1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận án tiến sĩ hóa học tổng hợp, biến tính và ứng dụng vật liệu khung hữu cơ kim loại zif 67

150 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 150
Dung lượng 6,57 MB

Nội dung

ĐẠI HỌC HUẾ TRƢỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ THANH TÚ TỔNG HỢP, BIẾN TÍNH VÀ ỨNG DỤNG VẬT LIỆU KHUNG HỮU CƠ - KIM LOẠI ZIF-67 LUẬN ÁN TIẾN SĨ HÓA HỌC HUẾ - NĂM 2019 ĐẠI HỌC HUẾ TRƢỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ THANH TÚ TỔNG HỢP, BIẾN TÍNH VÀ ỨNG DỤNG VẬT LIỆU KHUNG HỮU CƠ - KIM LOẠI ZIF-67 Chuyên ngành: Hóa lý thuyết Hóa lý Mã số: 9440119 LUẬN ÁN TIẾN SĨ HÓA HỌC Ngƣời hƣớng dẫn khoa học: PGS.TS Đinh Quang Khiếu TS Trần Vĩnh Thiện HUẾ - NĂM 2019 LỜI CAM ĐOAN Tôi xin cam đoan luận án cơng trình nghiên cứu riêng tơi dƣới hƣớng dẫn PGS.TS Đinh Quang Khiếu, Khoa Hóa, Trƣờng Đại học Khoa Học, Đại học Huế TS.Trần Vĩnh Thiện, Trƣờng Đại học Tài nguyên Môi trƣờng Các số liệu kết nghiên cứu luận án trung thực, đƣợc đồng tác giả cho phép sử dụng chƣa đƣợc công bố cơng trình khác Tác giả Nguyễn Thị Thanh Tú LỜI CẢM ƠN Lời xin chân thành cảm ơn sâu sắc đến PGS.TS Đinh Quang Khiếu, PGS.TS Nguyễn Hải Phong, TS Trần Vĩnh Thiện, ngƣời thầy tận tình giúp đỡ hƣớng dẫn suốt thời gian làm luận án Tơi xin chân thành cảm ơn Khoa Hóa học, Phịng đào tạo sau đại học, Trƣờng Đại học Khoa học – Đại học Huế, Ban đào tạo – Đại học Huế tạo điều kiện cho tơi q trình học tập hồn thành luận án Tơi xin cảm ơn q Thầy/Cơ Bộ mơn Hóa lý, Hóa Phân tích, Khoa Hóa, Trƣờng Đại học Khoa học – Đại học Huế giúp đỡ suốt thời gian làm luận án Tôi xin chân thành cảm ơn Khoa Hóa học Trƣờng đại học Bách Khoa Đà Nẵng, Trƣờng Đại học Khoa học Tự nhiên Hà Nội, Viện Khoa học Vật liệu Hà Nội hỗ trợ phân tích mẫu thí nghiệm luận án Tơi xin bày bỏ lòng biết ơn sâu sắc đến PGS.TS Phùng Chí Sỹ, Giám đốc Trung tâm Cơng nghệ Mơi trƣờng, Viện trƣởng Viện Khoa học Môi trƣờng, Trƣờng Đại học Nguyễn Tất thành tạo điều kiện giúp đỡ tơi suốt q trình thực luận án Cuối xin cảm ơn sâu sắc đến gia đình, Thầy/Cơ đồng nghiệp bạn bè động viên, giúp đỡ tơi suốt q trình học tập nghiên cứu Huế, tháng 12 năm 2019 Tác giả Nguyễn Thị Thanh Tú DANH MỤC CÁC CHỮ VIẾT TẮT, KÍ HIỆU AAS Phổ hấp thụ nguyên tử (Atomic Absorption Spectrophotometry) Abs Hấp thụ (Absorption) Ads Hấp phụ (adsorption) AIC Chuẩn số thông tin (Akaike‟s Information Criterion) AICc Chuẩn số thông tin hiệu chỉnh (Akaike‟s Information Criterion corrected) ASV Volt-ampere hòa tan anot (Anodic Stripping Voltammetry) BET Brunauer-Emmett-Teller B-RBS Dung dịch đệm Britton-Robinson (Britton-Robinson buffer solution) CB Vùng dẫn (conduction band) CGR Congo red CS Cộng CV Volt-ampere vòng (Cyclic Voltammetry) DPA DP Dopamine Xung vi phân (Differential Pulse) Eg Năng lƣợng vùng cấm (band gap energy) GCE Điện cực than thủy tinh (Glassy Carbon Electrode) Hmin IM LOD MB 2-methylimidazole Imidazole Giới hạn phát (Limit of detection) Methylene blue MO Methyl orange MOFs Vật liệu khung hữu kim loại (Metal-Organic Frameworks) Me Kim loại MW Vi sóng (microwave) Org Hợp chất hữu (organic) PRA Paracetamol p Giá trị xác suất ý nghĩa thống kê pHPZC pH điểm đẳng điện ( point zero charge) RSD Độ lệch chuẩn tƣơng đối (Relative Standard Deviation) RhB Rhodamine B RT Nhiệt độ phòng (Room temperature) SBU Đơn vị xây dựng thứ cấp (Secondary Building Unit) SEM Hiển vi điện tử quét (Scanning Electron Microscopy) SOD Cấu trúc sodalide SV Volt-ampere hịa tan (Stripping Voltammetry) SSEs Tổng bình phƣơng sai số ( Sum of the square Errors) ST Dung nhiệt (solvethermal) TG Biến đổi trọng lƣợng theo nhiệt độ (Thermogravimetry) UV-Vis DRS Phổ phản xạ khuếch tán tử ngoại khả kiến (UV-Visible diffuse reflectance spectroscopy) VB Vùng hóa trị (valence band) WE Điện cực làm việc (Working Electrode) XPS Phổ quang điện tử tia X (X-ray Photoelectron Spectroscopy) XRD Nhiễu xạ tia X (X-Ray Diffraction) ZIFs Khung imidazolate zeolite (Zeolitic Imidazolate Frameworks) MỤC LỤC Trang DANH MỤC BẢNG BIỂU DANH MỤC HÌNH VẼ, BIỂU ĐỒ, SƠ ĐỒ MỞ ĐẦU Chƣơng TỔNG QUAN TÀI LIỆU 1.1 GIỚI THIỆU CHUNG VẬT LIỆU KHUNG HỮU CƠ KIM LOẠI (MOFs) 1.2 VẬT LIỆU KHUNG HỮU CƠ KIM LOẠI ZIF-67 1.3 PHƢƠNG PHÁP TỔNG HỢP ZIF-67 1.4 CÁC HƢỚNG BIẾN TÍNH VẬT LIỆU ZIF-67 VÀ CÁC ỨNG DỤNG .13 1.4.1 Ứng dụng vật liệu ZIF-67 làm chất xúc tác điện hóa .13 1.4.2 Ứng dụng quang xúc tác phân hủy chất nhiễm hữu khó phân hủy .16 1.4.3 Ứng dụng vật liệu ZIF-67 làm chất hấp phụ loại bỏ màu phẩm nhuộm dung dịch nƣớc 23 1.5 MỘT SỐ VẤN ĐỀ TRONG PHÂN TÍCH CÁC THƠNG SỐ ĐỘNG HỌC VÀ ĐẲNG NHIỆT HẤP PHỤ 25 1.5.1 Một số vấn đề nghiên cứu trình hấp phụ 25 1.5.2 Biến thiên lƣợng tự Gibbs 29 Chƣơng NỘI DUNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU 36 2.1 NỘI DUNG NGHIÊN CỨU 36 2.1.1 Nghiên cứu tổng hợp ZIF-67 phƣơng pháp vi sóng phƣơng pháp dung môi nhiệt 36 2.1.2 Nghiên cứu khả hấp phụ phẩm nhuộm congo red nƣớc ZIF-67 .36 2.1.3 Nghiên cứu biến tính điện cực GCE ZIF-67 để xác định dopamine paracetamol phƣơng pháp volt-ampere hòa tan 36 2.1.4 Nghiên cứu tổng hợp (Zn/Co)ZIFs có hoạt tính xúc tác quang hóa 36 2.1.5 Nghiên cứu khả quang xúc tác (Zn/Co)ZIFs phân hủy màu thuốc nhuộm dƣới điều kiện ánh sáng khả kiến 36 2.2 PHƢƠNG PHÁP NGHIÊN CỨU 36 2.2.1 Các phƣơng pháp nghiên cứu đặc trƣng vật liệu .36 2.2.2 Phƣơng pháp volt-ampere hòa tan (Stripping Voltammetry) 42 2.3 THỰC NGHIỆM 44 2.3.1 Hóa chất 44 2.3.2 Tổng hợp vật liệu .44 2.3.3 Xác định điểm đẳng điện vật liệu ZIF-67 (Zn/Co)ZIFs .46 2.3.4 Kiểm tra độ bền vật liệu ZIF-67 (Zn/Co)ZIFs 47 2.3.5 Hấp phụ phẩm nhuộm vật liệu ZIF-67 47 2.3.6 Biến tính điện cực than thủy tinh vật liệu ZIF-67 để xác định dopamine paracetamol 48 2.3.7 Nghiên cứu hoạt tính quang xúc tác phân hủy CGR vật liệu (Zn/Co)ZIFs .50 Chƣơng KẾT QUẢ VÀ THẢO LUẬN .52 3.1 TỔNG HỢP ZIF-67 BẰNG PHƢƠNG PHÁP VI SÓNG VÀ PHƢƠNG PHÁP DUNG MÔI NHIỆT 52 3.1.1 Đặc trƣng vật liệu ZIF-67 52 3.1.2 Độ bền vật liệu ZIF-67 60 3.2 NGHIÊN CỨU HẤP PHỤ CONGO RED (CGR) BẰNG ZIF-67 61 3.2.1 Nghiên cứu động học hấp phụ 61 3.2.2 Nghiên cứu cân hấp phụ 68 3.2.3 Nghiên cứu nhiệt động học hấp phụ 72 3.2.4 Ảnh hƣởng pH đề xuất chế hấp phụ 76 3.2.5 Tái sử dụng chất hấp phụ ZIF-67 .77 3.3 NGHIÊN CỨU PHÁT TRIỂN PHƢƠNG PHÁP PHÂN TÍCH PRACETAMOL (PRA) VÀ DOPAMINE (DPM) BẰNG PHƢƠNG PHÁP ĐIỆN HÓA SỬ DỤNG ĐIỆN CỰC BIẾN TÍNH ZIF-67 78 3.3.1 Khảo sát ảnh hƣởng loại điện cực khác lên đặc tính điện hóa PRA DPM 78 3.3.2 Khảo sát ảnh hƣởng dung môi lƣợng ZIF-67 .80 3.3.3 Khảo sát ảnh hƣởng pH .82 3.3.4 Khảo sát ảnh hƣởng tốc độ quét (ν) .84 3.3.5 Những ảnh hƣởng thông số máy hoạt động 87 3.3.6 Ảnh hƣởng số chất cản trở 88 3.3.7 Độ lặp lại giới hạn phát .91 3.3.8 Phân tích mẫu thực 95 3.4 NGHIÊN CỨU TỔNG HỢP (Zn/Co)ZIFs 96 3.5 NGHIÊN CỨU PHÂN HỦY CGR CỦA XÚC TÁC QUANG (Zn/Co)ZIFs 103 3.5.1 Khử màu CGR xúc tác khác 103 3.5.2 Ảnh hƣởng pH chất bắt gốc tự 104 3.5.3 Phân hủy quang hóa CGR vật liệu (2Zn/8Co)ZIFs điều kiện ánh sáng khả kiến .106 3.5.4 Khả tái sử dụng (2Zn/8Co)ZIFs 110 KẾT LUẬN 113 DANH MỤC CÁC CƠNG TRÌNH CƠNG BỐ KẾT QUẢ NGHIÊN CỨU CỦA LUẬN ÁN TÀI LIỆU THAM KHẢO PHỤ LỤC DANH MỤC BẢNG BIỂU Bảng 1.1 Mơ tả cấu trúc hình học số SBU điển hình Bảng 1.2 Kích thước hình thái ZIF-67 thu điều kiện phản ứng khác .10 Bảng 1.3 SBET, Vmicro Dmicro tinh thể ZIF-67 thu với tỉ lệ mol Hmin/Co2+ = 20 điều kiện thủy nhiệt 120 °C nhiệt độ phòng 11 Bảng 1.4 So sánh hiệu quang xúc tác MOFs chất hữu khó phân hủy môi trường nước 22 Bảng 1.5 Sự chuyển đổi K0 K 34 Bảng 2.1 Các loại hóa chất sử dụng thực nghiệm 44 Bảng 2.2 Các mẫu ZIF-67 biến tính kẽm theo tỷ lệ khác 46 Bảng 3.1 Đặc tính cấu trúc kích thước hạt/tinh thể ZIF-67 tổng hợp nhiều cách tiếp cận khác .58 Bảng 3.2 Các thông số động học mơ hình biểu kiến bậc mơ hình biểu kiến bậc .63 Bảng 3.3 So sánh hồi quy tuyến tính đa đoạn cho một, hai, ba bốn đoạn sử dụng chuẩn số thông tin AIC 66 Bảng 3.4 Kết phân tích hồi quy tuyến tính ba đoạn theo mơ hình Weber ZIF-67 (giá trị ngoặc đơn hoảng tin cậy 95%) .66 Bảng 3.5 Các thơng số mơ hình khuếch tán màng Boyd hấp phụ CGR vật liệu ZIF-67 .67 Bảng 3.6 Các thơng số mơ hình đẳng nhiệt Langmuir Freundlich nhiệt độ khác 69 Bảng 3.7 Dung lượng hấp phụ chất hấp phụ khác CGR, MB, RhB nhiệt độ môi trường xung quanh 71 Bảng 3.8 Hằng số tốc độ hấp phụ CGR ZIF-67 nhiệt độ khác 72 Bảng 3.9 Các thông số nhiệt động học tính tốn số cân khác .75 Bảng 3.10 Cường độ dòng đỉnh PRA DPM dung môi khác 81 [56] Hillman F., Zimmerman J.M., Paek S.-M., Hamid M.R., Lim W.T., Jeong H.-K (2017), Rapid microwave-assisted synthesis of hybrid zeolitic– imidazolate frameworks with mixed metals and mixed linkers, Journal of Materials Chemistry A, (13), pp 6090-6099 [57] Ho Y., McKay G (1998), A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process safety and environmental protection, 76 (4), pp 332-340 [58] Holford N.H (2005), Fitting models to biological data using linear and non‐linear regression: a practical guide to curve fitting Harvey Motulsky and Arthur Christopoulos, Oxford University Press, Oxford, 2004 No of pages: 352 Price:£ 19.99, 29.29(paperback);£40.00, 65.00 (hardcover) ISBN: 0‐19‐ 517180‐2 (paperback), 0‐19‐517179‐9 (hardcover), Statistics in Medicine, 24 (17), pp 2745-2746 [59] Horwitz W., Albert R (1997), Quality IssuesThe Concept of Uncertainty as Applied to ChemicalMeasurements, Analyst, 122 (6), pp 615-617 [60] Hosseinian A., Amjad A., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Babazadeh M., Vessally E (2017), Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications, Journal of Materials Science: Materials in Electronics, 28 (23), pp 18040-18048 [61] Howarth A.J., Liu Y., Li P., Li Z., Wang T.C., Hupp J.T., Farha O.K (2016), Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nature Reviews Materials, (3), pp 15018 [62] Hu Y., Liu Z., Xu J., Huang Y., Song Y (2013), Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy, Journal of the American Chemical Society, 135 (25), pp 9287-9290 [63] Jeong S.H., Park K (2008), Drug loading and release properties of ionexchange resin complexes as a drug delivery matrix, International journal of Pharmaceutics, 361 (1-2), pp 26-32 122 [64] Jing H., Song X., Ren S., Shi Y., An Y., Yang Y., Feng M., Ma S., Hao C (2016), ZIF-67 derived nanostructures of Co/CoO and Co@ N-doped graphitic carbon as counter electrode for highly efficient dye-sensitized solar cells, Electrochimica Acta, 213, pp 252-259 [65] Jung B.K., Jun J.W., Hasan Z., Jhung S.H (2015), Adsorptive removal of parsanilic acid from water using mesoporous zeolitic imidazolate framework8, Chemical Engineering Journal, 267, pp 9-15 [66] Kachoosangi R.T., Banks C.E., Compton R.G (2006), Simultaneous determination of uric acid and ascorbic acid using edge plane pyrolytic graphite electrodes, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 18 (8), pp 741-747 [67] Kachoosangi R.T., Compton R.G (2007), A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode, Analytical and bioanalytical chemistry, 387 (8), pp 2793-2800 [68] Kan C.-C., Aganon M.C., Futalan C.M., Dalida M.L.P (2013), Adsorption of Mn2+ from aqueous solution using Fe and Mn oxide-coated sand, Journal of Environmental Sciences, 25 (7), pp 1483-1491 [69] Kang X.-z., Song Z.-W., Shi Q., Dong J.-X (2013), Utilization of Zeolite Imidazolate Framework as an Adsorbent for the Removal of Dye from Aqueous Solution, Asian Journal of Chemistry, 25 (15) [70] Kaur G., Rai R.K., Tyagi D., Yao X., Li P.-Z., Yang X.-C., Zhao Y., Xu Q., Singh S.K (2016), Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO and H uptakes, Journal of Materials Chemistry A, (39), pp 14932-14938 [71] Keeley G.P., McEvoy N., Nolan H., Kumar S., Rezvani E., Holzinger M., Cosnier S., Duesberg G.S (2012), Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films, Analytical Methods, (7), pp 2048-2053 [72] Kennedy J., Garaita M (1984), Analytical chemistry, Bioseparation, (6) 123 [73] Khan N.A., Jung B.K., Hasan Z., Jhung S.H (2015), Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks, Journal of hazardous materials, 282, pp 194-200 [74] Khiếu Đ.Q (2015), Một số phƣơng pháp phân tích hóa lý, Nhà xuất Đại học Huế [75] Kitagawa S (2014), Metal–organic frameworks (MOFs), Chemical Society Reviews, 43 (16), pp 5415-5418 [76] Kong D., Han L., Wang Z., Jiang L., Zhang Q., Wu Q., Su J., Lu C., Chen G (2019), An electrochemical sensor based on poly (procaterol hydrochloride)/carboxyl multi-walled carbon nanotube for the determination of bromhexine hydrochloride, RSC advances, (21), pp 11901-11911 [77] Kumar A., Prasad B., Mishra I (2008), Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics, Journal of Hazardous Materials, 152 (2), pp 589-600 [78] Kumar K.V., Porkodi K., Rocha F (2008), Langmuir–Hinshelwood kinetics– a theoretical study, Catalysis Communications, (1), pp 82-84 [79] Kumar S.A., Tang C.-F., Chen S.-M (2008), Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine, Talanta, 76 (5), pp 997-1005 [80] Kutluay A., Aslanoglu M (2012), Multi-walled carbon nanotubes/electrocopolymerized cobalt nanoparticles-poly (pivalic acid) composite film coated glassy carbon electrode for the determination of methimazole, Sensors and Actuators B: Chemical, 171, pp 1216-1221 [81] Kutluay A., Aslanoglu M (2014), An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine, Analytica chimica acta, 839, pp 59-66 [82] Lachheb H., Puzenat E., Houas A., Ksibi M., Elaloui E., Guillard C., Herrmann J.-M (2002), Photocatalytic degradation of various types of dyes 124 (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Applied Catalysis B: Environmental, 39 (1), pp 75-90 [83] Lanchas M., Arcediano S., Aguayo A.T., Beobide G., Castillo O., Cepeda J., Vallejo-Sánchez D., Luque A (2014), Two appealing alternatives for MOFs synthesis: solvent-free oven heating vs microwave heating, RSC Advances, (104), pp 60409-60412 [84] Langmuir I (1916), The constitution and fundamental properties of solids and liquids Part I Solids, Journal of the American chemical society, 38 (11), pp 2221-2295 [85] Laviron E (1979), General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101 (1), pp 19-28 [86] Lee Y.-R., Jang M.-S., Cho H.-Y., Kwon H.-J., Kim S., Ahn W.-S (2015), ZIF-8: A comparison of synthesis methods, Chemical Engineering Journal, 271, pp 276-280 [87] Lei C., Zhu X., Zhu B., Jiang C., Le Y., Yu J (2017), Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr (VI) ions, Journal of hazardous materials, 321, pp 801-811 [88] Li C (2007), Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing element, Colloids and Surfaces B: Biointerfaces, 55 (1), pp 77-83 [89] Li J.-R., Kuppler R.J., Zhou H.-C (2009), Selective gas adsorption and separation in metal–organic frameworks, Chemical Society Reviews, 38 (5), pp 1477-1504 [90] Li J., Ng D.H., Song P., Kong C., Song Y., Yang P (2015), Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption, Biomass and Bioenergy, 75, pp 189-200 125 [91] Li L., Liu S., Zhu T (2010), Application of activated carbon derived from scrap tires for adsorption of Rhodamine B, Journal of Environmental Sciences, 22 (8), pp 1273-1280 [92] Li M., Jing L (2007), Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode, Electrochimica Acta, 52 (9), pp 3250-3257 [93] Li X., Gao X., Ai L., Jiang J (2015), Mechanistic insight into the interaction and adsorption of Cr (VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution, Chemical Engineering Journal, 274, pp 238-246 [94] Li Y., Zhou K., He M., Yao J (2016), Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption, Microporous and Mesoporous Materials, 234, pp 287-292 [95] Liang R., Jing F., Shen L., Qin N., Wu L (2015), M@ MIL-100 (Fe)(M= Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water, Nano Research, (10), pp 3237-3249 [96] Liang Y., Wang H., Diao P., Chang W., Hong G., Li Y., Gong M., Xie L., Zhou J., Wang J (2012), Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes, Journal of the American Chemical Society, 134 (38), pp 15849-15857 [97] Lin K.-Y.A., Chang H.-A (2015), Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water, Chemosphere, 139, pp 624-631 [98] Lin K.-Y.A., Chang H.-A (2015), Zeolitic Imidazole Framework-67 (ZIF67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water, Journal of the Taiwan Institute of Chemical Engineers, 53, pp 40-45 [99] Liu C.-H., Wu J.-S., Chiu H.-C., Suen S.-Y., Chu K.H (2007), Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers, Water Research, 41 (7), pp 1491-1500 126 [100] Liu S.-Q., Sun W.-H., Hu F.-T (2012), Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent, Sensors and Actuators B: Chemical, 173, pp 497-504 [101] Liu S., Ding Y., Li P., Diao K., Tan X., Lei F., Zhan Y., Li Q., Huang B., Huang Z (2014), Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N, N-dimethyl dehydroabietylamine oxide, Chemical Engineering Journal, 248, pp 135-144 [102] Liu Y (2009), Is the free energy change of adsorption correctly calculated?, Journal of Chemical & Engineering Data, 54 (7), pp 1981-1985 [103] Llabrés i Xamena F.X., Corma A., Garcia H (2007), Applications for metal− organic frameworks (MOFs) as quantum dot semiconductors, The Journal of Physical Chemistry C, 111 (1), pp 80-85 [104] Locke C.J., Fox S.A., Caldwell G.A., Caldwell K.A (2008), Acetaminophen attenuates dopamine neuron degeneration in animal models of Parkinson's disease, Neuroscience letters, 439 (2), pp 129-133 [105] Lorenc-Grabowska E., Gryglewicz G (2007), Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon, Dyes and pigments, 74 (1), pp 34-40 [106] Low Z.-X., Yao J., Liu Q., He M., Wang Z., Suresh A.K., Bellare J., Wang H (2014), Crystal transformation in zeolitic-imidazolate framework, Crystal Growth & Design, 14 (12), pp 6589-6598 [107] Ma S.-C., Zhang J.-L., Sun D.-H., Liu G.-X (2015), Surface complexation modeling calculation of Pb (II) adsorption onto the calcined diatomite, Applied Surface Science, 359, pp 48-54 [108] Ma T.Y., Dai S., Jaroniec M., Qiao S.Z (2014), Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes, Journal of the American Chemical Society, 136 (39), pp 13925-13931 127 [109] Madhavan J., Kumar P.S.S., Anandan S., Zhou M., Grieser F., Ashokkumar M (2010), Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment, Chemosphere, 80 (7), pp 747-752 [110] Malash G.F., El-Khaiary M.I (2010), Piecewise linear regression: A statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models, Chemical Engineering Journal, 163 (3), pp 256-263 [111] Mall I.D., Srivastava V.C., Agarwal N.K., Mishra I.M (2005), Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses, Chemosphere, 61 (4), pp 492-501 [112] Mamiński M., Olejniczak M., Chudy M., Dybko A., Brzózka Z (2005), Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology, Analytica chimica acta, 540 (1), pp 153-157 [113] Manjunatha R., Nagaraju D.H., Suresh G.S., Melo J.S., D'Souza S.F., Venkatesha T.V (2011), Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique, Electrochimica Acta, 56 (19), pp 6619-6627 [114] Milonjić S.K (2007), A consideration of the correct calculation of thermodynamic parameters of adsorption, Journal of the Serbian chemical society, 72 (12), pp 1363-1367 [115] Minh T.T., Phong N.H., Van Duc H., Khieu D.Q (2018), Microwave synthesis and voltammetric simultaneous determination of paracetamol and caffeine using an MOF-199-based electrode, Journal of materials science, 53 (4), pp 2453-2471 [116] Nam P.T.S., Dũng L.T., Tùng N.T (2012), Vật liệu khung kim (MOFs): Các ứng dụng từ hấp phụ đến xúc tác, Tạp chí Khoa học Cơng nghệ, 50 (6), pp 751-766 128 [117] Nandasiri M.I., Jambovane S.R., McGrail B.P., Schaef H.T., Nune S.K (2016), Adsorption, separation, and catalytic properties of densified metalorganic frameworks, Coordination Chemistry Reviews, 311, pp 38-52 [118] Niu X., Xiong Q., Pan J., Li X., Zhang W., Qiu F., Yan Y (2017), Highly active and durable methanol electro-oxidation catalyzed by small palladium nanoparticles inside sulfur-doped carbon microsphere, Fuel, 190, pp 174-181 [119] Ordonez M.J.C., Balkus Jr K.J., Ferraris J.P., Musselman I.H (2010), Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, Journal of Membrane Science, 361 (1-2), pp 28-37 [120] Pan J., Mao Y., Gao H., Xiong Q., Qiu F., Zhang T., Niu X (2016), Fabrication of hydrophobic polymer foams with double acid sites on surface of macropore for conversion of carbohydrate, Carbohydrate polymers, 143, pp 212-222 [121] Panda G.C., Das S.K., Guha A.K (2009), Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution, Journal of Hazardous Materials, 164 (1), pp 374-379 [122] Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K., O‟Keeffe M., Yaghi O.M (2006), Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103 (27), pp 10186-10191 [123] Pattar V.P., Nandibewoor S.T (2015), Electroanalytical method for the determination of 5-fluorouracil using a reduced graphene oxide/chitosan modified sensor, RSC Advances, (43), pp 34292-34301 [124] Phan A., Doonan C.J., Uribe-Romo F.J., Knobler C.B., O‟keeffe M., Yaghi O.M (2009), Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks [125] Pi Y., Li X., Xia Q., Wu J., Li Y., Xiao J., Li Z (2018), Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs), Chemical Engineering Journal, 337, pp 351-371 129 [126] Qadeer R (2005), Adsorption of ruthenium ions on activated charcoal: influence of temperature on the kinetics of the adsorption process, Journal of Zhejiang University Science B, (5), pp 353 [127] Qian J., Sun F., Qin L (2012), Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals, Materials Letters, 82, pp 220-223 [128] Qin J., Wang S., Wang X (2017), Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient cocatalyst, Applied Catalysis B: Environmental, 209, pp 476-482 [129] Rafatullah M., Sulaiman O., Hashim R., Ahmad A (2010), Adsorption of methylene blue on low-cost adsorbents: a review, Journal of hazardous materials, 177 (1-3), pp 70-80 [130] Rajeshwar K., Osugi M., Chanmanee W., Chenthamarakshan C., Zanoni M.V.B., Kajitvichyanukul P., Krishnan-Ayer R (2008), Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media, Journal of photochemistry and photobiology C: photochemistry reviews, (4), pp 171-192 [131] Ramesh A., Lee D., Wong J (2005), Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents, Journal of Colloid and Interface Science, 291 (2), pp 588-592 [132] Ravisankar S., Vasudevan M., Gandhimathi M., Suresh B (1998), Reversedphase HPLC method for the estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations, Talanta, 46 (6), pp 1577-1581 [133] Recommendations I (1985), Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl Chem, 57 (4), pp 603-619 [134] Rezaei B., Damiri S (2008), Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate (II) electrocatalyst system as a sensor for determination of captopril, Sensors and Actuators B: Chemical, 134 (1), pp 324-331 [135] Rodenas V., Garcıa M., Sanchez-Pedreno C., Albero M (2000), Simultaneous determination of propacetamol and paracetamol by derivative spectrophotometry, Talanta, 52 (3), pp 517-523 130 [136] Rodenberg A., Orazietti M., Probst B., Bachmann C., Alberto R., Baldridge K.K., Hamm P (2014), Mechanism of photocatalytic hydrogen generation by a polypyridyl-based cobalt catalyst in aqueous solution, Inorganic chemistry, 54 (2), pp 646-657 [137] Rodriguez-Mozaz S., Chamorro S., Marti E., Huerta B., Gros M., SànchezMelsió A., Borrego C.M., Barceló D., Balcázar J.L (2015), Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river, Water research, 69, pp 234-242 [138] Sanghavi B.J., Srivastava A.K (2010), Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode, Electrochimica Acta, 55 (28), pp 8638-8648 [139] Sawalha M.F., Peralta-Videa J.R., Romero-González J., Gardea-Torresdey J.L (2006), Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies, Journal of Colloid and Interface Science, 300 (1), pp 100-104 [140] Scherb C (2009), Controlling the Surface Growth of Metal-Organic Frameworks, Munich Ludwig Maximilians University, Munich [141] Scherb C (2009) Controlling the Surface Growth of Metal-Organic Frameworks, lmu [142] Seo Y.-K., Hundal G., Jang I.T., Hwang Y.K., Jun C.-H., Chang J.-S (2009), Microwave synthesis of hybrid inorganic–organic materials including porous Cu3 (BTC) from Cu (II)-trimesate mixture, Microporous and Mesoporous Materials, 119 (1-3), pp 331-337 [143] Shao J., Wan Z., Liu H., Zheng H., Gao T., Shen M., Qu Q., Zheng H (2014), Metal organic frameworks-derived Co O hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage, Journal of Materials Chemistry A, (31), pp 12194-12200 [144] Sheha R., El-Zahhar A (2008), Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions, Journal of Hazardous Materials, 150 (3), pp 795-803 131 [145] Shi Q., Chen Z., Song Z., Li J., Dong J (2011), Synthesis of ZIF‐8 and ZIF‐ 67 by steam‐assisted conversion and an investigation of their tribological behaviors, Angewandte Chemie International Edition, 50 (3), pp 672-675 [146] Soleymani J., Hasanzadeh M., Shadjou N., Jafari M.K., Gharamaleki J.V., Yadollahi M., Jouyban A (2016), A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode, Materials science and engineering: C, 61, pp 638-650 [147] Tauc J (1968), Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin, (1), pp 37-46 [148] Thanh M.T (2017), Nghiên cứu biến tính vật liệu ZIF-8 số ứng dung, Luận án tiến sĩ Hóa học, Đại học khoa học, Đại học Huế [149] Thanh M.T., Thien T.V., Du P.D., Hung N.P., Khieu D.Q (2018), Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8, Journal of Porous Materials, 25 (3), pp 857-869 [150] Thi Thanh M., Vinh Thien T., Thi Thanh Chau V., Dinh Du P., Phi Hung N., Quang Khieu D (2017), Synthesis of iron doped zeolite imidazolate framework-8 and its remazol deep black RGB dye adsorption ability, Journal of Chemistry, 2017 [151] Tian Y.Q., Zhao Y.M., Chen Z.X., Zhang G.N., Weng L.H., Zhao D.Y (2007), Design and generation of extended zeolitic metal–organic frameworks (ZMOFs): synthesis and crystal structures of zinc (II) imidazolate polymers with zeolitic topologies, Chemistry–A European Journal, 13 (15), pp 4146-4154 [152] Torad N.L., Hu M., Ishihara S., Sukegawa H., Belik A.A., Imura M., Ariga K., Sakka Y., Yamauchi Y (2014), Direct synthesis of MOF‐derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment, Small, 10 (10), pp 2096-2107 132 [153] Tran H.N., You S.-J., Chao H.-P (2016), Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study, Journal of Environmental Chemical Engineering, (3), pp 2671-2682 [154] Tran U.P., Le K.K., Phan N.T (2011), Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction, Acs Catalysis, (2), pp 120-127 [155] Tranchemontagne D.J., Mendoza-Cortés J.L., O‟Keeffe M., Yaghi O.M (2009), Secondary building units, nets and bonding in the chemistry of metal–organic frameworks, Chemical Society Reviews, 38 (5), pp 1257-1283 [156] Tseng R.-L., Wu F.-C., Juang R.-S (2010), Characteristics and applications of the Lagergren's first-order equation for adsorption kinetics, Journal of the Taiwan Institute of Chemical Engineers, 41 (6), pp 661-669 [157] Tsuboy M., Angeli J., Mantovani M., Knasmüller S., Umbuzeiro G., Ribeiro L (2007), Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2, Toxicology in vitro, 21 (8), pp 1650-1655 [158] Valvekens P., Vermoortele F., De Vos D (2013), Metal–organic frameworks as catalysts: the role of metal active sites, Catalysis Science & Technology, (6), pp 1435-1445 [159] Verma A.K., Dash R.R., Bhunia P (2012), A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, Journal of environmental management, 93 (1), pp 154-168 [160] Vilian A.E., Rajkumar M., Chen S.-M (2014), In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid, Colloids and Surfaces B: Biointerfaces, 115, pp 295-301 [161] Wang F., Dong C., Wang C., Yu Z., Guo S., Wang Z., Zhao Y., Li G (2015), Fluorescence detection of aromatic amines and photocatalytic degradation of 133 rhodamine B under UV light irradiation by luminescent metal–organic frameworks, New Journal of Chemistry, 39 (6), pp 4437-4444 [162] Wang H., Yuan X., Wu Y., Zeng G., Dong H., Chen X., Leng L., Wu Z., Peng L (2016), In situ synthesis of In2S3@ MIL-125 (Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis, Applied Catalysis B: Environmental, 186, pp 19-29 [163] Wang H.Y., Sun Y., Tang B (2002), Study on fluorescence property of dopamine and determination of dopamine by fluorimetry, Talanta, 57 (5), pp 899-907 [164] Wang J.L., Xu L.J (2012), Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Critical reviews in environmental science and technology, 42 (3), pp 251-325 [165] Wang L., Li J., Wang Y., Zhao L., Jiang Q (2012), Adsorption capability for Congo red on nanocrystalline MFe2O4 (M= Mn, Fe, Co, Ni) spinel ferrites, Chemical Engineering Journal, 181, pp 72-79 [166] Wang M., Jiang X., Liu J., Guo H., Liu C (2015), Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method, Electrochimica Acta, 182, pp 613-620 [167] Weber W.J., Morris J.C (1963), Kinetics of adsorption on carbon from solution, Journal of the Sanitary Engineering Division, 89 (2), pp 31-60 [168] Wightman R.M., May L.J., Michael A.C (1988), Detection of dopamine dynamics in the brain, Analytical chemistry, 60 (13), pp 769A-793A [169] Wilson J.M., Slattery J.T., Forte A.J., Nelson S.D (1982), Analysis of acetaminophen metabolites in urine by high-performance liquid chromatography with UV and amperometric detection, Journal of Chromatography B: Biomedical Sciences and Applications, 227 (2), pp 453-462 [170] Wu J.-S., Liu C.-H., Chu K.H., Suen S.-Y (2008), Removal of cationic dye methyl violet 2B from water by cation exchange membranes, Journal of membrane science, 309 (1-2), pp 239-245 134 [171] Wu Z.-S., Yang S., Sun Y., Parvez K., Feng X., Mu llen K (2012), 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134 (22), pp 9082-9085 [172] Xiao L., Xu H., Zhou S., Song T., Wang H., Li S., Gan W., Yuan Q (2014), Simultaneous detection of Cd (II) and Pb (II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuthfilm electrode, Electrochimica Acta, 143, pp 143-151 [173] Xu Z., Qi B., Di L., Zhang X (2014), Partially crystallized Pd nanoparticles decorated TiO2 prepared by atmospheric-pressure cold plasma and its enhanced photocatalytic performance, Journal of Energy Chemistry, 23 (6), pp 679-683 [174] Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J (2003), Reticular synthesis and the design of new materials, Nature, 423 (6941), pp 705-714 [175] Yang C.-L., McGarrahan J (2005), Electrochemical coagulation for textile effluent decolorization, Journal of hazardous materials, 127 (1-3), pp 40-47 [176] Yang C., You X., Cheng J., Zheng H., Chen Y (2017), A novel visible-lightdriven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin, Applied Catalysis B: Environmental, 200, pp 673-680 [177] Yang H., He X.-W., Wang F., Kang Y., Zhang J (2012), Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye, Journal of Materials Chemistry, 22 (41), pp 21849-21851 [178] Yang L., Lu H (2012), Microwave‐assisted Ionothermal Synthesis and Characterization of Zeolitic Imidazolate Framework‐8, Chinese Journal of Chemistry, 30 (5), pp 1040-1044 [179] Yang L., Yu L., Diao G., Sun M., Cheng G., Chen S (2014), Zeolitic imidazolate framework-68 as an efficient heterogeneous catalyst for 135 chemical fixation of carbon dioxide, Journal of Molecular Catalysis A: Chemical, 392, pp 278-283 [180] Yao J., He M., Wang H (2015), Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks, CrystEngComm, 17 (27), pp 4970-4976 [181] You B., Jiang N., Sheng M., Gul S., Yano J., Sun Y (2015), High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks, Chemistry of Materials, 27 (22), pp 7636-7642 [182] Yu G., Sun J., Muhammad F., Wang P., Zhu G (2014), Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene, Rsc Advances, (73), pp 38804-38811 [183] Zen J.-M., Ting Y.-S (1997), Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode, Analytica chimica acta, 342 (2-3), pp 175-180 [184] Zeng L., Guo X., He C., Duan C (2016), Metal–organic frameworks: versatile materials for heterogeneous photocatalysis, ACS Catalysis, (11), pp 7935-7947 [185] Zhang C., Ai L., Jiang J (2014), Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of rhodamine B under visible light, Industrial & Engineering Chemistry Research, 54 (1), pp 153-163 [186] Zhang C., Xiao Y., Liu D., Yang Q., Zhong C (2013), A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO capture, Chemical Communications, 49 (6), pp 600-602 [187] Zhang H., Zhong J., Zhou G., Wu J., Yang Z., Shi X (2016), MicrowaveAssisted solvent-free synthesis of zeolitic imidazolate framework-67, Journal of Nanomaterials, 2016 [188] Zhang Y., Shen Y., Chen Y., Yan Y., Pan J., Xiong Q., Shi W., Yu L (2016), Hierarchically carbonaceous catalyst with Brønsted–Lewis acid sites 136

Ngày đăng: 28/05/2023, 16:06

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN