trình bày về các bất đẳng thức tích phân 2
Trang 1JlUJl W ha1 iu&uJ Yule Trang 13 @JuLdnfJ 2: @ae ha1 ~ tJuk
CHUaNG II
"-CAC BAT DANG THUC TICH PHAN
Trong chuang nay, chung t6i mu6n nghien cUu cac ba't dAng thlic tich phan bi6u di~n theo gia tri ham va cac d~o ham cua no tren cac khmlng tuang ling K€t qua trong phffn nay cho phep tim l~i cac ba't dAng thlic thuQc lm;li Ostrowski va cac ba't dAng thlic lien quan khac
Djnh Iy 2.1.
dol tren [a,b] va f(n) E L'"([a,b D Khi d6 ta c6 beit dang thac
(2.1)
b ff(t)dt- I (b-X)k+l + (-l)k(x-a)k+l (k)
~ IIf(n)1100 [(x-ay+l +(b-xy+l]
(n + 1)!
~ Ilf(n)t (b - aY+\ \Ix E [a,b],
(n + 1)!
trong d6
Cac b(Jt dang thac nay la sitc va hang so' 1 la tot nhttt.
Chung minh.
Dung dAngthlic (1.1), ta du<;1c
(2.2)
b
Trang 2J~t Jb 1J/fL(lJIUJ tJule Trang 14 ~ 2: @De hat ilLinLJ t1uLe
b
=IfKn (x,t)f(n) (t)dt
a
b
:s;suplf(n) (t)1 flKn (X, t)ldt
aSISb a
~ Ilf'.' II.[t ~~)" dt+ f(b :,1)" dl]
= Ilf(n)!L[(x-ay+l + (b-Xy+l].
(n + I)!
Bfft d~ng thuc thu hai cua (2.1) du'<;1csuy fa tu bfft d~ng thuc sail
(2.3)
Bay gio ta d~ C?P d6n tinh s~c cua bfft d~ng thuc (2.1)
n
Ta co
( t - a + b J
n-k
va
(2.6)
(
ff(t)dt = f~ t - a + b
)
ndt
= 1+ (-IY
(
b - a
)n+l.
(n + I)! 2 Khi do, tu (2.1), ta co
Trang 3JJ~t to' bat ttdrUJ tJum Trang 15 ~ 2: &i£ bat ilkuJ tJum
l+(-lr
(b-a )n+l n-'(b-x)k+'+(-l)k(x-a)k+' 1
(
a+b
)
n-k
(n + I)!
Thay x = a; b vao (2.7), ta du<;1c
(
b-a
J
n+' ~ 2C
(
b-a
J
n+l.
(n + I)! 2 (n + I)! 2
chung minh hoan tfft
Ta cling chti y rang ham s6
hn :[a,b]~IR, hJx)=(x-ar+1 +(b-xr+',
co tinh chfft
(
a+b )
(b-a )n+l
xE[a,b] n n - 2 = 2n'
D d' b'" d? h' '" h'" hA
d " (21)kh ' 1'" a+b
0 0 at ang t tic tot n at n (;In u<;1cta 1 ta ay x = 2'
Lffy x = a ;b trong (2.1) Khi do, ta thu du<;1ch~ qua sau
H~ qua 2.2.
Gid sa rling ham f nhu trang djnh ly 2,1, ta co bat dang thac
(2,10)
b ff(t)dt- I 1+(-1)' (b-a)'" f Ck)
(
a+b
)
~ Ilfcn)t
n+l
MQt ke't qua khac t6ng quat bfft d~ng thuc hinh thang 1a h~ qua sau
Trang 4J/UJl M IffllluLruJ tJule Trang 16 @1uLdrl{J 2: @ae hat ilLi.nq tJuLe
H~ qua 2.3.
V6i cac giG thiet nhu trang dinh ly 2.1, ta co bat dang thac
(2.11 )
b ff(t)dt-I (b-a)k+l f(kJ(a)+(-l)kf(kJ(b)
{
1 n = 2r,
< 1 (b-aJ"'llf'"'II.x 2"','-1 n:2r+l
Chung minh.
Dung d~ng thuc (1.14), ta du<;$c
(2.12)
b
b
a
b
::; Ilf(n) IL ~Tn (t)ldt.
a
* N€u n = 2r, khi d6
= ~ !
[
(b - a)2r+l+ (b - a)2r+l
]
- (b-a)2r+l
(2r + I)!
- (b-ay+l
(n + I)!
* N€u n=2r+1 dAt h (t) = ( b-t )2r+l_
Trang 5J~t W Iffli iu1ruJ tluIR- Trang 17 ~ 2: @Liehat ilfing tluIR-
Chli Y ding
hzr+1(t)
= 0, khi t = a + b
2
Khi d6
(2.14 )
a+b
flhzr+1(t)ldt = f[(b - t)zr+1- (t - a )Zr+l]dt
b
+ f[(t-a)Zr+1 -(b-t)Zr+1]dt
a+b
Z
- 2(b-a)Zr+z
2r+2
4(b;af'
2r+2
= zr~z[Z(b-a)2n2 - (b-a)2n222r ]
( 2 -~ J
Dod6
a 2r+1 (2r+l)!a22r+1
2r+ 22r+1
Trang 6JIiL}l ro 1Jt11ilJ"uJ lJum Trang 18 ~ 2: @ae 1Jt11~ lJuI£
Ba't dAngthuc (2.11) duQcsuy ra tu (2.12), (2.13) va (2.15).
V?y h~ qua 2.3 duQcchung minh
Ba't dAng thuc sail day theo chuftn 11.1100 cho khai tri€n gi6ng Taylor (1.19) cling dung.
H~ qua 2.4.
Gia sa riing ham g nhu trong h~ qua 1.4 Khi d6 ta c6 bilt dang thac
(2.16) g(y) - g(a) - ~L.J (y - X)k+1 + (-I)k (x - a)k+1 (hi)(
II
(n+l)
II
~ g 00 [(y-xy+l +(x-ay+l]
(n + I)!
II
(n+l)
II
~ g 00 (y-ay+l, 'v'xE[a,y].
(n + 1)!
Chung minh.
Cho x E [a,y], tu cac dAngthuc (1.19), (1.20), ta co
y ,
a
~ Ilg(n+I)IL~Kn(x,t)ldt a
=l/g(n+l)t
[ iCt-ay dt+f(y-tYa n! x n! dt ]
Trang 7J~t yj' lull ilLirl{J iJuU! Trang 19 ~2: @LieWil~iJuU!
II (n+l) II
= g 00 [(x-ay+l +(Y_Xy+l]
(n + I)!
II
(n+l)
II
S g 00 (y-aY+\
(n + I)!
trong do, bit d~ng thuc sail cling cua (2.16) du<jcchung minh nho (2.3)
Chu y 2.1.
if Trong (2.16), liy x = a, ta du<jc
k
II
(n+l)
II
Ta cling bi€t rang (2.18) cho mQt danh gia tITcong thuc khai tri€n Taylor c6
(2.18)
di€n xung quanh di€m x =a ma ai cling bi€t.
iif Trong (2.16), liy x = a ~ y , ta du<jc
(
a+y )
II
(n+l)
II
Bit d~ng thuc (2.19) chung to rang voi g E Coo([a,b]) thl chu6i
(
a+ Y J
(2.19) chI chua nhung dt,loham cip Ie cua g
Trang 8JJltll Jij' luLl ilJ.ruJ iJule Trang 20 ~ 2: @Li£hif1 ilJ.ruJ iJule
Ch6 Y 2.2
if Trong bat dAngthuc (2.1), lay n = 1, ta c6
(2.21)
!1(t)dt-(b-a)/(x) ~ (x-a)' ;(b-X)' 11/'11., \fXE[a,b].
Tinh to an don gian ta thu du<:jc
(2.22) -[(x-a)1 2 +( -x) ]=-( b 2 1 b -a) 2 + x ( a + b )2.
Khi d6, ta thu du<:jcbat dAng thuc Ostrowski
2
a+b
(2.23)I/(x) fl(t)dt::; -+ 2 l(b-a)ll/l", \ixE[a,b].
iif Trong bat dAng thuc (2.10), lay n = 1 ta du<:jcbat dAng thuc trung di€m
(2.24 )
!f(IJdl-(b-aJf( a;b)l:;; ~(b-aJ21If'II
iiif Trong bat dAng thuc (2.11), lay n = 1, ta du<:jcbat dAng thuc hlnh thang
(2.25)
!f(t)dt-(b-a/(a); f(b)[ ~ ~ (b-a)'lIft.
ivf Trong bat dAng thuc (2.16), lay n = 1, ta thu du<:jcbat dAng thuc
2
a+y
\ix E [a,y].
Ch6 Y 2.3.
if Trong bat dAng thuc (2.1), lay n = 2, khi d6 ta du<:jc
Trang 9Jlfi}l M Iffli ili1uJ 1JttI£ Trang 21 @/w'dmJ 2: @LieMl ~ 1JttI£
(2.27)
b
(
a+b
)
fl(t)dt-(b-a)/(x)+(b-a) X-2 II (X)
1
Bay gio, ta chli y rang
(2.28)
khi do, ta Hm l(;liduc;5cbat d~ng thlic trong [2]
(2.29)
b
(
a+b
)
fl(t)dt - (b - a)/(x) + (b - a) x -2 II (x)
2
~ 1-+
I(b )3
11
II
II
24 2 (b - a)2 - a I ",' Vx E [a,b].
ii/ Trong bat d~ng thlic (2.10), lay n = 2, ta thu duc;5cbat d~ng thlic trung
di~m c6 di~n
(2.30)
(2.31)
b fl(t)dt - (b - a) lea) + I(b) (b - a)2 II (a) - II (b)
< (b - a) 3111IIt
iv/ Cu6i cling, trong (2.16), lay n = 2, ta thu duc;5cbat d~ng thlic
(2.32)
g(y)- g(a) -(y-a)gl (x) + (y-a{x- a~ Y )gll (x)
Trang 10J~t .uf IJiiL~ tJui'R Trang 22 ~ 2: @ae IJiiL~ tJui'R
(
X - a + Y
J
2
~ 1-+
I( )3
11
///
11
242 (y-a)2 y-a g oo,VxE[a,y].