1. Trang chủ
  2. » Luận Văn - Báo Cáo

Ứng dụng của tổng bình phương đa thức trong bài toán tối ưu

67 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Ứng Dụng Của Tổng Bình Phương Đa Thức Trong Bài Toán Tối Ưu
Tác giả Đinh Thị Hồng Thương
Người hướng dẫn TS. Hồ Minh Toàn
Trường học Đại học Thái Nguyên
Chuyên ngành Toán Giải tích
Thể loại luận văn thạc sĩ
Năm xuất bản 2022
Thành phố Thái Nguyên
Định dạng
Số trang 67
Dung lượng 782,5 KB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM ĐINH THỊ HỒNG THƯƠNG ỨNG DỤNG CỦA TỔNG BÌNH PHƯƠNG ĐA THỨC TRONG BÀI TOÁN TỐI ƯU LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2022 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM ĐINH THỊ HỒNG THƯƠNG ỨNG DỤNG CỦA TỔNG BÌNH PHƯƠNG ĐA THỨC TRONG BÀI TỐN TỐI ƯU Ngành: Tốn Giải tích Mã số: 8460102 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS Hồ Minh Toàn THÁI NGUYÊN - 2022 LỜI CAM ĐOAN Tôi cam đoan thực việc kiểm tra mức độ tương đồng nội dung luận văn qua phần mềm Turnitin cách trung thực đạt kết mức độ tương đồng 2% Bản luận văn kiểm tra qua phần mềm cứng nộp để bảo vệ trước hội đồng Nếu sai tơi hồn tồn chịu trách nhiệm Thái Nguyên, ngày 15 tháng 07 năm 2022 TÁC GIẢ CỦA SẢN PHẨM HỌC THUẬT Đinh Thị Hồng Thương i LỜI CẢM ƠN Trong trình học tập, nghiên cứu hoàn thiện luận văn, tác giả nhận động viên khuyến khích tạo điều kiện giúp đỡ nhiệt tình thầy giáo, gia đình, bạn bè đồng nghiệp Với lịng biết ơn sâu sắc, tác giả xin gửi lời cảm ơn chân thành tới thầy Khoa Tốn - Trường Đại học Sư phạm Thái Nguyên với tri thức quý báu tâm huyết để truyền đạt kiến thức cho chúng tơi suốt q trình học tập Tác giả xin chân thành cảm ơn TS Hồ Minh Tồn tận tình hướng dẫn, bảo, tạo điều kiện giúp đỡ tơi có thêm nhiều kiến thức, khả nghiên cứu, tổng hợp tài liệu để hoàn thành luận văn Luận văn thực Trường Đại học Sư phạm- Đại học Thái Nguyên hỗ trợ phần Trung tâm quốc tế Đào tạo Nghiên cứu Toán học, Viện Tốn học, mã đề tài ICRTM02-2020.05 Trong q trình nghiên cứu hồn thiện luận văn, chắn khơng tránh khỏi thiếu sót Tác giả mong nhận nhiều ý kiến đóng góp q thầy bạn đọc để luận văn hoàn thiện Tác giả xin chân thành cảm ơn! Thái Nguyên, tháng 07 năm 2022 Tác giả Đinh Thị Hồng Thương ii Danh mục chữ viết tắt ký hiệu SMP Strong moment problem - toán moment mạnh MP Moment problem - toán moment PSD Ma trận nửa xác định dương SDP Semi-definite programming - quy hoạch nửa xác định Mục lục Lời cam đoan i Lời cảm ơn ii Danh mục chữ viết tắt ký hiệu iii Mở đầu Chương Kiến thức chuẩn bị 1.1 Một số kí hiệu kết ma trận 1.1.1 Các kí hiệu 1.1.2 Ma trận nửa xác định dương 1.2 Tổng quan toán Moment tổng bình phương 1.2.1 Bài toán thứ 17 Hilbert 1.2.2 Biểu diễn đa thức biến dương 1.2.3 Bài toán Moment chiều 10 1.2.4 Điều kiện SMP MP 11 1.3 Bài toán Monment tập nửa đại số compact 13 Chương Ứng dụng tổng bình phương đa thức tốn t1 ố6 Q uy 2 T 2 ối T 2 42 ối K38 ế4 MỞ ĐẦU Toán học lề then chốt ngành khoa học có ứng dụng rộng rãi thực tiễn Ngày có nhiều nhà tốn học tập trung nghiên cứu phát triển lý thuyết toán học, đặc biệt lý thuyết tối ưu Cho g = {g1 , , gm } họ m đa thức n biến (x1 , , xn ) Kí hiệu K(g) tập nghiệm thực hệ bất phương trình đa thức g1 (x) ≥ 0, , gm (x) ≥ K(g) gọi tập nửa đại số đóng sở ứng với họ g K(g) tập đóng khơng gian Euclid n chiều Trong trường hợp tất đa thức họ g bậc K(g) bị chặn K(g) đa diện lồi tốn tìm giá trị cực trị đa thức thực K(g) tốn quy hoạch tuyến tính Trong trường hợp K(g) compact, nhờ định lý biểu diễn dương (Positivstellensat) K Schmudgen M Putinar, J.B Lasserre xây dựng dãy thuật tốn semidefinite programming để tìm giá trị tối ưu đa thức tập compact K(g) Trong trường hợp K(g) khơng bị chặn, định lý biểu diễn dương Putinar Schmudgen khơng phải lúc đúng, thuật tốn Lasserre nói tìm cận (cận trên) giá trị infimum (supremum, tương ứng) đa thức K(g), nói chung nhiều ví dụ cho thấy thuật tốn chưa tìm giá trị tối ưu Có nhiều cách tiếp cận để khắc phục vấn đề Ví [3], để tìm infimum đa thức f tập không bị chặn K(g), tác giả giá trị cần tìm giá trị infimum f giao K(g) với tập K(r − f ) Nếu giả thiết thêm, tồn số thực r để K(g, r − f ) compact ta tìm giá trị infimum theo thuật toán xấp xỉ Lasserre đề cập trên tập compact K(g, r − f ) Ở cách khác, tác giả [11], thực số phép biến đổi đơn thức biến tập khơng bị chặn K(g) thành tập compact giá trị infimum không thay đổi Khi ta áp dụng thuật tốn xấp xỉ Lasserre tập compact sau đổi biến Ngoài ra, cịn số nỗ lực khác để tìm cực trị tập không bị chặn K(g), nhiên, tất cố gắng có hạn chế giải số lớp tập không bị chặn K(g) (tức có nhiều giả thiết thêm) Vì nói, trường hợp họ đa thức g tốn xây dựng thuật tốn để tìm cực trị đa thức K(g) nói chung tốn mở Mục đích đề tài trình bày số kết tiêu biểu việc ứng dụng toán biểu diễn đa thức vào việc tìm cực trị đa thức tập nửa đại số đóng K(g) thơng qua xấp xỉ Lasserre Ngồi ra, chúng tơi trình bày tổng quan Bài tốn Tổng bình phương Bài tốn Moment vành đa thức thực Luận văn gồm chương: Chương 1: Trình bày kiến thức sở ma trận xác định dương, tổng quan toán Moment tổng bình phương tốn Moment tập nửa đại số compact Chương 2: Trình bày ứng dụng tổng bình phương đa thức tốn tối ưu, gồm toán quy hoạch nửa xác định, tối ưu tồn cục tối ưu có ràng buộc Chương Kiến thức chuẩn bị Một số kí hiệu thường dùng kết biểu diễn đa thức dương tốn Moment trình bày chương Ngoài định lý biểu diễn dương cổ điển, kết chương (các định lý biểu diễn dương) viết K Schmudgen [10] M Putinar [9] trình bày lại sách [5, 6] Các kí hiệu kết trình bày luận văn dựa vào sách M Marshall [6] Vì nội dung luận văn tập trung trình bày lại ứng dụng biểu diễn dương đa thức vào toán tối ưu nên bỏ qua nhiều chứng minh độc giả tìm chứng minh chi tiết sách đề cập 1.1 Một số kí hiệu kết ma trận 1.1.1 Các kí hiệu - Z, Q, R C kí hiệu vành số nguyên, trường số hữu tỉ, trường số thực trường số phức - Z+ , Q+ , R+ kí hiệu tập số nguyên không âm, số hữu tỉ không âm, số thực khơng âm - Với n ≥ 1, kí hiệu ngắn gọn vành đa thức R [x1 , , xn ] R [x], x viết gọn cho n biến (x1 , , xn ) + n α - Vớiα α = (α1 , , αn ) ∈ (Z ) , x := X X n nX α1 n |α| := bậc i=1 α x αi Số mẫu thử chọn ngẫu nhiên: d \ | | | | | Thời gian trung bình 1 1 5 5 1 − 0 0 0 1 −− − − 0 − −− − − 0 − − −− − − để chạy thuật toán (tính giây): d\n | | 0.2 0.5 4.4 11 13 15 52 361 194 − | − − −− 0 | −− − − − 10 | −− − − − Trong tất trường hợp, độ lệch f + = f+ f ∗ bé Ngoài ra, nhờ kết Hilbert biểu diễn đa thức dương, ta có kết sau: Mệnh đề 2.3 Giả sử f ∈ R[x] có bậc chẵn d ≥ Nếu n = hay d = (hoặc n = d = 4) f+ = f∗ 2.3 Tối ưu có ràng buộc Tương tự tốn tối ưu tồn cục, xây dựng phương pháp giải tốn tối ưu có ràng buộc Phương pháp J B Lasserre đưa năm 2001 [4] Đặt K = K(g) ⊆ Rn tập nửa đại số đóng sở f ∈ R[x] Tính cận đúng: f∗ = inf{f (x)|x ∈ K} Đặt M = Q(g) mô đun bậc hai sinh g = (g1 , , gm ) ta có ( ) m X X M = σ0 + σi gi | σi ∈ R[x]2 i=1 Lấy số nguyên d ≥ deg(f ) Như mục trước, ta xét ( ) m X X M [d] = σi gi | σi ∈ R[x]2 , g0 = 1, deg(σi , gi ) ≤ d i=1 Rõ ràng M [d] ⊂ M Xd tập tất ánh xạ tuyến tính L : R[x]d −→ R cho L(1) = L(p) ≥ với đa thức p ∈ M [d] Định nghĩa f+,d = inf {L(f ) | L ∈ Xd } , f + d = sup {r ∈ R | f − r ∈ M [d]} Khi ta có tính chất sau: Mệnh đề 2.4 i) f d+ ≤ f+,d ≤ f∗ ii) fd+ d , (f+,d )d dãy tăng iii) f d+ = f+,d M ∩ −M = {0} Chứng minh i) Nếu x ∈ K Lx xác định Lx (g) = g(x) thuộc Xd Do f+,d ≤ Lx (f ) = f (x) Suy f+,d ≤ f∗ Nếu f − r ∈ M [d] L ∈ Xd L(f − r) ≥ Vì L ánh xạ tuyến tính L(1) = nên r ≤ L(f ) Suy f + ≤ f+,d Vì f + ≤ f+,d ≤ f ∗ d d ii) Áp dụng R[x] không gian R[x]d+1 M [d] ⊆ M [d + 1], ta có f +− r ∈ M [d] hay f + ≤ Và L ∈ Xd+1 hạn chế L f d d+1 R[x]d , kí hiệu L′ thuộc Xd rõ ràng L′ (f ) = L(f ) Suy f+,d ≤ f+,d+1 Có thể coi việc tính tốn f+,d tốn quy hoạch nửa xác định SDP việc tính tốn fd+ toán đối ngẫu quy hoạch nửa xác định Khơng giống với trường hợp đối ưu tồn cục, khơng có khẳng định cho khoảng cách đối ngẫu iii) Chứng minh tương tự phần chứng minh ii) Mệnh đề 2.2 Nói chung, số f+,d giới hạn dãy d → ∞ nhỏ giá trị infimum f∗ f K Trong trường hợp miền K compact, ta có kết sau: Mệnh đề 2.5 Nếu M Archimedean fd+ −→ f Hiển nhiên fd+ ≤ f+,d ≤ f∗ ∗ d −→ ∞ nên suy f+,d −→ f∗ d −→ ∞ Chứng minh Lấy r ∈ R, r < f∗ f − r > K nên theo Định s X lý biểu diễn Putinar ta có biểu diễn f − r = σi gi với σi ∈ R[x]2 Chọn i=1 d số lớn bậc σi gi , ta có f − r ∈ M [d] nên df + ≥ r Nhắc lại K compact M =X Q(g) chưa Archimedean Tuy nhiên ta lấy M = Q(g, k − x2 ) với k số thực dương đủ i lớn để K nằm hình cầu bán kính k Khi M Archimedean Phương pháp tính f + f+,d d Ta giả thiết gi = deg(gi ) ≤ d, với i = 1, , s • Tính f+,d Đồng ánh xạ tuyến tính L : R[x]d −→ R với họ y = (yα ), |α| ≤ d, yα ∈ R yα := L(xα ) Vì L(1) = 1, nên y0 = Do ta có biến tùy ý yα , |α| ≤ d, α = Điều kiện L ≥ M [d] tương đương với điều kiện  L(p2 ) ≥ với deg(p) d , ≤ d − deg (gi ) L(p2 gi ) ≥ với deg(p) ≤ , i = 1, , s X X X α fα x Do đó, L(f ) = fα yα = f0 + fα yα Viết f = Nếu α p = pα x p = X α,β pα pβ x α+β X α=0 nên L(p ) = pα pβ y α+β Do α,β ta cần ma trận đối xứng M (y) = (yα+β )α+β PSD Đây d ma trận N0 × N0 N0 số số α cho |α| ≤ X X Tương tự p2 gi = pα pβ xα+β gi = pα pβ giγ xα+β nên L(p2 gi ) = X α,β,γ α,β α,β,γ pα pβ giγ yα+β+γ Đặt Ni số số α cho |α| ≤ d − deg (gi ) M (gi ∗ y) X ma trận đối xứng Ni × Ni với phần tử vị trí (α, β) giγ yα+β+γ Chú ý M (1 ∗ y) = M (y) Vì ta γ cần ma trận M (gi ∗ y) với i = 0, , s g0 = ma trận nửa xác định dương Điều tương đương với ma trận khối chéo F (y) = diag (M (g0 ∗ y), , M (gs ∗ y)) PSD Ma trận F (y) s s X X Ni × Ni i=1 i=1 (α) Với |α| ≤ d, định nghĩa e(α) := eβ  0 β = α (α) eβ :  = β = α Do e(α) (α = 0) sở chuẩn tắc khôngX gian vectơ sinh biến y = (yα ), |α| = d, α = 0, tức y = yα e(α) với y = (yα ), |α| = d, α = X F (y) = F0 + yα Fα , |α|≤d,α=0 với Fα := F e(α) Để tính f+,d , ta phải giải tốn  X  fγ yγ   γ=0 F (y) ≥ Đây tốn SDP • Tính fd+ : Cho r ∈ R cho f − r = σ0 + σ1 g1 + + σs g s , σi tổng bình phương đa thức có bậc khơng vượt d − deg (gi ) , i = 0, , s Ta có Ni × Ni -ma trận A(i) = α,β (i) A αβ X (i) (i) Aαβ xα+β Đồng hệ số, sử dụng Fα khối α,β X chéo thứ i Fα có βγ , phần tử vị trí (β, α) gi s, ta có PSD cho σi = β+γ+δ=α  s X (i)   A00 gi0 = ⟨F0 , A⟩, f − r = i=0 s X X (i) f = Aβγ giδ = ⟨F0 , A⟩ với α = 0,  α i=0 β+γ+δ=α A ma trận khối chéo A := diag A(0) , , A(s) Nên để d tính f + , ta cần max r , tức f − r = max −(f0 − r) = −⟨F0 , A⟩ với điều kiện ràng buộc fα = ⟨Fα , A⟩ với |α| ≤ d, α = A ≥ Đây toán đối ngẫu củaX toán SDP X Chú ý Z ma trận đối xứng có kích cỡ Ni × Ni ta biểu diễn ma trận khối chéo Z ′ := diag Z (0) , , Z (s) việc thay phần tử bên khối chéo Rõ ràng Z PSD Z ′ fα = ⟨Fα , ZA⟩ = ⟨Fα , Z ′ ⟩ Xét toán tối ưu đa thức tập ràng buộc không bị chặn, cụ thể tập ràng buộc K = K(g) tập nửa đại số đóng sở khơng compact Khi Định lý biểu diễn Putinar Schmudgen khơng cịn Vì tính hội tụ giá trị infimum f∗ dãy xấp xỉ f + f d +,d không đảm bảo Vì có nhiều nỗ lực khắc phục nhược điểm Sau kết [3] Lấy c số dương cho tồn x0 ∈ K : f (x0 ) ≤ c Khi ta dễ dàng có f∗ = inf{f (x) | x ∈ K} = inf{f (x) | x Ke } ∈ với Ke = K ∩ {x ∈ Rn |c − f (x) ≥ 0}, tồn x∗ ∈ K : f (x∗ ) = f∗ tồn x∗ Ke Vì toán tối ưu trên, tập K ∈ hồn tồn thay tập Ke Từ lớp đẹp mà tốn giải mơ-đun bậc hai Q(g, f − c) (là mô-đun bậc hai ứng với đa thức sinh Ke ) có tính chất Archimedean, Q(g) khơng có tính chất Archimedean, K khơng compact Khi đó, áp dụng Mệnh đề 2.5, ta có kết sau [3, Theorem 4.1]: Hệ 2.1 Cho K = K(g) tập nửa đại số khác rỗng Rn Lấy x0 ∈ K c số dương cho f (x0 ) ≤ c Giả sử mô-đun bậc hai Q(g, c − f ) có tính chất Archimedean Khi đó: f∗ = inf{f (x) | x ∈ K} = sup{r|f − r ∈ Q(g, c − f )} = lim sup{r|f − r ∈ Qk (g, c − f )} k→+∞ Hơn nữa, f∗ = f (x∗ ) với x∗ ∈ K nói chung f∗ = max{r|f − r ∈ Qk (g, c − f )}, với số k Tức là, f∗ đạt sau giải số hữu hạn tốn SDP Ngồi ra, Định lý biểu diễn dương Schmudgen cho trường hợp tập K dải ([7]) hay tập nửa đại số có thớ compact ([8]) Vì ta có kết Mệnh đề 2.5 f∗ tính qua thuật tốn xấp xỉ Lasserre KẾT LUẬN Với kiến thức sở Chương ma trận xác định dương, kiến thức tổng quan tốn Moment tổng bình phương toán Moment tập nửa đại số compact, dựa việc nghiên cứu đọc hiểu tài liệu [10],[9], [5, 6] , luận văn đã: Trình bày điều kiện để ma trận xác định dương, nửa xác định dương tính chất chúng; Bài toán quy hoạch nửa xác định, toán đối ngẫu nó, cách tính (xấp xỉ) giá trị infimum p∗ (Định lý 2.1); Trình bày tốn tối ưu tồn cục (khơng ràng buộc) cách tính cận toàn cục đa thức thực f ; Trình bày tốn tối ưu có ràng buộc phương pháp giải Tài liệu tham khảo [1] Bochnak J , Coste M., and Roy M -F.(1998), Real algebraic geometry, Springer, 36 [2] H V Hà and T S Phạm, Genericity in polynomial optimization, (2017), vol of Series on Optimization and Its Applications, World Scientific [3] Jeyakumar V., Lasserre J B., Li G (2014) "On polynomial optimization over non-compact semi-algebraic sets", J Optim Theory Appl 163, pp 707–718 [4] Lasserre J.B (2001) "Global optimization with polynomials and the problem of moments", SIAM J Optim.11, pp 796-817 [5] Lasserre J.B (2009), Moments, Positive Polynomials and their Applications, Imperial College Press, London [6] Marshall M (2008) Positive polynomials and sum of squares, Mathematical Surveys and Monographs, 146, American Mathematical Society, Providence, RI [7] Marshall M (2010) "Polynomials non-negative on a strip",Proc Amer Math Soc., 138(5), pp 1559-1567 [8] Powers V.(2004), "Positive polynomials and the moment problem for cylinders with compact cross-section", J Pure Appl Algebra, 188(13), pp 217-226 [9] Putinar, M (1993) "Positive polynomials on compact semi-algebraic sets," Indiana Univ Math J, 42, no 3, pp 969-984 [10] Schmuădgen K (1991) "The K-moment problem for compact semi- algebraic sets," Math Ann 289 , 203-206 (1991) [11] Du T Trang, Toan M Ho, Polynomial Optimization on Some Unbounded Closed Semi-Algebraic Sets, J Optim Appl 183 352-363 (2019)

Ngày đăng: 05/05/2023, 18:32

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w