1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài toán cân bằng nash trong không gian có thứ tự

96 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BÀI TỐN CÂN BẰNG NASH TRONG KHƠNG GIAN CĨ THỨ TỰ LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Phương pháp hàm phạt phương pháp dùng để tìm nghiệm cho tốn cực trị có điều kiện Ý tưởng phương pháp chuyển việc giải toán cực trị có điều kiện thơng qua việc giải tốn cực trị tự Các loại hàm phạt thường dùng hàm phạt điểm ngoài, hàm phạt điểm trong, hàm phạt Lagrange Trong chương trình tốn đại học, phương pháp chưa giới thiệu Hơn nữa, hầu hết giáo trình tiếng Việt, chưa trình bày cách đầy đủ sở lý thuyết phương pháp hàm phạt 597 2 Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề 13 ta có kết sau Mệnh đề Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề ??, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề 10 Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 2c(7) = 7! 315 3.1 Một số đặc biệt hóa Jacobson vành Biểu diễn ∆(R) tính chất Trong mục này, khảo sát tập ∆(R) =: {r ∈ R|r+U (R) ⊆ U (R)} vành R Tập vành có quan hệ chặt chẽ với Jacobson R Ta ∆(R) vành Jacobson lớn R đóng với phép tốn nhân phần tử khả nghịch R Các tính chất ∆ cấu trúc vành nghiên cứu, trình bày số họ vành mà ∆(R) = J(R) Các phương pháp cấu trúc vành với ∆(R) ̸= J(R) mô tả Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) idêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) tương đương ru−1 + ∈ U (R) tương đương u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆ nhóm với phép cộng R Hơn rs = r(s+1)−r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược lại dễ thấy Hệ Cho R vành: (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý Cho R vành có đơn vị T vành R sinh U (R) Khi đó: (1) ∆(R) = J(R) ∆(S) = ∆(R), với S vành R thỏa T ⊆ S ; (2) ∆(R) vành Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên T vành bao gồm tất tổng hữu hạn đơn vị R Do đó, theo (2) Bổ đề 3, ∆(T ) iđêan T Theo (4) Bổ đề 3, ∆(T ) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai đơn vị Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆ vành Jacobson R theo Bổ đề (2) ∆(R) đóng với phép nhân phần tử khả nghịch phía trái phải R Bây giờ, ta giả sử S vành Jacobson chứa R đóng với phép nhân phần tử khả nghịch Nếu s ∈ S u ∈ U (R), su ∈ S = J(S) Do su quasi-regular S + su ∈ U (R) Theo Bổ đề (1) s ∈ ∆(R) hay S ⊆ ∆(R) Hệ Giả sử R vành mà phần tử biểu diễn thành tổng đơn vị Khi ∆(R) = J(R) Hệ Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Mệnh đề Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S) [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề ∆(R) [ = ∆(R), nghĩa ∆ Hệ Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng Hệ ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Hệ Cho R vành (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ Cho R vành, ∆(R) = J(R) ∆(R/J(R)) = Định lý ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với phép nhân vành ma trận division rings (2) R vành nửa địa phương (3) R clear ring thỏa ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có stable range (6) R = F G nhóm đại số trường F Bổ đề Giả sử G nhóm R Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử quasi-invertible R Định lý Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R) (2) R vành Jacobson lớn đóng với phép nhân phần tử quasi-invertible R (3) G nhóm lớn R phép cộng bao gồm phần tử quasi-invertible đóng với phép nhân phần tử quasi-invertible R 3.2 Mở rộng toán tử ∆ cho vành khơng có đơn vị Bổ đề Cho R vành khơng thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Mệnh đề Cho R vành bất kỳ, ta có điều sau (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) không chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử unit regular khác không Hệ Cho R vành có unit regular, ∆(R) = Hệ Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Mệnh đề Giả sử R vành 2-primal Khi ∆(R[x]) = ∆(R)+J(R[x]) ĐỊNH LÝ ROLLE Cơ sở định lý Rolle dựa hai định lý Weierstrass Fermat Định lý Weierstrass khẳng định hàm số f liên tục đoạn [a, b] bị chặn tồn giá trị lớn nhất, giá trị nhỏ đoạn Định lý Fermat điểm cực trị hàm khẳng định hàm f khả vi khoảng (a, b) đạt cực trị địa phương (cực đại địa phương cực tiểu địa phương) thuộc khoảng giá trị đạo hàm điểm cực trị địa phương không Định lý (Định lý Rolle) Giả sử cho hàm số f liên tục [a, b], khả vi khoảng (a, b) f (a) = f (b) Khi tồn c ∈ (a, b) cho f ′ (c) = Chứng minh Vì f liên tục đoạn [a, b] Theo định lý Weierstrass hàm f phải tồn giá trị lớn giá trị nhỏ đoạn [a, b], nghĩa tồn x1 , x2 ∈ (a, b) cho f (x1 ) = f (x) = m, f (x2 ) = max f (x) = M [a,b] [a,b] Có hai khả xảy ra: 1) Nếu m = M Khi f (x) = const đoạn [a, b] Nên f ′ (c) = với c ∈ (a, b) 2) Nếu m < M Theo giả thiết ta có f (a) = f (b) nên hai điểm x1 , x2 phải thuộc khoảng (a, b) Khơng tính tổng qt ta giả sử x1 ∈ (a, b) Theo định lý Fermat đạo hàm điểm không Định lý chứng minh xong Ý nghĩa hình học định lý Rolle Cho C đường cong trơn với hai đầu mút A, B có "độ cao" (trong hệ trục tọa độ Descartes) C tồn điểm mà tiếp tuyến C điểm song song với AB(hay song song với trục hồnh f (a) = f (b)) Hệ 10 Nếu hàm số f (x) có đạo hàm khoảng (a, b) phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) phương trình f ′ (x) = có n − nghiệm phân biệt thuộc khoảng (a, b) (Phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) với (k = 1, 2, , n)) Chứng minh Giả sử phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) thứ tự x1 < x2 < < xn Khi ta áp dụng định lý Rolle cho n − đoạn [x1 , x2 ], [x2 , x3 ], , [xn−1 , xn ] phương trình f ′ (x) = có 80 (1) ∆(R) = J(R) ∆(S) = ∆(R), với S vành R thỏa T ⊆ S ; (2) ∆(R) vành Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên T vành bao gồm tất tổng hữu hạn đơn vị R Do đó, theo (2) Bổ đề 3, ∆(T ) iđêan T Theo (4) Bổ đề 3, ∆(T ) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai đơn vị Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆ vành Jacobson R theo Bổ đề (2) ∆(R) đóng với phép nhân phần tử khả nghịch phía trái phải R Bây giờ, ta giả sử S vành Jacobson chứa R đóng với phép nhân phần tử khả nghịch Nếu s ∈ S u ∈ U (R), su ∈ S = J(S) Do su quasi-regular S + su ∈ U (R) Theo Bổ đề (1) s ∈ ∆(R) hay S ⊆ ∆(R) Hệ 26 Giả sử R vành mà phần tử biểu diễn thành tổng đơn vị Khi ∆(R) = J(R) Hệ 27 Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Mệnh đề 49 Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S) [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề ∆(R) 81 [ = ∆(R), nghĩa ∆ Hệ 28 Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng Hệ 29 ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Hệ 30 Cho R vành (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ 31 Cho R vành, ∆(R) = J(R) ∆(R/J(R)) = Định lý 40 ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với phép nhân vành ma trận division rings (2) R vành nửa địa phương (3) R clear ring thỏa ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có stable range (6) R = F G nhóm đại số trường F Bổ đề 14 Giả sử G nhóm R Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử quasi-invertible R Định lý 41 Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R) (2) R vành Jacobson lớn đóng với phép nhân phần tử quasi-invertible R (3) G nhóm lớn R phép cộng bao gồm phần tử quasi-invertible đóng với phép nhân phần tử quasi-invertible R 82 23.2 Mở rộng toán tử ∆ cho vành khơng có đơn vị Bổ đề 15 Cho R vành khơng thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Mệnh đề 50 Cho R vành bất kỳ, ta có điều sau (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) không chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử unit regular khác không Hệ 32 Cho R vành có unit regular, ∆(R) = Hệ 33 Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Mệnh đề 51 Giả sử R vành 2-primal Khi ∆(R[x]) = ∆(R) + J(R[x]) 24 Các khái niệm Định nghĩa 26 Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm aben với phép tốn cộng, R nửa nhóm với phép tốn nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz, với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa 27 Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép tốn A) 83 Định nghĩa 28 Iđêan trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa iđêan trái, vừa iđêan phải gọi iđêan vành R Cho I iđêan vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I, với x, y ∈ R Định nghĩa 29 Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I Định nghĩa 30 Cho R vành có đơn vị 1R Một R-môđun phải M bao gồm (M, +) nhóm aben tốn tử · : M × R → M thỏa mãn (1) (x + y) · r = x · r + y · r, (2) x · (r + s) = x · r + x · s, (3) (xr) · s = x · (rs), (4) x · 1R = x, r, s ∈ R x, y phần tử tùy ý M Lúc R gọi vành sở, M R-môđun phải ta thường ký hiệu MR Tương tự ta đinh nghĩa R-môđun trái Cho R, S hai vành Nhóm aben (M, +) song môđun R-bên phải S -bên trái (ký hiệu S MR ) a) M R-môđun phải M S -mơđun trái b) Ta phải có (sx)r = s(xr), (r ∈ R, s ∈ S, x ∈ M ) 84 Định nghĩa 31 Cho M R-môđun phải Tập A M gọi môđun M (ký hiệu A ≤ M hay AR ≤ MR ), A R-môđun phải với phép toán cộng nhân hạn chế A Định nghĩa 32 (1) Môđun MR gọi đơn M ̸= với A ≤ M A = A = M , nghĩa M ̸= M có hai mơđun M (2) Vành R gọi đơn R ̸= với A ≤R RR A = A = 0, nghĩa R ̸= R có hai iđêan hai phía R (3) Mơđun A ≤ M gọi môđun cực tiểu môđun M A ̸= với B ≤ M thỏa mãn B < A B = (4) Tương tự, môđun A ≤ M gọi môđun cực đại A ̸= M với B ≤ M thỏa mãn B > A B = M Bổ đề 16 MR đơn M ̸= ∀m ∈ M, m ̸= M = mR Cho MR N ≤ MR Vì N nhóm nhóm cộng aben M nên nhóm thương M/N nhóm aben (theo phần lý thuyết nhóm) Các phần tử M/N lớp ghép x + N N M phép toán cộng (x + N ) + (y + N ) = x + y + N Ta cần xây dựng phép nhân môđun để M/N trở thành môđun phải Định lý 42 Cho MR N ≤ M (i) Quy tắc M/N × R → M/N cho (m + N, r) → (m + N )r = mr + N phép nhân mơđun (ii) Nhóm aben M/N với phép tốn nhân mơđun trở thành R-môđun phải Định nghĩa 33 M/N xác định Định lý ?? gọi môđun thương môđun M môđun N 85 25 Các khái niệm Định nghĩa 34 Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm Abel với phép tốn cộng, R nửa nhóm với phép tốn nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa 35 Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép tốn A) Định nghĩa 36 Ideal trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa ideal trái, vừa ideal phải gọi ideal vành R Cho I ideal vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I với x, y ∈ R Định nghĩa 37 Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I 86 25.0.1 Định lý đồng cấu vành Định nghĩa 38 Cho R, R′ hai vành Ánh xạ f : R → R′ gọi đồng cấu vành f bảo tồn hai phép tốn cộng nhân R, nghĩa f (x + y) = f (x) + f (y), f (xy) = f (x)f (x), với x, y ∈ R 25.0.2 26 Một số kết liên quan Vô hạn chiều Định nghĩa 39 (i) Không gian vector thực E gọi vô hạn chiều khơng hữu hạn chiều ta viết dimR E = ∞ (ii) Nếu dimR E = ∞, hệ B ⊂ E gọi sở (đại số Hamel) E hệ vector độc lập tuyến tính (nghĩa tập hữu hạn độc lập tuyến tính) B tập lớn tất tập chứa vector độc lập tuyến tính E Điều chứng minh theo nguyên lý cực đại Hausdorff, với không gian vector vô hạn chiều E có sở B phần tử thuộc E biểu diễn (hữu hạn) theo tổ hợp tuyến tính phần tử thuộc B Khi dimR E = ∞, (E, ∥.∥E ) (E ′ , ∥.∥E ′ ) không thiết đẳng cấu topo Tuy nhiên, ta chứng minh vài tính chất topo (E ′ , ∥.∥E ′ ) tính tách cịn giữ (E, ∥.∥E ) Định lý 43 (E, ∥.∥E ) tách (E ′ , ∥.∥E ′ ) tách Trước chứng minh định lý ta cần sử dụng điều kiện trù mật cho không gian định chuẩn, hệ định lý Hahn-Banach thứ hai hình học 87 Mệnh đề 52 (Điều kiện trù mật không gian con) Cho (E, ∥.∥E ) không gian định chuẩn Giả sử M ⊂ E không gian không trù mật (E, ∥.∥E ) lấy x0 ∈ E \ M Khi tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ M ⟨f, x0 ⟩E ′ ×E = Chứng minh Từ định lý Hahn-Banach thứ hai hình học, tồn g ∈ E ′ cho siêu phẳng H := {x ∈ E : ⟨g, x⟩E ′ ×E = α}, tách tập M {x0 } cách nghiêm ngặt, tức ⟨g, x⟩E ′ ×E < α < ⟨g, x0 ⟩E ′ ×E ∀x ∈ M (37) Từ M không gian con, theo (37), suy λ ⟨g, x⟩E ′ ×E < α, ∀λ ∈ R, ⟨g, x⟩E ′ ×E = 0, ∀x ∈ M (38) Do đó, ta xác định hàm f ∈ E ′ f := g, ⟨g, x0 ⟩E ′ ×E ta có điều phải chứng minh Chứng minh Định lý 23 Cho D := {fh : h ∈ N} ⊂ (E ′ , ∥.∥E ′ ), trù mật Với h có phần tử xh ∈ E với ∥xh ∥ = 1 |fh (x)| ≥ ∥fh ∥E ′ Cho e := spanQ {xh : h ∈ N} D := spanR {xh : h ∈ N}, D tức là, tập tất tổ hợp tuyến tính phần tử {xh : e đếm được, D không gian h ∈ N} với hệ số thực Khi D E theo cách xây dựng ˜ ⊂ (D, ∥.∥) trù mật D 88 Để đưa kết luận chứng minh, ta cần phải D ⊂ (D, ∥.∥) trù mật Theo phản chứng, D không trù mật, lấy x0 ∈ E \ D Khi từ mệnh đề 20, tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ D ⟨f, x0 ⟩E ′ ×E = Từ D trù mật, có dãy (fhk )k mà lim ∥fhk − f ∥E ′ = k→∞ Tuy nhiên, từ ∥xhk ∥ = 1, ∥fhk − f ∥E ′ ≥ |fhk (xhk ) − f (xhk )| = |f (xhk )| ≥ ∥fhk ∥E ′ ∀k ∈ N Do dó ∥fhk ∥E ′ → k → ∞, nghĩa f ≡ 0, mâu thuẫn với f (x0 ) = Vì D = E 27 Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa 40 Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề 13 ta có kết sau 89 Mệnh đề 53 Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề 54 Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề ??, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề 10 Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) 90 Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 28 28.1 2c(7) = 7! 315 Một số đặc biệt hóa Jacobson vành Biểu diễn ∆(R) tính chất Trong mục này, khảo sát tập ∆(R) =: {r ∈ R|r+U (R) ⊆ U (R)} vành R Tập vành có quan hệ chặt chẽ với Jacobson R Ta ∆(R) vành Jacobson lớn R đóng với phép tốn nhân phần tử khả nghịch R Các tính chất ∆ cấu trúc vành nghiên cứu, trình bày số họ vành mà ∆(R) = J(R) Các phương pháp cấu trúc vành với ∆(R) ̸= J(R) mô tả 91 Bổ đề 17 Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) idêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) tương đương ru−1 + ∈ U (R) tương đương u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆ nhóm với phép cộng R Hơn rs = r(s+1)−r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược lại dễ thấy Hệ 34 Cho R vành: (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý 44 Cho R vành có đơn vị T vành R sinh U (R) Khi đó: (1) ∆(R) = J(R) ∆(S) = ∆(R), với S vành R thỏa T ⊆ S ; (2) ∆(R) vành Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R 92 Chứng minh (1) T vành sinh U (R) nên T vành bao gồm tất tổng hữu hạn đơn vị R Do đó, theo (2) Bổ đề 3, ∆(T ) iđêan T Theo (4) Bổ đề 3, ∆(T ) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai đơn vị Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆ vành Jacobson R theo Bổ đề (2) ∆(R) đóng với phép nhân phần tử khả nghịch phía trái phải R Bây giờ, ta giả sử S vành Jacobson chứa R đóng với phép nhân phần tử khả nghịch Nếu s ∈ S u ∈ U (R), su ∈ S = J(S) Do su quasi-regular S + su ∈ U (R) Theo Bổ đề (1) s ∈ ∆(R) hay S ⊆ ∆(R) Hệ 35 Giả sử R vành mà phần tử biểu diễn thành tổng đơn vị Khi ∆(R) = J(R) Hệ 36 Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Mệnh đề 55 Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S) [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề ∆(R) [ = ∆(R), nghĩa ∆ Hệ 37 Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng 93 Hệ 38 ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Hệ 39 Cho R vành (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ 40 Cho R vành, ∆(R) = J(R) ∆(R/J(R)) = Định lý 45 ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với phép nhân vành ma trận division rings (2) R vành nửa địa phương (3) R clear ring thỏa ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có stable range (6) R = F G nhóm đại số trường F Bổ đề 18 Giả sử G nhóm R Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử quasi-invertible R Định lý 46 Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R) (2) R vành Jacobson lớn đóng với phép nhân phần tử quasi-invertible R (3) G nhóm lớn R phép cộng bao gồm phần tử quasi-invertible đóng với phép nhân phần tử quasi-invertible R 94 28.2 Mở rộng tốn tử ∆ cho vành khơng có đơn vị Bổ đề 19 Cho R vành khơng thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Mệnh đề 56 Cho R vành bất kỳ, ta có điều sau (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) không chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử unit regular khác khơng Hệ 41 Cho R vành có unit regular, ∆(R) = Hệ 42 Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Mệnh đề 57 Giả sử R vành 2-primal Khi ∆(R[x]) = ∆(R) + J(R[x])

Ngày đăng: 05/07/2023, 14:29

Xem thêm:

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w