1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tích phân perron

95 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 95
Dung lượng 510,4 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: TÍCH PHÂN PERRON LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Giải tích lồi nhánh nhỏ giải tích đại, nghiên cứu tập lồi hàm lồi với vấn đề liên quan Giải tích lồi có vai trị quan trọng nhiều lĩnh vực khác toán học ứng dụng, đặc biệt tối ưu hoá, bất đẳng thức biến phân, toán cân Có thể nói, Giải tích lồi sở lý thuyết quan trọng lĩnh vực tối ưu hố số lĩnh vực khác Ngồi vai trị quan trọng tốn ứng dụng trên, Giải tích lồi sở để để phát triển nhánh toán học lý thuyết khác Giải tích phức đặc biệt lý thuyết vị lý thuyết đa vị 680 2 Độ giao hốn tương đối nhóm Ta bắt đầu định nghĩa độ giao hoán nhóm Định nghĩa Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hốn tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa ?? ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa ?? Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hốn tương đối ta có kết sau Mệnh đề Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh Kết sau cho ta công thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề ??, ta có k X X |CG (x)| = |O(xi )||CG (xi )| Pr(H, G) = |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hoán tương đối nhóm nhóm với độ giao hốn nhóm nhóm Bổ đề Cho H nhóm G Khi với phần tử x ∈ G |H : CH (x)| ⩽ |G : CG (x)| Hơn nữa, dấu đẳng thức xảy G = HCG (x) Chứng minh Lấy x ∈ G Khi đó, theo Mệnh đề ??, ta có |H||CG (x)| = |HCG (x)| ⩽ |G| |H ∩ CG (x)| Do |H| |G| ⩽ |H ∩ CG (x)| |CG (x)| Mà H ∩ CG (x) = {a ∈ H | a ∈ CG (x)} = CH (x), từ suy |H| |G| ⩽ |CG (x)| |CH (x)| Do đó, theo Định lý Lagrange ta có |H : CH (x)| ⩽ |G : CG (x)| Từ lập luận ta thấy dấu đẳng thức xảy G = HCG (x) Vậy ta có điều phải chứng minh Mệnh đề sau cho ta đánh giá độ giao hốn tương đối nhóm nhóm nhờ độ giao hốn nhóm nhóm Mệnh đề Cho H nhóm nhóm G Khi Pr(G) ⩽ Pr(H, G) ⩽ Pr(H) Chứng minh Theo Mệnh đề ?? ta có X Pr(H, G) = |H||G| |CG (x)| = x∈H X |CG (x)| |H| |G| x∈H Theo Bổ đề ?? ta có |CG (x)| |C (x)| ⩽ H với x ∈ H |G| |H| Từ suy Pr(H, G) ⩽ X |CH (x)| X = |CH (x)| = Pr(H) |H| |H| |H| x∈H x∈H Theo Mệnh đề ?? ta có Pr(H, G) = X X |CH (y)| |CH (y)| = |H||G| |G| |H| y∈G y∈G Theo Bổ đề ?? ta có |CH (y)| |C (y)| ⩾ G với y ∈ G |H| |G| Từ suy Pr(H, G) ⩾ X |CG (y)| X = |CG (y)| = Pr(G) |G| |G| |G| y∈G y∈G Vậy ta có điều phải chứng minh Mệnh đề sau cho ta điều kiện cần đủ để xảy đẳng thức Mệnh đề Cho H nhóm nhóm G Khi (i) Pr(H, G) = Pr(H) G = HCG (x) với x ∈ H (ii) Pr(H, G) = Pr(G) G = HCG (x) với x ∈ G Chứng minh (i) Từ phép chứng minh Mệnh đề ?? ta thấy Pr(H, G) = Pr(H) |CG (x)| |CH (x)| = với x ∈ H |H| |G| Theo Bổ đề ??, điều xảy G = HCG (x) với x ∈ H Vậy ta có điều phải chứng minh (ii) Lập luận hồn tồn tương tự ta có điều phải chứng minh Từ Mệnh đề ?? ta có hệ sau Hệ Cho H nhóm nhóm G Nếu Pr(H, G) = Pr(G) Pr(H) = Pr(G) Mệnh đề sau cho ta điều kiện đủ để không xảy đẳng thức Mệnh đề ?? Mệnh đề Cho H nhóm nhóm G Nếu H khơng chuẩn tắc G Pr(G) < Pr(H, G) < Pr(H) Chứng minh Giả sử H không chuẩn tắc G Trước tiên ta chứng minh tồn x ∈ H cho G ̸= HCG (x) Thật vậy, giả sử trái lại G = HCG (x) với x ∈ H Lấy g ∈ G x ∈ H Khi g −1 ∈ G = HCG (x) Giả sử g −1 = với h ∈ H, a ∈ CG (x) Khi ta có g −1 xg = (ha)x(ha)−1 = haxa−1 h−1 = hxaa−1 h−1 = hxh−1 ∈ H Điều chứng tỏ H ◁ G, trái với giả thiết Vậy ta có điều phải chứng minh Do đó, theo Bổ đề ?? ta có Pr(H, G) ̸= Pr(H) Pr(H, G) ̸= Pr(G) Kết hợp điều với Mệnh đề ?? ta có bất đẳng thức cần chứng minh Mở rộng Dorroh mở rộng ∆U -vành Mệnh đề Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Mỗi x ∈ ∆(R), ta có − x ∈ U (R), x = − (1 − x) ∈ U◦ (R) Suy ∆(R) ⊆ U◦ (R) Ngược lại, y ∈ U◦ (R) − y ∈ U (R) = + ∆(R) Suy y ∈ ∆(R) hay ∆(R) = U◦ (R) (2) ⇒ (3) Hiển nhiên (3) ⇒ (1) Giả sử ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Khi u ∈ U (R), tồn x ∈ ∆(R) thỏa mãn u = ε(x) = − x Điều nghĩa U (R) ⊆ + ∆(R) hay U (R) = + ∆(R) Nếu R vành, mở rộng Dorroh vành có đơn vị Z ⊕ R, với phép toán cộng cộng theo thành phần phép nhân cho (n1 , r1 )(n2 , r2 ) = (n1 n2 , r1 r2 + n1 r2 + n2 r1 ) (36) |(f ∗ ϱ)(x)| dx = dx n n n R R R Nhớ lại Bài tập Cho h : Rn → Z R ϱ : Ω → [0, +∞) hàm đo Lebesgue giả sử ϱdx = Chứng minh với p ∈ Rn [1, +∞) p Z |h|ϱdx Z ≤ |h|p ϱdx Rn Rn Theo (??), tập ?? định lý Fubini-Tonelli, suy Z  Z ∥f ∗ ϱ∥pLp (Rn ) ≤ |f (x − y)|p ϱ(y)dy dx Rn Rn Z Z |f (x − y)|p dx ϱ(y)dy =  ϱ(y)dy = |f (x)|p dx Rn Rn Rn Rn  Z Z = ∥f ∥pLp (Rn ) Bây cho p = ∞ Theo định nghĩa tích chập Z Z |(f ∗ ϱ)(x)| = |(ϱ ∗ f )(x)| = ϱ(x − y)f (y)dy ≤ ∥f ∥L∞ (Rn ) n R = ∥f ∥L∞ (Rn ) , ϱ(x − y)dy Rn ∀x ∈ Rn Do đó, ta có điều phải chứng minh (iii) Đặt ϱh ≡ ϱ cố định x ∈ R Khi đó, từ  ϱ(x − y)f (y) = hầu khắp nơi, y ∈ / x − B(0, 1/h) ∩ spte (f ), Z Z (ϱ ∗ f )(x) := ϱ(x − y)f (y)dy = Rn ϱ(x − y)f (y)dy (x−B(0,1/h))∩spte (f ) Chú ý  x − B(0, 1/h) ∩ spte (f ) ̸= ⇔ x ∈ B(0, 1/h) + spte (f ),  42 (ϱ ∗ f )(x) = với x ∈ / B(0, 1/h) + spte (f ), từ ϱ ∗ f liên tục, spt(ϱ ∗ f ) ⊂ B(0, 1/h) + spte (f ) (iv) Từ (i) (ii), ϱh ∗ f ∈ C∞ (Rn ) ∩ Lp (Rn ) với p ∈ [1, ∞] Ta lim ∥ϱh ∗ f − f ∥Lp (Rn ) = ≤ p < ∞ (37) h→∞ C0c (Rn ) Từ trù mật (Lp (Rn ), ∥.∥Lp ), với ≤ p < ∞, với ϵ > tồn f1 ∈ C0c (Rn ) cho ∥f − f1 ∥Lp ()Rn 0, 43 14 ĐỊNH LÍ FUBINI Định lý 19 (G.Fubini - L.Tonelli) Cho F : R2n → [0, ∞] hàm đo (đối với M2n ) Khi (i) Hàm Rn ∋ y 7→ F (x, y) đo (đối với Mn ) với Ln hầu khắp nơi x ∈ Rn (ii) Hàm Z n R ∋ x 7→ F (x, y)dy Rn đo (đối với Mn ) (ii) F (x, y)dy dx F (x, y)dxdy = R2n Rn  Z Z Z Rn F (x, y)dx dy =  Z Z Rn Rn Bổ đề Cho f ∈ C0 (Rn ) Khi ϱ ∗ f → f tập compact Rn Chứng minh Cho K ⊂ Rn tập compact cho K ′ := K + B(0, 1) Theo tính liên tục f tập compact K ′ , ∀ϵ > tồn < δ = δ(ϵ, K ′ ) < thỏa mãn |f (x − y) − f (x)| ≤ ϵ, ∀x ∈ K, ∀y ∈ B(0, δ) (41) 44 Mặt khác, h ∈ N thỏa 1/h < δ x ∈ K , theo (??), Z

Ngày đăng: 03/07/2023, 08:50

w