1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Mã hóa nguồn - Lý thuyết truyền thông Chương 3

16 830 6

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 0,95 MB

Nội dung

Chương 3 HÓA NGUỒN 3.1 Các mô hình toán cho tin tức: Mọi nguồn tín hiệu thông tin tạo các ngõ ra ngẫu nhiên, nghĩa là ngõ ra nguồn được xác định bằng thành phần thống kê. Có 2 dạng nguồn tin: rời rạc và liên tục. Tùy theo dạng nguồn tin ta có mô hình toán cho mỗi nguồn tin đó. Dạng nguồn tin rời rạc đơn giản nhất là dạng được phát đi bằng chuỗi các ký tự chọn ra từ các ký tự alphabet giới hạn trước. Ví dụ: như nguồn tin nhị phân phát ra từ chuỗi nhị phân có dạng 100101110, lúc này ký tự alphabet chỉ có dạng cơ số 2 bao gồm ký tự 1 và 2. Mô hình toán cho nguồn tin rời rạc (Discrete source): Mỗi ký tự trong hệ thống alphabet {x 1 , x 2 , …, x L } có xác suất p k lần xảy ra: p k = P (X = x k ), 1≤k≤L với ∑ = = L k k p 1 1 ; L: số ký tự có thể có trong hệ thống. Xét 2 mô hình toán học của nguồn tin rời rạc: • DSM (discrete memoryless source: nguồn tin không nhớ rời rạc): - Chuỗi ngõ ra của nguồn này có tính độc lập, thống kê. Nghĩa là các ký tự của ngõ ra có tính độc lập thống kê đối với tất cả các ngõ ra trước và sau. Một nguồn có ngõ ra thoả mãn điều kiện đó gọi là nguồn có tính chất không nhớ. • Nguồn tin rời rạc tĩnh (stationary) Nếu ngõ ra nguồn là có tính phụ thuộc thống kê, ta có thể xây dựng mô hình toán dựa trên thống kê tĩnh. - Một nguồn tin rời rạc được gọi là tĩnh nếu các xác suất chung của 2 chuỗi có chiều dài n (a 1 , a 2 , …, a n ) và (a 1+m , a 2+m , a n+m ) (với n≥1, với mọi m) là đồng nhất như nhau. Xác suất chung cho mọi chuỗi chiều dài tuỳ ý của chuỗi nguồn ngõ ra là không đổi. Mô hình toán cho nguồn tin tương tự: (Analog source): Một nguồn tương tự có dạng sóng ngõ ra là x(t) là hàm mẫu của quá trình xử ngẫu nhiên X(t). Với X(t) là quá trình ngẫu nhiên tĩnh với hàm tự tương quan Φ xx (τ) và mật độ công suất Φ xx (f). Khi X(t) là quá trình ngẫu nhiên băng hẹp. Ví dụ như Φ xx (f)=0 với |f|≥W, thì Với {X(n/2W)} là các mẫu của X(t) tại f s = 2W samples/s. Do đó, ta có thể áp dụng định lấy mẫu này để biến đổi ngõ ra của nguồn tương tự tương đương nguồn rời rạc. Sau đó, ngõ ra nguồn được mô tả thống kê bằng hàm mật độ xác suất (pdf) p (x 1 , x 2 , …, x m ) với mọi m≥1, X n = X(n/2W), 1≤n≤m, là các biến đổi ngẫu nhiên phù hợp với X(t). Lưu ý: ngõ ra lấy mẫu {X(n/2W)} từ nguồn tĩnh thì thường liên tục, và chúng không thể mô tả hoàn toàn theo dạng số không giảm độ chính xác. Ví dụ như ta có thể lượng tử hoá mỗi mẫu thành một dạng của các giá trị rời rạc nhưng kết quả xử vẫn thiếu chính xác và tín hiệu gốc không thể xây dựng lại chính xác từ các giá trị mẫu đã được lượng từ hoá đó. 3.2 Đo lường tin tức: 3.2.1 Số Đo Thông Tin a. Lượng đo tin tức: Nguồn A có m tín hiệu đẳng xác xuất, một tin do nguồn A hình thành là một dãy n ký hiệu a i bất kỳ (a i ∈ A). – Lượng tin chứa trong một a i bất kỳ: I(a i )=logm (1) - Lượng tin chứa trong một dãy x gồm n ký hiệu: I(x) = n.log m (2) Đơn vị lượng đo thông tin thường được chọn là cơ số 2. - Khi m ký hiệu của nguồn tin có xác xuất khác nhau và không độc lập thống kê với nhau thì lượng tin riêng của từng ký hiệu: I(x i ) = log (1/p(a i )) (3) • Lượng tin riêng: I(x i ) = -log p(x i ) (4) Là lượng tin ban đầu được xác định bằng xác xuất tiên nghiệm. • Lượng tin còn lại của x i sau khi đã nhận được y j được xác định bằng xác suất hậu nghiệm. )(log)/( j i ii y x pyxI −= (5) • Lượng tin tương hỗ: ) ( ) ( / ) ( ) ( ) log ( i j i i i i i x p y I x y I x I y p x = − = (6) • Đặc tính của lượng tin: + I(x i ) ≥ I(x i ; y i ) (7) + I(x i ) ≥ 0 (8) + I(x i .y i ) = I(x i ) + I(y i ) - I(x i ; y i ) (9) Khi cặp x i , y j độc lập thống kê với nhau thì I(x i ; y i ) = 0 Ta có: I(x i ; y i ) = I(x i ) + I(y i ) (10) • Lượng tin trung bình: là lượng tin tức trung bình chứa trong m ký hiệu bất kỳ của nguồn đã cho. ∑ −= X xpxpxI )(log)()( (11) • Lượng tin tương hỗ trung bình: ∑ = XY xp yxp yxpYXI )( )/( log),(),( (12) • Lượng tin riêng trung bình có điều kiện: ∑ −= XY xyyxpXYI )/log(),()/( (13) b. Entrôpi nguồn rời rạc: là một thông số thống kê cơ bản của nguồn. Về ý nghĩa vật độ bất ngờ và lượng thông tin trái ngược nhau, nhưng về số đo chúng bằng nhau: ∑ −== )(log)()()( xpxpXIXH (1) • Đặc tính của Entrôpi H(X): + H(X) ≥ 0 + H(X) = 0 khi nguồn tin chỉ có một ký hiệu + H(X)max khi xác suất xuất hiện các ký hiệu của nguồn bằng nhau. • Entrôpi đồng thời: là độ bất định trung bình của một cặp (x,y) bất kỳ trong tích XY. ∑ − −= XY yxpyxpXYH ),(log),()( (2) • Entrôpi có điều kiện: ∑ − −= XY yxpyxpYXH )/(log),()/( (3) 3.2.2 Thông Lượng Của Kênh Thông Tin: • Tốc độ thiết lập tin của nguồn: R= n 0 .H(X) (bps) (1) + H(X); entrôpi của nguồn. + n 0 : số ký hiệu được lặp trong một đơn vị thời gian • Thông lượng của kênh C là lượng thông tin tối đa kênh cho qua đi trong một đơn vị thời gian không gây sai nhầm. C(bps) • Thông thường R < C, để R tiến tới gần C ta dùng phép hoá thống kê tối ưu để tăng Entrôpi. a. Thông lượng kênh rời rạc không nhiễu: C = R max = n 0 . H(X) max (bps) (2) Độ dư của nguồn: max )( )( 1 XH XH r −= (3) Dùng phương pháp hóa tối ưu để giảm độ dư của nguồn đến không hoặc sử dụng độ dư của nguồn để xây dựng hiệu chống nhiễu. b. Thông lượng kênh rời rạc có nhiễu: R = n o I(X;Y) = n 0 [H(X)-H(X/Y)] (bps) (4) • Tốc độ lập tin cực đại trong kênh có nhiễu: C = R max = n 0 [H(X)-H(X/Y)] max (bps) (5) 3.3 hoá cho nguồn tin rời rạc: 3.3.1 hiệu và các thông số cơ bản của hiệu: Tốc độ lập tin của nguồn tin bất kỳ thường là rất thấp so với thông lượng kênh. Để sử dụng có hiệu quả kênh cũng như làm tăng khả năng chống nhiễu của kênh ta sử dụng phương pháp hoá. Bản chất của phương pháp này là biến đổi nguồn tin đã cho thành nguồn tin mới có những đặc tính thống kê phù hợp với kênh truyền (thêm thông tin chống nhiễu, tăng tốc độ lập tin). Nguồn tin mới đó được gọi là hiệu. Như vậy, hiệu là một nguồn tin với những đặc tính thống kê phù hợp với C và khả năng chống nhiễu của kênh truyền. Ví dụ: Sử dụng bit kiểm tra chẵn lẻ như sau: Tin cần phát đi: 1010111 Được hóa thành: 10101111 Bit 1 được thêm vào để đảm bảo tổng số bit 1 trong 8 bit là một số chẵn. Nếu khi thu được 8 bit có tổng số bit 1 là số lẻ tức là có lỗi trong 8 bit đó. Rõ ràng ở ví dụ trên ta đã thêm thông tin để có thể phát hiện lỗi. Việc thêm thông tin này làm tăng tốc độ lập tin (do tăng n 0 ) • Cơ số của (m) là số các ký hiệu khác nhau trong bảng chữ của mã. Đối với nhị phân m=2. o Ở ví dụ trên: ta dùng 2 ký hiệu khác nhau là ‘0’ và ‘1’ -> m=2. o Ở bộ Morse dùng trong điện báo có 3 ký hiệu khác nhau là ‘.’, ‘_’, ‘ ‘ -> m=3 • Độ dài của n là số ký hiệu trong một từ mã. Có 2 loại mã: o đều: các từ có độ dài bằng nhau. – Ở ví dụ dùng thêm một bit kiểm tra chẵn lẽ cho từng nhóm 7 bit đề thành nhóm 8 bit. -> đều, n=8 o không đều: các từ có độ dài không bằng nhau. – Ở bộ Morse dùng trong điện báo có các từ không đều nhau (A=‘. _’; B=‘_ . . .’) -> không đều, có độ dài n = 1, 2, 3, 4, 5 • Với bộ không đều, ta có khái niệm độ dài trung bình của các từ mã: o Cho nguồn tin {A, p(x i ), i=1 n)} o Độ dài trung bình của các từ là: ∑ = = 1 )( i ii nxpn (i=1÷N) (1) + p(x i ): xác suất xuất hiện tin x i của nguồn X được hóa. + n i : độ dài từ tương ứng với tin x i . + N: Tổng số từ tương ứng với tổng số các tin của x i • Số từ khác nhau trong bộ (N): Trong đều: o Nếu N = m n ta có đầy. – Ví dụ, ta sử dụng bộ đều, cơ số 2 (‘0’, ‘1’) có độ dài các từ là 8. Tức là m=2, n=8. – Nếu ta sử dụng 28 = 256 từ thì đây là bộ đầy. o Nếu N < m n ta có vơi. – Ở ví dụ trên nếu ta sử dụng ít hơn 256 từ mã, tức là ta có bộ vơi. Điều kiện thiết lập hiệu: Điều kiện chung cho các loại là quy luật đảm bảo sự phân tách các tổ hợp mã. Điều kiện phân tách được: việc hoá và giải phải là 1-1 nghĩa là khi bên phát phát bộ nào đó thì bên thu chỉ giải duy nhất 1 thôi. Ví dụ: một nguồn tin có 4 tin {a, b, c, d}. Ta hoá với hiệu như sau: o a -> 00; b -> 01; c -> 10; d -> 11. o Giả sử bản tin cần hoá là: (acdba). o hoá thành: (0010110100). o Giải trở lại: (acdba). o Ta chỉ có một kết quả hoá và giải mã. o Thoả mãn điều kiện phân tách được. Ví du trênï: một nguồn tin có 4 tin {a, b, c, d}. Ta hoá với hiệu như sau: o a -> 0; b -> 1; c -> 10; d -> 11 o Giả sử bản tin cần hoá là: (acdba) o hoá thành: (0101110) o Giải trở lại: (ababbba) hoặc (acdba) o Ta có hơn một kết quả hoá và giải o Không thoả mãn điều kiện phân tách được Điều kiện hiệu quả kinh tế: việc hoá phải sử dụng các từ càng ngắn càng tốt. Điều kiện thời gian xử lý: việc hoá phải và giải phải đơn giản, càng ít trễ càng tốt. Điều kiện riêng cho các loại mã: + Đối với thống kê tối ưu: độ dài trung bình tối thiểu của mã. + Đối với sửa sai: khả năng phát hiện và sửa sai cao. 3.3.2 Phương pháp biểu diễn mã. a- Các bảng mã: Tin a 1 a 2 a 3 a 4 a 5 Từ 00 01 100 1010 1011 Mặt tạo độ mã: ∑ = − = n K K Ki b 1 1 2 σ (1) σ K = 0 hay 1; K: số thứ tự của ký hiệu trong từ b- Đồ hình mã: Cây 0 1 1 0 1 2 0 3 0 1 0 1 a 1 (00) a 2 (01) a 3 (100) a 4 (1010) a 5 (1011) 1 2 3 4 0 0V1 0 1 0v1 Ñoà hình keát caáu 0 c- Hàm cấu trúc của mã: 2 Khi n i = 2 G(n i ) = 1 Khi n i = 3 2 Khi n i = 4 Điều kiện để phân tách được : có tính phân tách được: Điều kiện cần và đủ để có tính phân tách được là bất kỳ tổ hợp nào cũng không được trùng với phần đầu của tổ hợp khác. o Ví dụ: một nguồn tin có 4 tin {a, b, c, d}. Ta hoá với hiệu như sau: – a -> 00; b -> 01; c -> 10; d -> 11 – Nguồn tin này thoả mãn điều kiện phân tách được. o Nếu Ta hoá với hiệu như sau: – a -> 0; b -> 1; c -> 10; d -> 11 – Nguồn tin không thoả mãn điều kiện phân tách được. • có tính Prefix - Bất kỳ dãy các từ nào của bộ cũng không được trùng với một dãy từ khác của cùng bộ mã. - Vậy có tính prefix thoả mãn điều kiện phân tách được. - có tính prefix nếu bất kỳ tổ hợp nào cũng không phải là prefix của một tổ hợp nào khác cùng bộ mã. Điều kiện để có tính prefix: ∑ = − ≤ n j j jG 1 1)(2 • hệ thống có tính prefix được xây dựng từ một prefix nào đó bằng cách lấy một số tổ hợp của prefix gốc làm tổ hợp sơ đẳng và các tổ hợp còn lại làm tổ hợp cuối. Ghép các tổ hợp sơ đẳng với nhau và nối một trong các tổ hợp cuối vào thành tổ hợp mới gọi là hệ thống có tính prefix. • hệ thống có tính Prefix có: o Ưu điểm: - Có tính chống nhiễu. - Có tính bảo mật cao. o Nhược điểm: - Độ dài từ lớn-> hiệu suất truyền tin giảm. Tuy nhiên độ dài từ càng tăng thì tính bảo mật càng tăng. • Ví dụ: Lấy bộ prefix 1,00,010,011 - Các tổ hợp sơ đẳng: 1,00,010 - Một tổ hợp cuối: 011 • Gọi : - n 1 , n 2, …, n i là độ dài các tổ hợp sơ đẳng - λ 1 , λ 2 ,…, λ k là độ dài các tổ hợp cuối - Số có thể có được các dãy ghép bằng các tổ hợp sơ đẳng có độ dài n j bằng: g(n j ) = g(n j -n 1 ) + g(n j -n 2 ) +…+ g(n j -n i ) (1) Trong đó: n j ≥ 1; g(0) = 1 ; g(n j < 0) = 0 • Nếu chỉ dùng một tổ hợp cuối λ, hàm cấu trúc sẽ là: G(n j ) = g(n j - λ) (2) + Từ (1) và (2) ta có công thức truy chứng tính G(n j ) G(n j ) = G(n j -n 1 ) + G(n j -n 2 ) + …+ G(n j -n i ) (3) Trong đó: n j ≥ λ+1; G(n j = λ) = 1; G(n j < λ) = 0 + Từ (1) ta có: n 1 =1, n 2 =2, n 3 =3 và λ =3 ⇒ g(n j ) = g(n j -1) + g(n j -2) + g(n j -3) g(n j =1) = g(0) + g(-1) + g(-2) = 1 → có 1 dãy: 1 g(n j =2) = g(1) + g(0) + g(-1) = 2 → có 2 dãy: 00 và 11 g(n j =3) = g(2) + g(1) + g(0) = 4 → có 4 dãy: 111, 100, 001, 010 + Từ (3) ta có: G(n j ) = G(n j -1) + G(n j -2) +G(n j -3) Trong đó: n j = λ +1=4 ; G(n j =3) = 1 ; G(n j <3) = 0 G(4) = G(3) + G(2) + G(1) = 1 → có 1 dãy: 1011 (ghép các tổ hợp sơ đẳng với tổ hợp cuối nằm cuối cùng). G(5) = G(4) + G(3) + G(2) = 2 → có 2 dãy: 11011 và 00011 G(6) = G(5) + G(4) + G(3) = 4 → có 4 dãy: 111011, 100011, 001011, 010011 G(7) = G(6) + G(5) + G(4) = 7 → có 7 dãy: 1111011, 1100011, 1001011, 0011011, 1010011, 0101011 và 0000011 + Ta có thể tìm G(n j ) từ công thức (2) : G(n j ) = g(n j -3) G(4) = g(4-3) = g(1) = 1 G(5) = g(5-3) = g(2) = 2 G(6) = g(6-3) = g(3) = 4 • Nếu dùng nhiều tổ hợp cuối để ghép λ 1 , λ 2 , …λ I , cách ghép các dãy tổ hợp sơ đẳng với một trong các tổ hợp cuối có nhiều cách. G(n j ) = g(n j - λ 1 ) + g(n j - λ 2 ) + ….+ g(n j - λ k ) (4) - Ví dụ: Với bộ ở trên ta lấy + Hai tổ hợp sơ đẳng : 1, 00 ⇒ n 1 = 1, n 2 = 2 + Hai tổ hợp cuối: 010, 011 ⇒ λ 1 = λ 2 = 3 + Từ (1) ta tính được số có thể có được các dãy ghép bằng các tổ hợp sơ đẳng có độ dài n j bằng: g(n j ) = g(n j –1) + g(nj-2) Trong đó n j ≥1, g(0) = 1, g (n j < 0) = 0 g(1) = g(0) + g(-1) = 1 ⇒ 1dãy :1 g(2) = g(1) + g(0) = 2 ⇒ 2 dãy :11 và 00 g(3) = g(2) + g(1) = 33 dãy :111, 100, 001 g(4) = g(3) + g(2) = 5 ⇒ 5 dãy :1111, 0000, 1100, 0011, 1001 + Từ (2) ta có: G(n j ) = 2g(n j -3) trong đó n j ≥4; G(3) =1; G(n j <3) =0 G(4) = 2g(1) = 2x1 = 2 ⇒ 1010 và 1011 G(5) = 2g(2) = 2x2 = 4 ⇒ 11010, 00010, 11011, và 00011 G(6) = 2g(3) = 2x3 = 6 ⇒ 111010, 100010, 001010, 111011, 100011, và 001011 G(7) = 2g(4) = 2x5 = 10 3.3.3 Các loại thống kê tối ưu (TKTƯ) 3.3.3.1 Một số định cơ bản của TKTƯ Các tin từ các nguồn tin thường có xác suất xuất hiện không đều. Nếu hoá với bộ đều thì bản tin sau hoá sẽ dài hơn phương pháp hoá ở đó: o Tin xuất hiện nhiều dùng từ ngắn. o Tin xuất hiện càng ít dùng từ càng dài. Loại không đều này được gọi là thống kê tối ưu. Ví dụ: Morse dùng trong điện báo là thống kê tối ưu. Ở đó: o Chữ E và chữ T xuất hiện nhiều nhất nên hoá một ký hiệu: – E = (.) – T = (_). o Các chữ X, Y, Z, Q…xuất hiện rất ít nên được hoá tới 4 ký hiệu: – X=(_ . . _) – Y=(_ . _ _) – Z=(_ _ . .) • Định giới hạn về độ dài trung bình của từ mã: n H(U) ≤ n ≤ H(U) +1 (1) ⇒ thống kê có hai đặc điểm sau: - Các ký hiệu khác nhau của bộ chữ phải đồng xác suất. - Xác suất xuất hiện các ký hiệu trong từ không phụ thuộc sự có mặt của các ký hiệu ra trước. • Tiêu chuẩn kinh tế tối ưu: − = n UH )( ρ (2) H(U): Entrôpi của nguồn n : độ dài trung bình của từ mã. ⇒ ρ càng tiến tới 1 tính kinh tế của càng cao. • thống kê có tính prefix. • )(2 i n up i ≤ − (3) & 12 1 ≤ ∑ = − N i n i (4) 3.3.3.2 Thống kê tối ưu Sannon: Các bước thực hiện thống kê tối ưu Sannon: Bước 1: Liệt kê các tin của nguồn U i và các xác suất p i tương ứng theo xác suất giảm dần. Bước 2: Ứng với mỗi hàng u i , p i ghi một số P i theo biểu thức: P i = p 1 + p 2 +….+ p i-1 Bước 3: Đổi các số thập phân P i thành các số nhị phân Bước 4: Tính độ dài từ mã: ii n i n up −− ≤≤ 1 2)(2 (2) Bước 5: Từ (n i , b i ) sẽ là n i ký hiệu nhị phân (kể từ số lẻ trở đi) của số nhị phân P i Ví dụ: lập cho nguồn U có sơ đồ thống kê: U i U 1 U 2 U 3 U 4 U 5 U 6 U 7 p i 0,34 0,23 0,19 0,1 0,07 0,06 0,01 U i p i P i Số nhị phân P i n i Từ U 1 0,34 0 0,0000 2 U 2 0,23 0,34 0,0101 3 U 3 0,19 0,57 0,1001 3 U 4 0,1 0,76 0,1100 4 U 5 0,07 0,86 0,11011 4 U 6 0,06 0,93 0,11101 5 U 7 0,01 0,99 0,1111110 7 1111110 + P i được tính theo bước 2: i = 1→ P 1 = p 0 = 0 i = 2→ P 2 = p 1 = 0,34 i =3→ P 3 = p 1 + p 2 = 0,57 + Đổi P i sang số nhị phân: P i = 0,34 x 2 0,68 → 0 x 2 1,36 → 1 - 1 0,36 x 2 0,72 → 0 x 2 1,44 → 1 Khi đó P i = 0,34 → 0,0101 P i = 0,86 x 2 1,72 → 1 - 1 0,72 x 2 1,44 → 1 - 1 0,44 x 2 0,88 → 0 x 2 1,76 → 1 - 1 0,76 x 2 1,52 → 1 Khi đó P i = 0,86 → 0,11011 + Tính n i theo (2) n i = 1 ⇒ 2 -1 = 0,5 > p i =0,34 ⇒ bị loại n i = 2 ⇒ 2 -2 = 0,25 < p i =0,34 < 2 1-2 =0,5 ⇒ thỏa mãn ⇒ vậy ta lấy n i = 2 suy ra từ mã: 00 n i = 3 ⇒ 2 -3 = 0,125 < p i =0,23 <0,25 ⇒ lấy n i =3 ⇒ 010 • Tính kinh tế của mã: H(U)= i i i pp 2 7 1 log ∑ = − [ ] 37,201,0log01,0 34,0log34,0 22 ≈++−= n = ( ) ( ) ( ) ∑ = =+++= 7 1 99,2701,0 323,0234,0 i ii xxxnp [...]... 0,98 Mặc dù tối ưu hơn so với Sannon và Fano, nhưng khi bộ nguồn có nhiều tin thì bộ trở nên cồn Khi đó người ta kết hợp 2 phương pháp hóa: Hốp man + đều ui u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u 13 u14 Pi Hốp man đều 0,5 0 0,25 0 1 Từ 0 0,50 1 0, 031 5 1 10 00 11000 0, 031 5 0,125 01 11001 0, 031 0 10 11010 11 11011 0, 031 0,0157 000 111000 0,0157 0,25 001 111001 0,0157 010 111010... u3 1 1 0 u5 0 1 u6 u6 1 u7 u7 Cách chia 1 3. 3 .3. 4 TK tối ưu Huffman: Theo Hốpman để có một bộ Prephic có độ dài từ tối thiểu, điều kiện cần và đủ là thỏa mãn 3 tính ch 1Tính thứ tự độ dài các từ mã: pi ≥ pj với i . H(U)= i i i pp 2 7 1 log ∑ = − [ ] 37 ,201,0log01,0 34 ,0log34,0 22 ≈++−= n = ( ) ( ) ( ) ∑ = =+++= 7 1 99,2701,0 32 3,0 234 ,0 i ii xxxnp ⇒ p= 81,0 99,2 37 ,2)( == n UH 3. 3 .3. 3 Mã thống kê tối ưu Fano: Các. kê: U i U 1 U 2 U 3 U 4 U 5 U 6 U 7 p i 0 ,34 0, 23 0,19 0,1 0,07 0,06 0,01 U i p i P i Số nhị phân P i n i Từ mã U 1 0 ,34 0 0,0000 2 U 2 0, 23 0 ,34 0,0101 3 U 3 0,19 0,57 0,1001 3 U 4 0,1 0,76 0,1100. 00010, 11011, và 00011 G(6) = 2g (3) = 2x3 = 6 ⇒ 111010, 100010, 001010, 111011, 100011, và 001011 G(7) = 2g(4) = 2x5 = 10 3. 3 .3 Các loại mã thống kê tối ưu (TKTƯ) 3. 3 .3. 1 Một số định lý cơ bản của

Ngày đăng: 22/05/2014, 18:08

TỪ KHÓA LIÊN QUAN

w