1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu thiết kế và mô phỏng hoạt động của bộ vi chấp hành mũi dò quét định hướng ứng dụng khắc các cấu trúc nano

136 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Nghiên Cứu Thiết Kế Và Mô Phỏng Hoạt Động Của Bộ Vi Chấp Hành Mũi Dò Quét Định Hướng Ứng Dụng Khắc Các Cấu Trúc Nano
Tác giả Đặng Văn Hiếu
Người hướng dẫn PGS. TS. Chu Mạnh Hoàng, TS. Vũ Thu Hiền
Trường học Trường Đại Học Bách Khoa Hà Nội
Chuyên ngành Khoa Học Vật Liệu
Thể loại Luận Án Tiến Sĩ
Năm xuất bản 2021
Thành phố Hà Nội
Định dạng
Số trang 136
Dung lượng 5,56 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Đặng Văn Hiếu NGHIÊN CỨU THIẾT KẾ VÀ MÔ PHỎNG HOẠT ĐỘNG CỦA BỘ VI CHẤP HÀNH MŨI DÒ QUÉT ĐỊNH HƯỚNG ỨNG DỤNG KHẮC CÁC CẤU TRÚC NANO LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Hà Nội – 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Đặng Văn Hiếu NGHIÊN CỨU THIẾT KẾ VÀ MÔ PHỎNG HOẠT ĐỘNG CỦA BỘ VI CHẤP HÀNH MŨI DÒ QUÉT ĐỊNH HƯỚNG ỨNG DỤNG KHẮC CÁC CẤU TRÚC NANO Ngành: Khoa học Vật liệu Mã số: 9440122 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS CHU MẠNH HOÀNG TS VŨ THU HIỀN Hà Nội – 2021 LỜI CAM ĐOAN Tôi xin cam đoan công trình nghiên cứu riêng tơi hướng dẫn PGS TS Chu Mạnh Hoàng TS Vũ Thu Hiền Các số liệu kết luận án hoàn toàn trung thực chưa cơng bố cơng trình khoa học khác Thay mặt Tập thể hướng dẫn PGS TS Chu Mạnh Hoàng Tác giả Đặng Văn Hiếu LỜI CẢM ƠN Trước hết, tơi xin bày tỏ lịng kính trọng biết ơn sâu sắc đến PGS.TS Chu Mạnh Hoàng TS Vũ Thu Hiền, người thầy truyền động lực nghiên cứu cho tơi, tận tình hướng dẫn, giúp đỡ tạo điều kiện thuận lợi cho tơi suốt q trình học tập, nghiên cứu thực luận án Nhờ bảo tận tình thầy, tơi có kiến thức khoa học vật liệu, công nghệ chế tạo, kinh nghiệm phương pháp nghiên cứu, phương pháp viết đăng tạp chí ISI hết mở đường nghiên cứu khoa học thân Tôi xin chân thành cảm ơn Ban lãnh đạo Viện ITIMS, trường ĐH Bách Khoa Hà Nội, trường ĐH Thành Đô trường Đại học FPT tạo điều kiện thời gian, vật chất tinh thần giúp tơi hồn thành luận án Tôi xin chân thành cảm ơn GS.TS Vũ Ngọc Hùng, anh, chị, em phịng thí nghiệm MEMS, Viện ITIMS: ThS Lê Văn Tâm, TS Nguyễn Ngọc Minh, NCS Nguyễn Thanh Hương, TS Nguyễn Văn Minh, TS Nguyễn Thị Quỳnh Chi, TS Ngô Đức Quân, ThS Nguyễn Ngọc Sơn… chia sẻ kinh nghiệm nghiên cứu khoa học, động viên có thảo luận góp ý giúp tơi hồn thành luận án Tơi xin chân thành cảm ơn TS Nguyễn Văn Toán tạo điều kiện hướng dẫn sử dụng thiết bị làm việc phịng Tơi xin gửi lời cảm ơn tới bạn bè đồng nghiệp ln bên, động viên khích lệ thời gian qua Cuối cùng, xin giành lời cảm ơn cho gia đình, gia đình hậu phương vững chắc, chỗ dựa tinh thần để yên tâm nghiên cứu suốt thời gian vừa qua Hà Nội, ngày … tháng … năm 20… Tác giả Đặng Văn Hiếu MỤC LỤC LỜI CAM ĐOAN .i LỜI CẢM ƠN ii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT iii DANH MỤC CÁC BẢNG .v DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ vi MỞ ĐẦU CHƯƠNG 1: TỔNG QUAN VỀ KHẮC ĐẦU DÒ QUÉT 1.1 Cơ sở kỹ thuật khắc đầu dò quét .6 1.2 Các phương pháp chấp hành 16 1.2.1 Phương pháp chấp hành nhiệt .16 1.2.2 Phương pháp chấp hành áp điện 16 1.2.3 Phương pháp chấp hành tĩnh điện .17 1.3 Hiệu suất khắc đầu dò quét 19 1.4 Công nghệ chế tạo 20 1.5 Mục tiêu luận án 24 1.6 Kết luận chương 25 CHƯƠNG 2: CƠ SỞ LÝ THUYẾT VÀ MÔ PHỎNG 26 2.1 Cơ sở tính tốn lý thuyết .26 2.1.1 Tính tốn độ cứng lị xo 26 2.1.2 Tính tốn tần số riêng 33 2.1.3 Tính tốn điện áp tới hạn (Vpull_in) cấu trúc dịch chuyển chiều theo phương z 36 2.1.4 Tính tốn độ dịch chuyển cấu trúc 37 2.1.5 Điện dung cấu trúc .38 2.1.6 Hệ số phẩm chất vi chấp hành .39 2.2 Cơ sở mô 42 2.2.1 Giới thiệu chung phương pháp phần tử hữu hạn .42 2.2.2 Phần mềm phân tích phần tử hữu hạn (FEA) 44 2.3 Kết luận chương 50 CHƯƠNG 3: THIẾT KẾ VÀ MÔ PHỎNG BỘ CHẤP HÀNH TRỤC Z .51 3.1 Bộ chấp hành sử dụng cấu trúc vi treo dầm thẳng truyền thống cải tiến 51 i 3.2 Bộ chấp hành sử dụng cấu trúc vi treo lò xo gấp khúc dạng truyền thống dạng cải tiến 56 3.3 Cấu trúc dầm kết cặp .60 3.4 Cấu trúc vi treo kết cặp sử dụng khung kết cặp 66 3.5 Kết luận chương 73 CHƯƠNG 4: TÍNH TỐN THIẾT KẾ VÀ MƠ PHỎNG BỘ VI DỊCH CHUYỂN BA CHIỀU XYZ 74 4.1 Thiết kế vi dịch chuyển XYZ 74 4.2 Tính tốn mơ cấu trúc 77 4.2.1 Chấp hành trục z 78 4.2.2 Chấp hành trục x y 84 4.3 Tác động lực cản khơng khí lên vi dịch chuyển ba chiều XYZ 86 4.4 Kết thảo luận cấu trúc vi dịch chuyển ba chiều .88 4.4.1 Tần số theo trục z phụ thuộc vào độ rộng độ dày lò xo treo 88 4.4.2 Tần số hoạt động theo trục x, y phụ thuộc vào độ rộng độ dày dầm treo .91 4.4.3 Độ dịch chuyển điều khiển XYZ phụ thuộc vào điện áp điều khiển 94 4.4.4 Hệ số phẩm chất vi dịch chuyển ba chiều 95 4.5 Kết luận chương 96 CHƯƠNG 5: CHẾ TẠO MŨI DÒ BẰNG PHƯƠNG PHÁP ĂN MÒN ƯỚT 97 5.1 Quy trình chế tạo thu nhỏ mũi dị 97 5.2 Quy trình chế tạo chấp hành trục z có gắn mũi dò 101 5.3 Kết chế tạo mũi dò thảo luận 102 5.4 Kết luận chương 106 KẾT LUẬN CHUNG CỦA LUẬN ÁN 107 ĐỊNH HƯỚNG NGHIÊN CỨU TIẾP THEO CỦA LUẬN ÁN 108 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN .109 TÀI LIỆU THAM KHẢO 111 ii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Si: Si-líc IC (Integrated Circuit): Mạch điện tích hợp SPM (Scanning Probe Microscopy): Kính hiển vi đầu dị qt PSL (Probe Scanning Lithography): Kỹ thuật khắc đầu dò quét AFM (Atomic Force Microscope): Kính hiển vi hiển vi lực nguyên tử MFM (Magnetic Force Microscopy): Kính hiển vi lực từ SEM (Scanning Electron Microscope): Kính hiển vi điện tử quét TEM ( Transmission Electron Microscopy): Kính hiển vi điện tử truyền qua SC (Standard Cleaning): Quy trình rửa phiến Si chuẩn 10 STM (Scanning Tunneling Microscope): Kính hiển vi quét xuyên ngầm 11 PMMA (Polymethylmethacrylate): Thủy tinh hữu 12 DPN (Dip-Pen nanolithography): Khắc Dip-Pen 13 MEMS (Microelectromechanical system): Hệ thống vi điện tử 14 FEM (Finite Element Method): Phương pháp phần tử hữu hạn 15 FEA (Finite Element Analysis): Phân tích phần tử hữu hạn 16 PDEs (Partial Differential Equations): Phương trình vi phân phần 17 HF: Axít Flohydric 18 Tip: Mũi dị (mũi nhọn) 19 KOH: Kali hydro xít 20 SiO2: Si-líc xít 21 FESEM: Kính hiển vi điện tử quét hiệu ứng trường 22 CM-AFM: Khắc AFM chế độ tiếp xúc 23 TM-AFM: Khắc AFM chế độ không tiếp xúc 24 Lift-off: Quá trình lift-off 25 DPL: Khắc động 26 CTE: Hằng số giãn nở nhiệt 27 Pd: Palladium 28 Si3N4: Silic nitrua 29 Ge: Germanium 30 MOEMS (Micro Optoelectronic Mechanical Systems): Hệ thống vi quang điện tử 31 Kx; Ky; Kz: Độ cứng dầm theo phương x, y z 32 E: Mô-đun Young iii 33 I: Mơ-men qn tính mặt cắt ngang 34 w, h, l: Lần lượt chiều rộng, chiều cao (độ dày), chiều dài cấu trúc 35 G: Mô-đun trượt 36 m: Khối lượng 37 ω: Tần số góc 38 Vpull_in: Điện áp tới hạn 39 Vdc: Điện áp chiều 40 Vac: Điện áp xoay chiều 41 Q: Hệ số phẩm chất 42 gc, gz: Lần lượt khoảng lược khoảng trung tâm cực điều khiển 43 P: Áp suất 44 ζ: Hệ số cản khơng khí 45 COMSOL Multiphysics: Phần mềm mô 46 δf: Sự sai khác tần số hai mode lân cận 47 NaOH: Natri Hydroxit 48 TMAH: Tetramethylammonium Hydroxide (C4H13NO) 49 BHF: Dung dịch axit HF pha loãng (HF48%:H2O = 1:6) 50 Mode: Hình dạng cấu trúc hệ thống tần số cộng hưởng iv DANH MỤC CÁC BẢNG Bảng 1.1: So sánh STM với AFM hoạt động chế độ tiếp xúc (CM-AFM) AFM hoạt động chế độ không tiếp xúc (TM-AFM) cho khắc sử dụng kỹ thuật ơxi hóa vùng [7] Bảng 3.1: Các thơng số kích thước cấu trúc vi treo 1sb, 2sb, 3sb 4sb 52 Bảng 3.2: So sánh kết mơ tính tốn 53 Bảng 3.3: Các thông số cấu trúc vi treo lò xo gấp khúc dạng 1fb 2fb 57 Bảng 3.4: Các thông số kỹ thuật cấu trúc vi treo kết cặp 1cs, 2cs 3cs 62 Bảng 3.5: Bảng so sánh kết tính tốn mơ cấu trúc vi treo kết cặp 1cs, 2cs 3cs 64 Bảng 3.6: Các thông số kỹ thuật cấu trúc vi treo kết cặp sử dụng hai khung kết cặp 67 Bảng 4.1: Các tính chất vật lý khơng khí Si đơn tinh thể 78 Bảng 4.2: Các thông số kỹ thuật cấu trúc dịch chuyển phương z phân tích thành dầm gấp khúc dạng dầm thẳng 80 Bảng 4.3: Các thông số kỹ thuật cấu trúc dịch chuyển phương z phân tích thành lị xo gấp khúc dạng zig-zag 80 Bảng 4.4: Các thông số kỹ thuật cấu trúc dịch chuyển phương z phân tích thành khâu cua 82 Bảng 4.5: Các thông số kỹ thuật cấu trúc dịch chuyển phương z phân tích thành lị xo gấp khúc dạng cua kép 83 Bảng 4.6: Các thơng số kích thước dầm treo gấp lược 84 Bảng 4.7: Bảng so sánh kết tính tốn mô tần số hoạt động cấu trúc chấp hành trục z với trường hợp phân tích khác 88 Bảng 4.8: Kết tính tốn mơ tần số riêng vi dịch chuyển ba chiều XYZ 91 v DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1: Sơ đồ nguyên lý hoạt động kính hiển vi lực nguyên tử (AFM) [3] Hình 1.2: Hình ảnh minh họa kỹ thuật khắc đầu dò quét [1] Hình 1.3: Hình ảnh minh họa kỹ thuật khắc phương pháp chiếu chùm tia điện tử phát xạ [2] Hình 1.4: Sơ đồ minh họa kỹ thuật khắc phương pháp ơxi hóa vùng [5, 6] Hình 1.5: Hình ảnh minh họa kỹ thuật khắc Dip-Pen [9] 10 Hình 1.6: Hình ảnh minh họa phương pháp khắc nhiệt [10] 10 Hình 1.7: Hình ảnh minh họa phương pháp khắc học [12] 11 Hình 1.8: Sơ đồ minh họa kỹ thuật khắc học sử dụng đầu dị AFM [1] 11 Hình 1.9: Hình ảnh rãnh PMMA tạo AFM với mũi dị Si (a) tín hiệu rãnh (b) [2] 12 Hình 1.10: Ảnh SEM mặt cắt mũi dò (a) đỉnh mũi dò (b) [14] 12 Hình 1.11: Các bước quy trình chế tạo bóng bán dẫn dựa khắc học sử dụng AFM (a), hình ảnh rãnh khắc AFM polyimide (b) [15] 13 Hình 1.12: Hình ảnh động mũi dò kỹ thuật khắc sử dụng AFM (a) tốc độ khắc cao (b), tốc độ khắc trung bình (c), tốc độ khắc thấp (d) [15] 14 Hình 1.13: Cấu trúc dịch chuyển ba chiều, (a) hình ảnh phóng to trung tâm; (b) hình ảnh ba chiều cấu trúc [19] 15 Hình 1.14: Bộ dịch chuyển trục z (a); dịch chuyển xy (b); Hình ảnh ba chiều tích hợp chấp hành XYZ (c) [20] 15 Hình 1.15: Mảng mũi dị điều khiển chấp hành nhiệt [21] 16 Hình 1.16: Sơ đồ hệ thống đầu dò chấp hành áp điện [22] 17 Hình 1.17: Cấu trúc dầm điều khiển chấp hành tĩnh điện [23] 17 Hình 1.18: Hình ảnh thiết kế cấu trúc dịch chuyển chiều [19] 18 Hình 1.19: Cấu trúc vi dịch chuyển hai chiều [24] 19 vi

Ngày đăng: 04/06/2023, 09:31

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[8]. Piner, R.D., et al., " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663 Sách, tạp chí
Tiêu đề: Dip-pen
[1]. Bhushan, B., Nanotribology and Nanomechanics I: Measurement Techniques and Nanomechanics. Vol. 1. 2011: Springer Science & Business Media Khác
[3]. Tseng, A.A., et al., Recent developments in tip-based nanofabrication and its roadmap. J Nanosci Nanotechnol, 2008. 8(5): p. 2167-86 Khác
[4]. Cui, Z., Nanofabrication: principles, capabilities and limits. 2009. Springer Khác
[5]. Garcia, R., R.V. Martinez, and J. Martinez, Nano-chemistry and scanning probe nanolithographies. Chemical Society Reviews, 2006. 35(1): p. 29-38 Khác
[6]. Day, H. and D. Allee, Selective area oxidation of silicon with a scanning force microscope. Applied physics letters, 1993. 62(21): p. 2691-2693 Khác
[7]. Fontaine, P., E. Dubois, and D. Stievenard, Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon.Journal of applied physics, 1998. 84(4): p. 1776-1781 Khác
[9]. Hampton, J.R., A.A. Dameron, and P.S. Weiss, Double-ink dip-pen nanolithography studies elucidate molecular transport. Journal of the American Chemical Society, 2006. 128(5): p. 1648-1653 Khác
[10]. Mamin, H. and D. Rugar, Thermomechanical writing with an atomic force microscope tip. Applied Physics Letters, 1992. 61(8): p. 1003-1005 Khác
[11]. Magno, R. and B. Bennett, Nanostructure patterns written in III–V semiconductors by an atomic force microscope. Applied Physics Letters, 1997. 70(14): p. 1855-1857 Khác
[12]. Fonseca Filho, H., et al., Metal layer mask patterning by force microscopy lithography. Materials Science and Engineering: B, 2004. 112(2-3): p. 194-199 Khác
[13]. Chen, Y.-J., J.-H. Hsu, and H.-N. Lin, Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process.Nanotechnology, 2005. 16(8): p. 1112 Khác
[14]. Yan, Y., et al., Scratch on polymer materials using AFM tip-based approach: areview. Polymers, 2019. 11(10): p. 1590 Khác
[16]. Cao, F., F. Donnarumma, and K.K. Murray, Wavelength dependent atomic force microscope tip-enhanced laser ablation. Applied Surface Science, 2018. 447: p. 437-441 Khác
[17]. Tseng, A.A., et al., Scratching properties of nickel-iron thin film and silicon using atomic force microscopy. Journal of Applied Physics, 2009. 106(4): p. 044314 Khác
[18]. Bouchiat, V. and D. Esteve, Lift‐off lithography using an atomic force microscope. Applied physics letters, 1996. 69(20): p. 3098-3100 Khác
[19]. Klehn, B. and U. Kunze, Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing.Journal of Applied Physics, 1999. 85(7): p. 3897-3903 Khác
[20]. Yan, Y., et al., Effects of scratching parameters on fabrication of polymer nanostructures in atomic force microscope tapping mode.Procedia CIRP, 2015. 28: p. 100-105 Khác
[21]. He, Y., et al., Fabrication of nanoscale pits with high throughput on polymer thin film using afm tip-based dynamic plowing lithography.Nanoscale research letters, 2017. 12(1): p. 1-11 Khác
[22]. Liu, X., K. Kim, and Y. Sun, A MEMS stage for 3-axis nanopositioning. Journal of Micromechanics and Microengineering, 2007. 17(9): p. 1796-1802 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w