trở lại tình Định lý 7.3, [a, b] đoạn đóng, giải pháp X(t) toán giá trị ban đầu X ′ = A(t)X + B(t), X(τ ) = ξ, t ∈ I, IV P Rõ ràng phụ thuộc vào τ ∈ I, ξ ∈ F n , A ∈ C(I, Mn (F)) B ∈ C(I, F n ) Kết phần khẳng định t ∈ I Giá trị X(t) hàm liên tục biến Phân tích phụ thuộc bắt đầu ước lượng cho ∥X∥∞ điều suy cách sử dụng phương pháp chứng minh Định lý 7.3 Bắt đầu với việc xấp xỉ từ Z t X0 (t) = ξ + B(s)ds, τ Kết X(t) = lim Xk (t) k→∞ Sau đáp ứng ước lượng   k−1 X ∥X∥∞ = ∥ lim Xk ∥ = lim X0 (t) + (Xm+1 (t) − xm (t)) k→∞ k→∞ m=0 ≤ ∥X0 ∥ + ∞ X m=0 ∥Xm+1 − Xm ∥∞ ∞ 66 Bây áp dụng bất đẳng thức (7.8), cho kết ∞ X ∥A∥m+1 [b − τ ]m+1 ∞ ∥X∥∞ ≤ ∥X0 ∥∞ + ∥X0 ∥∞ (m + 1)! m=0 = ∥X0 (t)∥∞ exp(∥A∥∞ [b − τ ]) Từ Z t ξ + B(s)ds ∥X0 (t)∥∞ = τ ∞ ≤ |ξ| + |b − a|∥B∥∞ , Ước lượng mong muốn cho ∥X∥∞   ∥X∥∞ ≤ |ξ| + |b − a|∥B∥∞ exp(∥A∥∞ [b − a]) (7.12) Ước lượng đơn giản (7.12) sử dụng để X hàm liên tục chung tất biến Do đó, thay đổi nhỏ t, A, b, τ, ξ tạo thay đổi nhỏ X Nếu ký hiệu giải pháp (IV P) thời điểm t X(t, A, B, τ, ξ), sau đó, định lý 7.6 cung cấp ý nghĩa xác cho phát biểu X(s, C, D, σ, η) → X(t, A, B, τ, ξ), (s, C, D, σ, η) → (t, A, B, τ, ξ) Đó là, X liên tục (t, A, B, τ, ξ) Định lý 41 Đặt I đoạn [a, b] bị chặn, A, C ∈ C(I, Mn (F)), B, D ∈ C(I, F n ), τ, σ ∈ I , ξη ∈ F n Giả định X kết X ′ = A(t)X + B(t), X(τ ) = ξ, t∈I Cho t thuộc I e > 0, có tồn ϵ > Y kết Y ′ = C(t)Y + D(t), y(σ) = η, t∈I |s − t| < δ, ∥C − A∥∞ < δ, |σ − τ | < δ, ∥D − B∥∞ < δ |η − ξ| < δ Vậy |Y (s) − X(t)| < ϵ (7.14)

Ngày đăng: 05/07/2023, 14:40

w