Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 18 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
18
Dung lượng
762,32 KB
Nội dung
Bài tập Phân tích định lượng MBA-08 1 TRƯỜNG Đ ẠI HỌC MỞ TP.HCM LỚP CAO HỌC QUẢN TRỊ KINH DOANH KHÓA 8 TIỂULUẬN MÔN HỌC: PHÂN TÍCH ĐỊNH LƯỢNG ĐỀ TÀI TIỂU LUẬN: NHÓM THỰC HIỆN: Đào Hùng Anh. Võ Phương Hồng Cúc. Lê Trọng Đoan Cao Văn Tuấn. TP. Hồ Chí Minh, tháng 2 năm 2009 Bài tập Phân tích định lượng MBA-08 2 ĐẠI HỌC MỞ TP. HỐ CHÍ MINH CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự do – Hạnh phúc ĐỀ KIỂM TRA MÔN: PHÂN TÍCH ĐỊNH LƯỢNG LỚP: MBA8 Ghi chú: Sinh viên làm bài theo nhóm Yêu cầu: Sử dụng dữ liệu trong file World 95 Tieng Viet.sav đính kèm, bạn hãy tự xây dựng cho mình một mô hìnhhồiquy giải thíchsựkhácbiệtvềtuổithọphụnữ giữa các quốc gia trênthế giới. Bạn được tự do lựa chọn các biến giảithích để đưa vào m ô hình cũng như tự quyết định dạng thức của các liên hệ giữa biến giảithích và biến kết quả. Hãy mô tả chi tiết quá trình xây dựng môhìnhcủa bạn và tăng tính thuyết phục củamôhình này bằng các công cụ chẩn đoán và đánh giá mô hình. Giảithích ý nghĩa các kết quả củamôhình rút ra. Sản phẩm nộp: 1. Bài làm dạng file Word (có ghi tên các thành viên của nhóm ở trang đầu) 2. File output SP SS Cả 2 file được đặt tên như sau MBA8_KT_nhomX (X là số thứ tự nhóm) Hình thức: File Word định dạng khổ giấy A4 (canh lề 2cm mỗi phía), font chữ Time New Roman, cỡ 12 points Cách đoạn (Spacin g before) 6 points, giãn dòng (line spacing) 1.2 Chúc thành công! Bài tập Phân tích định lượng MBA-08 3 Lời nói đầu: Phân tích định lượng là môn học nhằm trang bị kiến thức và phương pháp trong việc xây dựng m ô hình, thu thập thông tin về thị trường và đời sốn g xã hội, phân tích số liệu, đánh giá số liệu nhằm khái quát hóa các vấn đề nghiên cứu trong môhình đã xây dựng. Đằng sau những kiến thức đó cần có kiến thức về thống kê toánvà các kỹ năng sử dụng các loại phần mềm chuyên n ghiệp cho bộ môn này như SPSS, E VIEWS hay Excel. Qua đó ta thấy đây là một lĩnh vực rộng lớn cần có sự trau dồi và tích lũy kiến thức lâu dài cũng như sự yêu nghề để đạt được sự hiểu biết tường tận và thực hiện tốt công việc này. Trong hệ thống kiến thức rộng lớn đó kỹ thuật hồiquy tuyến tính là một kỹ thuật hay môhình quan trọng để tìm ra sự tương quan của các biến nguyên nhân và kết quả để ta có thểhình dung tương đối mối liên kết đó, giúp ta có thể ứng dụng môhình trong thực tế đời sống xã hội hay kinh tế. Trong tiểuluận chúng ta đi nghiên cứu t uổi thọcủaphụnữkhác nhau như thế nào trênthếgiới thông qua các biến nguyên nhân như GDP, học vấn hay số lượng sinh sản… sau đó đánh giá môhình thông qua các chỉ số liên k ết, các chỉ số v ề sự chính xác và tương quan của các biến nghiên cứu. Nhóm xin chân thành biết ơn và cảm tạ thầy Hoàng Trọng, đã hết lòng truyền thụ kiến thức và chia sẻ những kinh nghiệm quý báu trong quá trình hướng dẫn lớp MBA-08 môn học phân tích định lượng. Kính chúc thầy nhiều sức khỏe để tiếp tục truyền thụ sự hiểu biết cho các khóa đàn em mai sau. Bài tập Phân tích định lượng MBA-08 4 MỤC LỤC I. Lý thuyết vềhồiquy tuyến tính. 1. Hệ số tương quan đơn. 2. Xây dựng ph ươn g trình hồiquy tuyến tính. 3. Đánh giá sựphù hợp củamô hình. 4. Kiểm định giả thuyết về độ phù hợp củamôhình và ý nghĩa của hệ số hồi quy. 5. Hồiquy bội, những vấn đề cần quan tâm khi thực hiện. II. Ứng dụng Hồiquy tuyến tính vào để xây dựn g một m ô hìnhhồiquygiảithíchsựkhácbiệtvềtuổithọphụnữ giữa các quốc gia trênthế giới. 1. Xác định biến nguyên nhân và kết quả. 2. Xây dựng môhìnhhồiquy t uyến tính. 3. Đánh giá sựphù hợp và kiểm định mô hình. 4. Môhình đa biến, chọn lựa biến nguyên nhân, xây dựng và đánh giá. Kết luận Bài tập Phân tích định lượng MBA-08 5 I.Lý thuyết tổng quát vềhồiquy đơn biến. 1. Hệ số tương quan.( correlation coefficient) - Hệ số tương quan r nhằm nói lên sự liên kết chặt chẽ giữa hai biến nào đó. - Hệ số tương quan cho mẫu là ước lượng của hệ số tương quan r để đo lường mối liên kết tuyến chặt chẽ giữa các biến của mẫu. - Hệ số này không có đơn vị. - Hệ số này có giá trị biến thiên từ -1 đến 1. - Khi có giá trị âm hệ hai biến có tương quan nghịch biến. - Khi có giá trị dương hệ hai biến có tương quan đồng biến. - Khi gía trị này bằng khôn g thì hai biến khôn g có liên kết. - Công thức tính toán hệ số tương quan mẫu: Trong đó: r: hệ số tương quan, X : gía trị hệ số nguyên nhân, Y: giá trị hệ số kết quả, X: hệ số trung bình biến nguyên nhân, Y: giá trị trung bình biến kết quả, n: độ lớn mẫu. - Giá trị r giữa hai biến có thể là rất thấp nhưng chưa hẳn hai biến đó hoàn toàn không có mối liên hệ, có thể nó lại có dạng liên quan khác như liên hệ phi tuyến. - Giá trị r có thể là rất cao có khi gần bằng 1 nhưng thực tế không có sự liên quan nào, người ta gọi là sự tương quan giả, ví dụ như người ta nghiên cứu số lượng trẻ sơ sinh phụ thuộc vào dân số của thành phố HCM có sự tương quan rất cao vào năm 200x nhưng thực tế hai biến này có sự tương quan giả, do khoản thời gian đó kinh tế suy giảm các năm gần đó tỷ lệ sinh giảm, nhưng đặc biệt năm đó là năm Nghịch biến Đồng biến Không có mối liên hệ. Bài tập Phân tích định lượng MBA-08 6 may mắn nên các gia đình quyết định sinh con nhiều. Như vậy ta thất ở đây tương quan thật phải là số lượng trẻ sơ sinh và năm tốt. - Như vậy h ệ số tương quan chỉ được coi là một chỉ số nói lên sự chặt chẽ giữa các biến. 2.Xây dựng phương trình hồiquy tuyến tính: Sau khi đã nghiên cứu hệ số tương quan r, ta thấy rằng có thể hai biến có hệ số tương quan chặt chẽ một cách tuyến tính nhưng thực tế thì không có sự liên hệ nào về thực chất, do vậy để xây dựng phương trình hồiquy tuyến tính của các biến với nhau thì xem như ta đã nghiên cứu thấu đáo vềsự liên quan giữa chúng trong thực tế, và có xét đến hệ số tương quan cần thiết khá cao. Sau đó ta tiến hành xây dựng mô hình. Lý thuyết thông thường người ta đặt biến Y là biến kết quả và biết X nguyên nhân, X được đặt trên trục hoành và Y đặt trên trục tung. Trong phần nghiên cứu củatiểuluận ta chi đi khảo sát mối liên quan tuyến tính theo đường thẳng đố i với mối liên hệ theo các hìnhkhác như parabol hay hình gấp khúc không được đề cập. Phương trình hồiquy tuyến tính của tổng thể và mẫu có dạng đường thẳng như sau: Yi = 0 + 1 X i + , Yi = B 0 + B 1 X i + Trong đó Y là biến kết quả dự đoán thứ i, X i là biến nguyên nhân thứ i, B 0 hệ số tương quan tung độ góc là giá trị của Y khi X bằng không, B 1 là hệ số tương quan độ dốc của đường thẳng biểu diễn môhìnhhồi quy, là gía trị khácbiệt giữa hồiquy và giá trị thực tế. Ý nghĩa của các hệ số : - B 0 nói lên giá trị của biến dự đoán khi gía trị nguyên nh ân bằng không. - B 1 độ dốc của đường hồiquy nhằm nói lên rằng khi giá trị X thay đổi một đơn vị thì giá trị Y sẽ thay đổi X.B 1 đơn vị. - nói lên sựkhácbiệt giữa giá trị hồiquy và gía trị thực tế, ví dụ một biến kết quả có thể ảnh hưởng bởi rất nhiều biến nguyên nhân nh ưng ta lại chỉ khảo sát một biến nguyên nhân duy nhất, điều này đưa đến sự có giá trị khácbiệt này, khi giá trị càng nhỏ thì sự ảnh hưởng của biến nguyên nhân đó càng lớn và càng có sự chính xác kh i áp dụng môhìnhhồi quy. - Ví dụ khi ta khảo sát chiều cao củacủa đứa trẻ 8 tuổi theo chế độ dinh dưỡng thì ta có gía trị lớn, thì có nghỉa rằng chiều cao của đứa trẻ phụ thuộc vào dinh dưỡng v à còn phụ thuộc vào các biến khác như chiều cao của cha mẹ, nơi ăn chốn ở hay cách chăm sóc… hay nói cách khác gía trị nhằm nói đến sự sai lệch do ta chưa khảo sát hết tất cả các biến ảnh hưởng đến biến phụ thuộc mà ta đang khảo sát. - Sau khi có được môhìnhhồiquy tuyến tính ta có thể tính gía trị biến phụ thuộc thông qua giá trị biến không phụ thuộc với một giá trị chênh lệch nào đó mà ta chưa biết, nhưng giá trị đó nhỏ hơn Bài tập Phân tích định lượng MBA-08 7 giá trị sai biệt khi ta chỉ tính trị trung bình so với giá trị thực tế cần khảo sát. Để hiểu hơn ta có thể đi đến mục sau: Đánh giá sựphù hợp củamôhìnhhồiquy tuyến tính. 3.Đánh giá sựphù hợp củamô hình: Vấn đề quan trọng tron g các môhìnhhồiquy là phải chứng minh được sựphù hợp củamôhình mà ta đang khảo sát, hầu như không có đường thẳng hồiquy nào đều hoàn toàn phù hợp với tập dữ liệu khảo sát và luôn có gía trị sai lệch giữa các trị dự báo từ hồiquy và giá trị thực tế, sự sai lệch này thể hiện qua phần dư . Do vậy người ta phải nghỉ đến một thước đo nào đó để chỉ ra mức độ phù hợp củamô hình. Thông thường thước đo cho môhình tuyến tính được dùng là hệ số xác định R2. R2 được tính theo công thức: Trong đó SSR được xem như là giá trị sai lệch giữa gía trị dự đoán theo hồiquy so với giá trị trung bình của tập dữ liệu, nó nói lên ph ần giá trị mà ta có thể ước lượng gần với thực tế hơn khi có phương pháp hồiquy so với khi ta chỉ tính giá trị trung bình của tổng thể tập mẫu. Ví dụ khi ta tính thu nhập theo đầu người của thành phố HCM thì giá trị là 5 triệu đồng/người như vậy khi một gia đình có 3 người đi làm thì ta có thể hiểu là gia đình này thu nhập là 15 triệu đồng. Nhưng ta đã biết lương bổng thì phụ thuộc vào rất nhiều vấn đề như trình độ học thức, năm kinh nghiệm, loại công ty hay sự quan h ệ với cấp trên… như vậy khi ta dùng m ô hìnhhồiquy để tính lương của một người theo trình độ học vấn thì ta có thể tính như sau: Lương = B 0 + B 1 *trình độ = 1 + 2.5*trình độ, khi xét đến một người có học vị đại học anh ta có gía trị trình độ là 3 thì Lương =1+2.5*3=8.5 triệu. Như vậy khoản chênh lệch 3.5 triệu giữa giá trị trung bình và giá trị tính theo hồi là SSR. Giá trị SST được định nghĩa khá đơn giản là giá trị sai lệch giữa giá trị trung bình của tập khảo sát và giá thị thực tế của một giá trị thực tế nào đó. Như vậy từ công thức ta có thể thấy giá trị R 2 sẽ nằm trong khoảng từ 0 đến 1 khi R2 càng gần 0 thì môhình không phù hợp do môhìnhhồiquy không có tác dụng làm sai lệch nhỏ đi mà nó cũng giống như tính trung bình mà thôi. Khi R 2 càng gần về 1 thì môhình càng phù hợp do môhìnhhồi quy, làm gía trị dự đoán hầu như chính xác với gía trị thực tế. Ngoài SST và SSR người ta còn có SSE là giá trị chênh lệch giữa giá trị thực tế và giá trị hồi quy, giá trị này chính là sai số . Bài tập Phân tích định lượng MBA-08 8 Vậy SST = SSE +SSR hay sai lệch tổng = sai lệch ngoài + sai lệch hồi quy. Để hiểu rỏ hơn ta xem hìnhvẽ sau: 4.Kiểm định giả thuyết về độ phù hợp củamôhình và ý nghĩa của hệ số hồi quy. a. Kiểm định giả thuyết về độ phù hợp của m ô hình hay phân tích phương sai: Khi xây dựng xong môhìnhhồiquy tuyến tính vấn đề quan trọng ta ph ải đi kiểm định về độ phù hợp môhìnhhồiquy đó, do trong khi đánh giá sựphù hợp củamôhình bằng chỉ số Rsquare ch ỉ cho ta cái nhìn của tập mẫu nhưng không hẳn tổng thể có giá trị phù hợp tương ứng. Từ đó ta đi kiểm định, để k iểm định độ phù hợp củamôhìnhhồiquy tổng thể ta đặt giả thuyết H 0 : Rpop = 0 sau khi tiến hành bài toán kiểm định giả thuyết H 0 bị bác bỏ thì đây là bước đầu thành công cho việc kiểm định sự ph ù hợp củamô hình. Đại lượng F được dùng để kiểm định, nếu xác suất F nhỏ thì ta có thể bác bỏ giả định H 0 , F có công thức sau : 2 1 2 1 ˆ ( ) / ( ) /( 1) N i i N i i Y Y p F Y Y N p b. kiểm định giả thuyết về hệ số hồiquycủa tổng thể: Kiểm định thường được thực hiện chính là độ dốc củamôhình tổng thể, ý nghĩa của v iệc phải đi kiểm định này là do cho dù ta đã có độ dốc của mẫu là B 1 khác 0 nhưng ta khôn g thể chắc rằng độ dốc của tổng thể 1 là khác 0. Như vậy cũng tương tự nh ư kiểm định giả thuyết về độ phù hợp củamôhình tổng thể ta đặt giả th uyết H 0 : 1 = 0 . ta kỳ vọng giả thuyết này sẽ bị bác bỏ thì môhình có sự liên hệ của hai biến n guyên nhân và kết quả, hay môhìnhhồiquy có quan hệ thật chứ không là quan hệ giả. Đường thẳng hồiquy Gía trị trung bình Bài tập Phân tích định lượng MBA-08 9 Trị thống kê dùng để kiểm định giả thuyết là : t = B 1 /SB 1 Ta cũng có thể đi kiểm định B 0 giống như kiểm định B 1 với trị thống kê là: t = B 0 /SB 0 5. Hồiquy bội, những vấn đề cần quan tâm khi thực hiện. Hồiquy bội có quá trình xây dựng giống như hồiquy đơn nhưng ở đây ta có nhiều biến n guyên nhân và chỉ một biến kết quả. Ví dụ như xét đến sự hao phí nhiên liệu cho một động cơ đốt trong thì có thể có một số biến nguyên nhân là: độ nặng của xe, dung tích cylinder, số cylinder hay tỉ số nén, khoảng cách từ tử điểm trên đến tử điểm dưới… Môhìnhhồiquy bội có dạng: Y = 0 + 1 X 1 + 2 X 2 +…+ p X p +e Y: là biến kết quả, k là các hệ số hồiquy riêng phần, X k là các biến nguyên nhân, e là sai số. Các ưu điểm củahồiquy bội so với hồiquy đơn: - Hồiquy bội cho ta đường hồiquy chính xác hơn so với hồiquy đơn khi ta chọn được các biến nguyên nhân chính xác. - Giúp ta hiểu rõ hơn về vấn đề đang nhiên cứu, do mọi vấn đề hay hiện tượng trong tự nhiên hay trong kinh tế, xã hội đều có nhiều n guyên nhân gây ra chứ không phải chỉ một nguyên nhân ảnh hưỡng duy nhất. - Sai số e là nhỏ so với hồiquy đơn, khi các biến được chọn phù h ợp. Nhược điểm : - Có quy trình khảo sát và thu thập dữ liệu khó. - Có hiện tượng đa cộng tuyến xảy ra khi nghiên cứu các biến nguyên nhân. Điều này xảy ra khi các biến nguyên nh ân ảnh hưởng lẫn nhau. - Có mối liên hệ giả giửa biến nguyên nhân và biến kết quả. Xây dựng m ô hình: Bước đầu tiên khi xây dựng m ô hình thì ta phải đi xem xét các mối tương quan tuyến tính giửa các biến bằng cách xây dựng ma trận tương quan giữa các biến, từ đó ta có thể đánh giá sự tương quan của các biến nguyên nhân với nhau hay sự tác động đến biến kết quả. Để đánh giá độ phù hợp củamôhìnhhồiquy tuyến tính bội: ta cũng quan sát hệ số R2, khi ta đưa vào môhình càng nhiều biến nguyên nhân thì hệ số R2 cang tăng, nhưng thực tế cho thấy khi số biến nguyên nhân tăng thì khôn g hẳn môhình càng ph ù hợp. Do đó đối với môhìnhhồiquy tuyến tính bội người ta xét độ phù hợp củamôhình thông qua giá trị Rsquare adjust. Giá trị Rsquare điều chỉnh này không nhất thiết tăng cao gần một khi ta thêm vào môhình nhiều biến hơn vì nó không phụ thuộc vào độ lệch phóng đại của R2, R2 điều chỉnh được tính như sau: Ra 2 =R2-p(1-R2)/(N-p-1) P là biến số độc lập trong phương trình ( trong môhìnhhồiquy đơn biến thì p = 1). Kiểm định độ phù hợp củamô hình: Cũng giống như phần hồiquy đơn biến thì ta phải đi kiểm định độ phù hợp của tổng thể, kiểm định F được sử dụng, ý tưởng của kiểm định này là xem xét tất cả các biến nguyên nhân có liên hệ với biến kết quả hay không thông qua kiểm định giả thuyết H0: 0 = 1 = 2 =0, và khi giả thuyết H0 bị bác bỏ thì ta kết luận độ phù hợp tron g m ô hìnhgiảithích được biến khảo sát. Bài tập Phân tích định lượng MBA-08 10 Xét hệ số beta riêng phần cho mơ hình: Hệ số này nói lên sự tác động riêng của một biến ngun nhân nào đó vào biến kết quả khi các biến ngun nhân còn lại khơng có sự thay đổi, hệ số này còn được kiểm định thơng qua mức ý nghĩa sig. khi mức ý nghĩa càng nhỏ thì ta đánh giá biến ngun nhân đó có tác động đến mơ hình, ngược lại khi giá trị của mức ý nghĩa lớn hơn 0.05 chẵng hạn thì khơng có sự tác động lớn của biến ngun nhân đó đến mơ hình. II. Ứng dụng Hồiquy đơn biến tuyến tính vào để xây dựng một mơhìnhhồiquygiảithíchsựkhácbiệtvềtuổithọphụnữ giữa các quốc gia trênthế giới. 1.Xác định biến ngun nhân và kết quả. Để x ác định biến thì ta dùng SPSS tìm hệ số tương quan r giữa các biến so với biến tuổithọphụ nữ, trong đó có ba điều kiện cần xem xét: - Các điểm trên đồ thị Scatter phải tương đối tuyến tính theo đường thẳng do ta khảo sát mơhìnhhơiquy tuyến tính đơn. - Hệ số tương quan càng gần 1 càng tốt. - Có sự xem xét thực tế là biến n gun nhân đó có thật sự tương quan ảnh hưởng đến biến kết quả là tuổithọphụ nữ. Ta lần lược chạy vẽ đồ thị Scatter và tính hệ số tương quan r giữa tuổithọphụnữ và các biến ngun nhân, sau đó sẽ chọn biến nào có ảnh hưởng đến t uổi thọphụnữ theo ba tiêu chí nêu trên. - Tuổithọphụnữ theo tỷ lệ dân biết chữ. Ty le d an biet chu(%) 120100806040200 Tuo i tho trung b inh PhuNu 90 80 70 60 50 40 ** Correlati on is signi ficant at the 0.01 level (2-tailed ). T uổi tho ï TB phụnữ T ỉ l ệ dân biết chữ (%) T uổi thọ TB phụnữ Pearson Correlation 1 .865(**) Sig. (2-tailed) . .00 0 N 109 107 T ỉ l ệ d ân bi ế t chữ (%) Pearson Correlation .86 5(**) 1 Sig. (2-tailed) .00 0 . N 107 107 [...]... e: Tuổithọ T B phụnữ Giá trị F và mức ý nghĩ a quan sát được Sig Theo kết quả với m ức ý n ghĩa quan sát rất nhỏ 0.0001 nên ta có thể hòan tồn bác bỏ giả thuy ết Ho hay ta có thể nói m ơ hình hồiquy t uyến tính của tổn g thể có sựphù hợp c.kiểm định giả thuyết về hệ số hồiquycủa tổng thể: Như đã đề cập ở phần lý thuyết t uy ta có các giá trị hệ số của m ơ hình hồiquy của mơhình mẫu là B1 là khác. .. thọ TB phụnữ T uổi thọ T B phụnữ 00 0 109 75 77 5(** ) 1 000 75 75 Pearson Correlati on Sig (2-tai led) 60 Tuo i thophunu 775(** ) 70 Calori na ïp hàng ngày T B 1 n gười 1 80 N Calori n ạp hàng ngày T B 1 người 50 40 10 00 2000 3000 4000 Pearson Correlati on Sig (2-tai led) N Calogi nap vao h ang nga y - Tuổithọphụnữ tính theo số con trung bình : 90 Tuổithọ T B phụnữTuổithọ T B phu ï nữ. .. ơ hình có sựphù hợp tươn g đố i và có nghĩa là các điểm trên đồ thị scatter khá rời rạc và khơng trùn g nhiều trên đườn g hồiquy Điều này cho ta kết luận rằng tuổ i thọphụ n ữ khơn g chỉ phụ thuộc vào việc biết chữ m à còn phụ thuộc vào các vấn đề khác như số con sinh, lượn g calogi nạp vào hay GDP tính trên đầu người…Như vậy để có thể có m ơ hình tốt hơn ta phải tìm hiểu và phân tích tuổi t họ phụ. .. led) N 60 Tuoithophunu Số c on TB c ủa 1 phụnữ 109 80 Số c on T B của 1 phụnữ Pears on C orrelation Sig (2-tai led) 000 N 50 107 107 40 1 2 3 4 5 6 7 8 9 So co n trung binh cuaphunu ** Co rrelati on is s igni fic ant at the 0.01 level (2-tailed ) - Tuổithọphụnữ theo tỷ lệ biết chữ củaphụ nữ: 90 T uổi thọ T B phu ï nữ 80 70 T uổi thọ TB phu ï nữTuoithophunu 60 Pearson Correlation 1 819(**)... lượng MBA-08 - Tuổithọphụnữ theo mật độ dân số: 90 T uổi thọ T B phụnữ T uổi thọ TB phu ï nữ Tuo i thophunu 60 50 Mật độ da ân s ố (người/km2) 40 -1000 0 1000 2000 3000 4000 5000 6000 1 186 109 Pears on Correlation Sig (2-tai led) N 18 6 109 128 Pears on Correlation Sig (2-tai led) N 12 8 109 70 Mật độ dân s ố (người/km 2) 1 80 109 Ma t do dan so ( nguoi/km2) - Tuổithọphụnữ theo tỷ lệ dân... 109 85 819(**) 1 N T ỉ l ệ nữgiớibiết c h (%) ữ 50 Pearson Correlation Sig (2-tai led) N 40 0 20 40 60 80 100 120 T y le phunubiet chu( %) ** Co rrelati on is s igni fic ant at the 0.01 level (2-tailed ) 12 Tỉ l ệ nữgiới b iết c hữ (%) 00 0 85 85 Bài tập Phân tích định lượng MBA-08 - Tuổithọphụnữ tính theo khí hậu: 90 T uổi thọ TB ph ụ nữ 80 70 T uổi thọ T B phụnữTuoi th o p hu nu 60 1 Pearson... ơ hình hồiquy bội với biến k ết quả là tuổ i thọphụnữ đó là các biến n gun nhân sau: - Tỷ lệ phần trăm dân số biết chử - Số lượn g lần sinh con - Lượng clo gi n ạp vào Lập ma trận tương quan giữa các biến trên v ới b iến kết quả tuổ i thọphụnữ bằng S PSS: Correlations 1 T ỉ l ệ d ân bi ết c hữ (%) 865(**) Số c on T B của 1 ph ụ nữ -.838(**) Calori nạp hàng ngày TB 1 người 77 5(**) 000 T uổi thọ. .. T B 1 ng ười , Tỉ l ệ da ân biết c hữ (%), Số c on T B của 1 phụnư õ b Dependent V ariabl e: Tuổithọ T B phụnữ Coefficien ts(a) Uns tandardi zed Coeffi cients M odel 1 B (Cons tant) Std E rror 40.4 98 T ỉ l ệ dân bi ết 22 7 c hữ (%) Số c on T B của -1.4 30 1 phụnữ Calori nạp hàng ngày TB 1 00 6 người a Dependent V ariabl e: Tuổithọ T B phụnữ Standardized Coeffi cients Beta t 6.700 Sig 6.04 4 00... thị: 90 80 Tuổithọ T B phụnư õ 70 T uổi thọ T B phụnữ Tu oi tho ph u nu 60 Pears on Correlation 1 T ỉ lệ dân s ống ở vùng đô thò (%) 40 0 20 40 60 80 100 Sig (2-tailed) 000 109 743(** ) Pears on Correlation 74 3(**) Sig (2-tailed) N 50 T ỉ l ệ dân s ống ở vùng đô thò (%) 108 1 00 0 108 N 108 120 Ty le dan song o thanh thi (%) - Tuổithọphụnữ theo tốc độ tăng dân số: 90 T uổi tho ï TB phụnữ T ốc... nư õ giớ i biếtc hữ (%) b Dependent V ariabl e: Tuổithọ T B phụnữ Coefficien ts(a) Unstandardi zed Coeffi cients M odel 1 B (Cons tant) Std Error 47.170 T ỉ l ệ nữgiớibiết c h (%) ữ a Dependent V ariabl e: Tuổithọ T B phụnữ Standardized Coeffi cients 30 7 Beta 02 4 t 1.72 6 Sig 27.337 81 9 000 12.988 000 Từ bản g kết quả ta có phương trình hồiquy với các hệ số B cho ở bản cuối cùn g Coeficient . hình hồi quy giải thích sự khác biệt về tuổi thọ phụ nữ giữa các quốc gia trên thế giới. Bạn được tự do lựa chọn các biến giải thích để đưa vào m ô hình cũng như tự quy t định dạng thức của. nghĩa của hệ số hồi quy. 5. Hồi quy bội, những vấn đề cần quan tâm khi thực hiện. II. Ứng dụng Hồi quy tuyến tính vào để xây dựn g một m ô hình hồi quy giải thích sự khác biệt về tuổi thọ phụ nữ. sau: Đánh giá sự phù hợp của mô hình hồi quy tuyến tính. 3.Đánh giá sự phù hợp của mô hình: Vấn đề quan trọng tron g các mô hình hồi quy là phải chứng minh được sự phù hợp của mô hình mà ta