xác suất thống kê,nguyễn đình huy,dhbkhcm 1 Chương 5 Lý thuyết mẫu §1 Một số khái niệm về mẫu 1 Tổng thể Khái niệm Tập hợp tất cả các phần tử để nghiên cứu theo 1 dấu hiệu nghiên cứu nào đó gọi là tổn[.]
Chương 5: Lý thuyết mẫu §1.Một số khái niệm mẫu Tổng thể: Khái niệm: Tập hợp tất phần tử để nghiên cứu theo dấu hiệu nghiên cứu gọi tổng thể Số phần tử tổng thể gọi kích thước N Đại lượng ngẫu nhiên đặc trưng cho dấu hiệu nghiên cứu gọi đại lượng ngẫu nhiên gốc X CuuDuongThanCong.com https://fb.com/tailieudientucntt Dấu hiệu nghiên cứu chia làm loại: Định lượng định tính -Định lượng: E a , D E p , D p q -Định tính: Gọi a trung bình tổng thể , p tỉ lệ tổng thể gọi phương sai tổng thể gọi độ lệch tổng thể Chú ý: Định tính trường hợp riêng định lượng với hai lượng Cho nên p trường hợp riêng a, p.q trường hợp riêng CuuDuongThanCong.com https://fb.com/tailieudientucntt 2.Mẫu: Từ tổng thể lấy ngẫu nhiên n phân tử để nghiên cứu gọi lấy mẫu kích thước n Định nghĩa:Từ đại lượng ngẫu nhiên gốc X,xét n đại lượng ngẫu nhiên độc lập có phân phối với X.Véc tơ ngẫu nhiên n chiều W , gọi mẫu kích thước n Thực phép thử ta nhận w x , x x n giá trị cụ thể hay giá trị thực hành mẫu W Mẫu chia làm loại: Định lượng định tính Mẫu chia thành loại theo cách lấy mẫu có hồn lại khơng hồn lại CuuDuongThanCong.com https://fb.com/tailieudientucntt n §2 Các phương pháp mô tả mẫu Bảng phân phối tần số mẫu Ví dụ 2.1: Từ kho lấy số bao gạo bảng số liệu: TL(kg) 48 49 50 Số bao 20 15 25 Định nghĩa 2.1: Bảng phân phối tần số mẫu là: X x1 x2 xk ni n1 n2 nk k ni n i 1 CuuDuongThanCong.com https://fb.com/tailieudientucntt Chú ý: a i , bi xi a i bi (1 khoảng tương ứng với trung điểm nó) 2.Tỷ lệ mẫu(Chỉ dành cho mẫu định tính) Định nghĩa 2.2: Giả sử mẫu định tính kích thước n có m phân tử mang dấu hiệu nghiên cứu Khi tỷ lệ mẫu F f m n Chú ý: Bảng phân phối tần số mẫu định tính có dạng: X ni n-m m CuuDuongThanCong.com https://fb.com/tailieudientucntt §3 Các đặc trưng mẫu 1.Trung bình mẫu: Định nghĩa 3.1: Xét mẫu Trung bình mẫu W là: X n W X , X , , X n n X i x k n i 1 x i n i i 1 Chú ý: f x (Khi ta xét mẫu định tính) Phương sai mẫu: Định nghĩa 3.2: Phương sai mẫu W là: S CuuDuongThanCong.com n n n X i X i 1 https://fb.com/tailieudientucntt Định lý 3.1: S S 2 n n n n X i i 1 n k xi i 1 X n i x Định nghĩa 3.3: Phương sai điều chỉnh mẫu S S n S n 1 n 1 x n x x n s x CuuDuongThanCong.com n n S -độ lệch mẫu -độ lệch điều chỉnh mẫu https://fb.com/tailieudientucntt Cách dùng máy tính bỏ túi ES Mở tần số(1 lần): Shift Mode • Nhập: Mode Stat 1-var x Stat On(Off) i ni 48 20 49 15 50 AC: báo kết thúc nhập Cách đọc kết quả: Shift Stat Var 25 x 49, 0833 S n S n 1 CuuDuongThanCong.com x n x , x n s x , https://fb.com/tailieudientucntt i MS: Vào Mode chọn SD Xóa liệu cũ: SHIFT CLR SCL = Cách nhập số liệu : 48; 20 M+ 49; 15 M+ 50; 25 M+ : SHIFT S – VAR x 49, 0833 S n S n 1 CuuDuongThanCong.com x n x , x n s x , https://fb.com/tailieudientucntt §4 Bảng phân phối bảng phân vị 1.Trường hợp tổng quát: Định nghĩa 4.1: X đại lượng ngẫu nhiên bất kỳ.Bảng phân phối X bảng giá trị M cho: X M Bảng phân vị (bên trái ) X bảng giá trị m cho: X m Tương tự ta có bảng phân vị (bên phải) n X X n HÌNH 4.2 HÌNH 4.1 Chú ý: Pv a lu e CuuDuongThanCong.com X x x n https://fb.com/tailieudientucntt 10 Bảng phân phối phân vị chuẩn: Cho U có phân phối chuẩn tắc Bảng phân phối chuẩn: U Z : U Z Bảng phân vị chuẩn (trái) u : U u Bảng phân vị chuẩn (phải) z : U z HÌNH 4.3 HÌNH 4.4 z CuuDuongThanCong.com https://fb.com/tailieudientucntt 11 Tính chất: u u 1 Z Z 2 z Ví dụ 4.1: Cách tra bảng tìm Z Z ,0 0, 05 0, 475 hàng 1,9 cột Z , 1, Tương tự ta có CuuDuongThanCong.com Z ,1 Z ,0 1, 2, 575 https://fb.com/tailieudientucntt 12 Bảng phân phối, phân vị Student: Cho T có phân phối Student với n bậc tự Bảng phân phối Student (HÌNH 4.5) T ( n ) : T T ( n ) Bảng phân vị trái Student (HÌNH 4.6) t ( n ) : T t ( n ) Bảng phân vị phải Student (HÌNH 4.6) t n ; : T t n ; Tính chất: t ( n ) t ( n ) T ( n ) t n ; T , ( ) t :0 , , (tra bảng phân phối Student:cột 0,05 , hàng 24 bảng phân vị phải Student t n ; : cột 0,025, hàng 24) CuuDuongThanCong.com https://fb.com/tailieudientucntt 13 HÌNH 4.5 CuuDuongThanCong.com HÌNH 4.6 https://fb.com/tailieudientucntt 14 4.Bảng phân phối bình phương: Cho ~ (n ) Bảng phân phối bình phương bảng giá trị n : n 1 HÌNH 4.7 Ví dụ 2.2: Tra bảng phân phối bình phương : hàng 24, cột 0,05 ta có: CuuDuongThanCong.com ,05 24 36, 42 https://fb.com/tailieudientucntt 15