1. Trang chủ
  2. » Luận Văn - Báo Cáo

Ứng dụng mô hình ai để dự báo các tham số môi trường trong hệ thống quan trắc môi trường nuôi trồng thủy sản thông minh

105 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 105
Dung lượng 8,88 MB

Nội dung

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LUẬN VĂN THẠC SĨ Ứng dụng mơ hình AI để dự báo tham s ố môi trường hệ thống quan trắc môi trường nuôi trồng thủy sản thông minh HÀ NGỌC ANH Anh.HN202049M@sis.hust.edu.vn Ngành: Kỹ thuật viễn thông Giảng viên hướng dẫn: PGS.TS Trần Quang Vinh Trường: Điện - Điện tử HÀ NỘI, 2022 TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LUẬN VĂN THẠC SĨ Ứng dụng mơ hình AI để dự báo tham s ố môi trường hệ thống quan trắc môi trường nuôi trồng thủy sản thông minh HÀ NGỌC ANH Anh.HN202049M@sis.hust.edu.vn Ngành: Kỹ thuật viễn thông Giảng viên hướng dẫn: Trường: PGS.TS Trần Quang Vinh Điện - Điện tử HÀ NỘI, 2022 Chữ ký GVHD CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự – Hạnh phúc BẢN XÁC NHẬN CHỈNH SỬA LUẬN VĂN THẠC SĨ Họ tên tác giả luận văn : Hà Ngọc Anh Đề tài luận văn: Ứng dụng mơ hình AI để dự báo tham số môi trường hệ thống quan trắc môi trường nuôi trồng thủy sản thông minh Chuyên ngành: Kỹ thuật viễn thông Mã số HV: 20202049M Tác giả, Người hướng dẫn khoa học Hội đồng chấm luận văn xác nhận tác giả sửa chữa, bổ sung luận văn theo biên họp Hội đồng ngày 20/10/2022 với nội dung sau: - Đã chỉnh thay đổi từ “bài báo” thành “luận văn” số trang nội dung luận văn - Đã giải thích ý nghĩa đường cong CDF đánh giá kết - Đã thêm số phân tích bình luận đánh giá khoảng tin cậy - Đã thêm phần Phạm vi nghiên cứu sau phần Mục tiêu luận văn - Đã chỉnh lại nội dung tiếng việt số hình vẽ luận văn Ngày Giáo viên hướng dẫn PGS.TS Trần Quang Vinh CHỦ TỊCH HỘI ĐỒNG PGS.TS Hà Duyên Trung tháng năm 2022 Tác giả luận văn Hà Ngọc Anh Lời cảm ơn Trước tiên xin chân thành cảm ơn PGS.TS Trần Quang Vinh – Giảng viên hướng dẫn trực tiếp tơi q trình làm luận văn Tôi xin cảm ơn thầy cô Trường Điện – Điện tử, Trường Đại học Bách khoa Hà Nội truyền đạt cho kiến thức chuyên sâu suốt thời gian học tập để tơi có tảng kiến thức hỗ trợ cho tơi q trình làm luận văn thạc sĩ Cuối cùng, tơi xin gửi lời cảm ơn đến gia đình bạn bè ln hỗ trợ tơi khuyến khích liên tục suốt thời gian học tập trình nghiên cứu viết luận văn Xin chân thành cảm ơn! Tóm tắt nội dung luận văn Luận văn trình bày trình xây dựng mơ hình AI để dự báo tham số mơi trường hệ thống quan trắc môi trường nuôi trồng thủy sản thông minh Để thực mục tiêu đó, tác giả khảo sát vấn đề cơng trình có sẵn liên quan đến đề tài, trình bày nội dung sở lý thuyết liên quan đến liệu chuỗi thời gian ứng dụng deep learning liệu chuỗi thời gian Trên sở đó, tác giả đưa giải pháp lựa chọn, cải tiến cập nhật mơ hình dự báo Đề xuất tác giả luận văn phương pháp dự báo chất lượng nước mới, dựa mạng neural nhớ dài hạn ngắn hạn (LSTM), cải tiến để phù hợp với đặc điểm dự báo nuôi trồng thủy sản Các thông số liệu môi trường nước sử dụng luận văn đo vịnh Xuân Đài, tỉnh Phú Yên vào năm 2020, phương pháp so sánh với mơ hình RNN, GRU kết cho thấy mơ hình LSTM hoạt động xác hiệu HỌC VIÊN Hà Ngọc Anh MỤC LỤC DANH MỤC KÝ HIỆU VÀ CHỮ VIẾT TẮT iv DANH MỤC HÌNH VẼ v DANH MỤC BẢNG BIỂU viii CHƯƠNG TỔNG QUAN VỀ ĐỀ TÀI 1.1 Đặt vấn đề 1.2 Mục tiêu đề tài 1.3 Phạm vi nghiên cứu 1.4 Công cụ thực phương pháp nghiên cứu 1.5 Bố cục luận văn 1.6 Tổng kết CHƯƠNG KHẢO SÁT THỰC TRẠNG VÀ CÁC CƠNG TRÌNH LIÊN QUAN 2.1 Thực trạng quan trắc môi trường thủy sản 2.1.1 Quan trắc môi trường thủy sản giới 2.1.2 Quan trắc môi trường thủy sản Việt Nam 10 2.2 Các hệ thống quan trắc liên quan 15 2.2.1 Hệ thống giám sát môi trường nông ngư nghiệp công ty FarmTech 16 2.2.2 Hệ thống mạng cảm biến khơng dây nơng nghiệp xác ĐH Kinh tế công nghiệp Long An 17 2.2.3 Hệ thống giám sát chất lượng nước nuôi trồng thủy sản e-AQUA 17 2.2.4 Hệ thống mạng cảm biến không dây giám sát môi trường nước phục vụ nuôi trồng thủy hải sản, triển khai Quảng Ninh (BKRES) .18 2.2.5 Hệ thống quan trắc mực nước sông tự động 19 2.2.6 Hệ thống quản lý giám sát nguồn phóng xạ di dộng (BKRAD) 20 2.3 Các tham số thiết yếu môi trường nuôi trủy sản 21 2.3.1 Nhiệt độ 21 2.3.2 pH 22 2.3.3 Nồng độ Oxy hòa tan (DO) hay Dissolved Oxygen 22 2.3.4 Độ muối hay độ mặn (salt) 23 2.3.5 Nồng độ H2S 23 2.3.6 Nồng độ NH4+ 23 2.3.7 Độ đục (TUR) Turbidity 24 i 2.4 Tổng kết 24 CHƯƠNG HỆ THỐNG QUAN TRẮC MÔI TRƯỜNG 25 3.1 Tổng quan hệ thống quan trắc tự động cảnh báo môi trường nuôi tôm hùm vịnh Xuân Đài đầm Cù Mông tỉnh Phú Yên 25 3.1.1 Kiến trúc tổng thể 25 3.1.2 Phân hệ cảm biến phân hệ trạm gốc 27 3.1.3 Phân hệ xử lý liệu cung cấp dịch vụ (máy chủ) 29 3.1.4 Phân hệ vận hành phân hệ người dùng 33 3.2 Phạm vi luận văn hệ thống 41 3.3 Tổng kết 41 CHƯƠNG DỰ BÁO CHUỖI THỜI GIAN VÀ DEEP LEARNING 42 4.1 Dự báo chuỗi thời gian (Time Series Forecasting) .42 4.1.1 Dữ liệu chuỗi thời gian 42 4.1.2 Phân tích chuỗi thời gian (Time series analysis) dự báo chuỗi thời gian (Time series forecasting) 42 4.1.3 Các phương pháp dự báo chuỗi thời gian 45 4.2 Deep Learning 45 4.2.1 Đôi nét Deep Learning 45 4.2.2 Các mơ hình Deep Learning phổ biến 47 4.2.3 Deep Learning với liệu chuỗi thời gian 47 4.3 Convolutional Neural Networks với liệu chuỗi thời gian .47 4.4 Recurrent Neural Networks với liệu chuỗi thời gian 50 4.5 Long Short-term Memory Networks với liệu chuỗi thời gian 53 4.6 Tổng kết 56 CHƯƠNG XÂY DỰNG VÀ TRIỂN KHAI MƠ HÌNH DỰ BÁO 57 5.1 Kiến trúc module dự báo 57 5.2 Lưu đồ xây dựng mơ hình 58 5.3 Xây dựng liệu huấn luyện mạng 59 5.3.1 Tiền xử lý liệu 59 5.3.2 Chuẩn hóa liệu 59 5.4 Mô hình sử dụng LSTM 61 5.4.1 Khởi tạo 61 5.4.2 Lựa chọn Dropout 62 5.5 Mơ hình RNN (SimpleRNN) 63 5.5.1 SimpleRNN lớp hồi tiếp 63 ii 5.5.2 SimpleRNN lớp hồi tiếp 64 5.6 Mơ hình GRU 65 5.7 Lựa chọn mơ hình phù hợp 65 5.8 Sự phụ thuộc lẫn tham số quan trắc 66 5.9 Cải tiến mơ hình LSTM với nhiều tham số đầu vào (LSTM đa biến) 66 5.10 Retrain model có liệu 67 5.11 Tổng kết 71 CHƯƠNG KẾT QUẢ VÀ ĐÁNH GIÁ 72 6.1 Đánh giá kết dự báo (LSTM đơn biến) 72 6.1.1 Đánh giá kết dự báo tham số nhiệt độ 72 6.1.2 Đánh giá kết dự báo tham số độ mặn 73 6.1.3 Đánh giá kết dự báo tham số pH 74 6.1.4 Đánh giá kết dự báo tham số NH3 75 6.1.5 Đánh giá kết dự báo tham số H2S 76 6.1.6 Đánh giá kết dự báo tham số DO 77 6.1.7 Đánh giá kết dự báo tham số COD 78 6.1.8 Đánh giá kết dự báo tham số TSS 79 6.1.9 Đánh giá tổng hợp kết mơ hình dự báo 80 6.1.10 So sánh kết dự báo với kết quan trắc định kỳ 80 6.2 Đánh giá mơ hình LSTM đa biến 82 6.3 Tổng kết 83 CHƯƠNG KẾT LUẬN 84 7.1 Kết luận 84 7.1.1 Những điểm đạt 84 7.1.2 Những điểm chưa đạt 84 7.2 Hướng phát triển đồ án tương lai 84 TÀI LIỆU THAM KHẢO 85 PHỤ LỤC 88 iii DANH MỤC KÝ HIỆU VÀ CHỮ VIẾT TẮT Ký hiệu AI API ATBXHN BTNMT CDF CSDL CBMT DO GRU H2S HTML HTTP IoT JSON LED LORA LSTM MLP NCHS NH4 + NTTS OSI ORP PH PNDBTS QGQT QCVN RNN Salt SSL TCP/IP TLS TUR/TSS Giải thích Artificial Intelligence Application Programming Interface An Toàn Bức Xạ Hạt Nhân Bộ Tài Nguyên Môi Trường Comulative Distribution Function Cơ Sở Dữ Liệu Cảnh Báo Mơi Trường Oxy hịa tan Gated Recurrent Units Hydro sulfide HyperText Markup Language Hyper Text Transfer Protocol Internet of Things JavaScript Object Notation Light-Emitting Diode Long Range Long Short Term Memory MultiLayer Perceptron Nghiên Cứu Hải Sản Amoni Nuôi Trồng Thủy Sản Open Systems Interconnection model Oxygen Reduction Potential Thể tính axit kiềm nước Phòng Ngừa Dịch Bệnh Thủy Sản Quốc Gia Quan Trắc Quy chuẩn kỹ thuật quốc gia Recurrent Neural Network Độ mặn Secure Sockets Layer Transmission Control Protocol/Internet Protocol Transport Layer Security Độ đục hay hàm lượng chất lơ lửng iv DANH MỤC HÌNH VẼ Hình 2.1 Một số hệ thống quan trắc môi trường NTTS giới Hình 2.2 Mơ hình tích hợp cảm biến vào xử lý liệu (Libelium, 2018) Hình 2.3 Mơ hình truyền liệu mạng cảm biến (Peng Jiang, 2018) 10 Hình 2.4 Mơ hình hệ thống thủy canh sử dụng mạng cảm biến không dây (VLIR) 15 Hình 2.5 Hệ thống mạng cảm biến mơi trường không dây (AE Visor) FarmTech 16 Hình 2.6 Hệ thống giám sát điều khiển chất lượng nước e-Aqua 18 Hình 2.7 Hệ thống mạng cảm biến không dây giám sát môi trường nuôi tôm (BKRES) 19 Hình 2.8 Hệ thống quan trắc cảnh báo mức nước sông tự động 20 Hình 2.9 Lắp đặt hệ thống quản lý giám sát nguồn phóng xạ di động khu công nghiệp Formosa Hà Tĩnh tháng 3/2016 21 Hình 3.1 Kiến trúc tổng thể hệ thống quan trắc tự động môi trường nuôi tôm hùm 25 Hình 3.2 Kiến trúc trạm quan trắc tự động (nút mạng cảm biến) 27 Hình 3.3 Các thành phần trạm phao 28 Hình 3.4 Trạm phao ngồi thực địa 28 Hình 3.5 Kiến trúc trạm thu thập liệu quan trắc (trạm gốc) 29 Hình 3.6 MongoDB hệ thống quan trắc 30 Hình 3.7 Máy chủ ứng dụng hệ thống quan trắc .31 Hình 3.8 Remote cài đặt ứng dụng máy chủ ứng dụng 33 Hình 3.9 Các chức quản trị - vận hành 33 Hình 3.10 Các chức quản trị, vận hành giao diện web .34 Hình 3.11 Xem liệu thời gian thực từ quản lý node 36 Hình 3.12 Website giám sát hệ thống quan trắc 36 Hình 3.13 Vị trí thơng số node cảm biến đồ .37 Hình 3.14 Giám sát dạng biểu đồ website 37 Hình 3.15 Giao diện ứng dụng mobile (a) vị trí trạm quan trắc đồ số, (b) biểu đồ biểu diễn tham số theo thời gian 39 Hình 3.16 Các mức cảnh báo theo màu sắc 39 Hình 3.17 Các thơng báo, cảnh báo web 40 Hình 3.18 Cảnh báo ứng dụng 40 Hình 3.19 Mơ hình dự báo AI module 41 v Hình 4.1 Phân tích thành phần liệu chuỗi thời gian 43 Hình 4.2 Quan hệ AI, Machine Learning Deep Learning .46 Hình 4.3 Quan hệ lượng liệu hiệu Deep Learning [23] 46 Hình 4.4 Bộ lọc áp dụng cho đầu vào hai chiều để tạo feature map [24] .48 Hình 4.5 Mơ hình CNNs [25] 49 Hình 4.6 Feed Forward Neural Network [27] 50 Hình 4.7 Recurrent Neural Network [27] 51 Hình 4.8 One to One RNNs [26] 51 Hình 4.9 One to Many RNNs [26] 52 Hình 4.10 Many to One RNNs [26] 52 Hình 4.11 Many to Many RNNs [26] 53 Hình 4.12 Cấu trúc cell LSTM 54 Hình 5.1 Các thành phần module dự báo 57 Hình 5.2 Lưu đồ xây dựng mơ hình dự báo cho hệ thống quan trắc môi trường nước 58 Hình 5.3 Cấu trúc liệu database 59 Hình 5.4 Chuẩn hóa liệu 60 Hình 5.5 Đối chiếu kết dự báo nhiệt độ mơ hình LSTM với thực tế 63 Hình 5.6 Đối chiếu kết dự báo nhiệt độ mơ hình SimpleRNN với thực tế 64 Hình 5.7 Đối chiếu kết dự báo nhiệt độ mô hình GRU với thực tế 65 Hình 5.8 Tập huấn luyện tập kiểm thử với đa biến đầu vào 67 Hình 5.9 Mơ tả lớp cấu trúc đầu mơ hình LSTM 67 Hình 5.10 Huấn luyện với liệu cứng 68 Hình 5.11 Huấn luyện mơ hình có liệu 69 Hình 5.12 Các phương pháp cập nhật model 70 Hình 6.1 So sánh kết dự báo nhiệt độ với giá trị đo thực tế 72 Hình 6.2 Phân phối tích lũy sai số giá trị dự báo nhiệt độ giá trị đo thực tế 73 Hình 6.3 So sánh kết dự báo độ mặn với giá trị đo thực tế 73 Hình 6.4 Phân phối tích lũy sai số giá trị dự báo độ mặn giá trị đo thực tế 74 Hình 6.5 So sánh kết dự báo pH với giá trị đo thực tế 74 Hình 6.6 Phân phối tích lũy sai số giá trị dự báo pH giá trị đo thực tế 75 Hình 6.7 So sánh kết dự báo NH3 với giá trị đo thực tế 75 vi

Ngày đăng: 04/06/2023, 11:38

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[3] B. Cicin-Sain, S. M. Bunsick, R. DeVoe, T. Eichenberg, J. Ewart, H.Halvorson, R. W. Knecht and R. Rheault, "Development of a Policy Framework for Offshore Marine Aquaculture in the 3-200 Mile U.S. Ocean Zone," Center for the Study of Marine Policy, 2001 Sách, tạp chí
Tiêu đề: Development of a PolicyFramework for Offshore Marine Aquaculture in the 3-200 Mile U.S. OceanZone
[4] Council of the European Union, "Council Directive 91/492/EEC of 15 July 1991 laying down the health conditions for the production and the placing on the market of live bivalve molluscs," European Commission, (1991), vol.L 268, pp. 1-14, 1991 Sách, tạp chí
Tiêu đề: Council Directive 91/492/EEC of 15 July1991 laying down the health conditions for the production and the placingon the market of live bivalve molluscs
Tác giả: Council of the European Union, "Council Directive 91/492/EEC of 15 July 1991 laying down the health conditions for the production and the placing on the market of live bivalve molluscs," European Commission
Năm: 1991
[7] Nova Scotia Fisheries & Aquaculture, "Nova Scotia aquaculture environmental monitoring program," NOVA SCOTIA, 2011 Sách, tạp chí
Tiêu đề: Nova Scotia aquaculture environmental monitoring program
[8] Department of Fisheries, "Aquaculture Management and Environmental Monitoring Plan," Department of Fisheries Western Australia, 2013 Sách, tạp chí
Tiêu đề: Aquaculture Management and Environmental Monitoring Plan
[9] Y. K. K. P. a. M. J. S. Han, "Design of Environment Monitoring System for Aquaculture Farms," Jeju City, 2007 Frontiers in the Convergence of Bioscience and Information Technologies, 2007, pp. 889-893 Sách, tạp chí
Tiêu đề: Design of Environment Monitoring System forAquaculture Farms
[10] J. C. S. a. H. Y. Hwang, "Study on an Agricultural Environment Monitoring Server System Using Wireless Sensor Networks," Sensors (Basel, Switzerland), vol. 10, pp. 11189-211, 2010 Sách, tạp chí
Tiêu đề: Study on an Agricultural Environment MonitoringServer System Using Wireless Sensor Networks
[11] J. Huang, W. Wang, S. Jiang, D. Sun, G. Ou and K. Lu, "Development and test of aquacultural water quality monitoring system based on wireless sensor network," Transactions of the Chinese Society of Agricultural Engineering, vol. 29, pp. 183-190, 2013 Sách, tạp chí
Tiêu đề: Development andtest of aquacultural water quality monitoring system based on wirelesssensor network
[12] H. Yunbing, "Research water quality monitoring by means of sensor network," Journal of Theoretical and Applied Information Technology, vol.49, pp. 126-130 Sách, tạp chí
Tiêu đề: Research water quality monitoring by means of sensornetwork
[13] M. a. F. A. a. D. G. a. S. T. a. C. Z. a. H. C. a. B. M. a. N. H. a. B. A.Zennaro, "On the Design of a Water Quality Wireless Sensor Network (WQWSN): An Application to Water Quality Monitoring in Malawi,"Proceedings of the International Conference on Parallel Processing Workshops, pp. 330-336, 2009 Sách, tạp chí
Tiêu đề: On the Design of a Water Quality Wireless Sensor Network(WQWSN): An Application to Water Quality Monitoring in Malawi
[14] M. a. Y. A. a. S. M. M. A. Alkandari, "Wireless Sensor Network (WSN) for Water Monitoring System: Case Study of Kuwait Beaches," International Journal of Digital Information and Wireless Communications (IJDIWC), vol. 4, pp. 745-753, 2012 Sách, tạp chí
Tiêu đề: Wireless Sensor Network (WSN) forWater Monitoring System: Case Study of Kuwait Beaches
[15] Libelium, "Libelium’s Agriculture Case Studies," Libelium, 2018. [Online]. Available: libelium.com/case-studies Sách, tạp chí
Tiêu đề: Libelium’s Agriculture Case Studies
[16] F. a. B. G. a. S. G. a. V. M. a. C. O. a. P. M. Ingelrest, "SensorScope:Application-Specific Sensor Network for Environmental Monitoring," ACM Trans. Sens. Network, vol. 6, 2010 Sách, tạp chí
Tiêu đề: SensorScope:Application-Specific Sensor Network for Environmental Monitoring
[17] P. a. X. H. a. H. Z. a. W. Z. Jiang, "Design of a Water Environment Monitoring System Based on Wireless Sensor Networks," Sensors (Basel, Switzerland), vol. 9, pp. 6411-34, 2009 Sách, tạp chí
Tiêu đề: Design of a Water EnvironmentMonitoring System Based on Wireless Sensor Networks
[18] P. G. Lee, "A review of automated control systems for aquaculture and design criteria for their implementation," Aquacultural Engineering, vol. 14, pp. 205-227, 1995 Sách, tạp chí
Tiêu đề: A review of automated control systems for aquaculture anddesign criteria for their implementation
[19] S. Chandanapalli, "Design and Deployment of Aqua Monitoring System Using Wireless Sensor Networks and IAR-Kick," Journal of Aquaculture Research & Development, vol. 5, 2014 Sách, tạp chí
Tiêu đề: Design and Deployment of Aqua Monitoring SystemUsing Wireless Sensor Networks and IAR-Kick
[20] Wikipedia, "Nhiệt độ," 2022. [Online]. Available:https://vi.wikipedia.org/wiki/Nhi%E1%BB%87t_%C4%91%E1%BB%99.[Accessed 04 2022] Sách, tạp chí
Tiêu đề: Nhiệt độ
[21] Wikipedia, "pH," 2022. [Online]. Available:https://vi.wikipedia.org/wiki/PH. [Accessed 05 2022] Sách, tạp chí
Tiêu đề: pH
[22] J. B. PhD, "machinelearningmastery," 15 08 2020. [Online]. Available:https://machinelearningmastery.com/time-series-forecasting/. [Accessed 15 05 2022] Sách, tạp chí
Tiêu đề: machinelearningmastery
[25] D. Kalita, "Analytics Vidhya," 2022. [Online]. Available: https://www.analyticsvidhya.com/blog/2022/03/basics-of-cnn-in-deep-learning/. [Accessed 28 07 2022] Sách, tạp chí
Tiêu đề: Analytics Vidhya
[26] A. Biswal, "simplilearn," 11 Aug 2022. [Online]. Available:https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn. [Accessed 06 06 2022] Sách, tạp chí
Tiêu đề: simplilearn

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w