1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

XỬ LÝ TÍN HIỆU SỐ Dsp chapter5 student 19072015

35 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 35
Dung lượng 749,4 KB

Nội dung

Slide 1 Click to edit Master subtitle style Nguyen Thanh Tuan, M Eng Department of Telecommunications (113B3) Ho Chi Minh City University of Technology Email nttbk97@yahoo com z Transform Chapter 5 Di[.]

Chapter z-Transform Nguyen Thanh Tuan, Click M.Eng to edit Master subtitle style Department of Telecommunications (113B3) Ho Chi Minh City University of Technology Email: nttbk97@yahoo.com  The z-transform is a tool for analysis, design and implementation of discrete-time signals and LTI systems  Convolution in time-domain  multiplication in the z-domain Digital Signal Processing z-Transform Content z-transform Properties of the z-transform Causality and Stability Inverse z-transform Digital Signal Processing z-Transform The z-transform  The z-transform of a discrete-time signal x(n) is defined as the power series: X ( z)   n 2 1 2 x ( n ) z   x (  ) z  x (  ) z  x ( )  x ( ) z  x ( ) z   n    The region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a finite value ROC  {z  C | X ( z )    x ( n) z n  } n    The z-transform of impulse response h(n) is called the transform function of the filter: H ( z)   n h ( n ) z  n   Digital Signal Processing z-Transform Example  Determine the z-transform of the following finite-duration signals a) x1(n)=[1, 2, 5, 7, 0, 1] b) x2(n)=x1(n-2) c) x3(n)=x1(n+2) d) x4(n)=(n) e) x5(n)=(n-k), k>0 f) x6(n)=(n+k), k>0 Digital Signal Processing z-Transform Example  Determine the z-transform of the signal a) x(n)=(0.5)nu(n) b) x(n)=-(0.5)nu(-n-1) Digital Signal Processing z-Transform z-transform and ROC  It is possible for two different signal x(n) to have the same ztransform Such signals can be distinguished in the z-domain by their region of convergence  z-transforms: and their ROCs: ROC of a causal signal is the exterior of a circle Digital Signal Processing ROC of an anticausal signal is the interior of a circle z-Transform Example  Determine the z-transform of the signal x(n)  a nu(n)  b nu(n  1)  The ROC of two-sided signal is a ring (annular region) Digital Signal Processing z-Transform Properties of the z-transform  Linearity: if and z x1 (n)   X ( z ) with ROC1 z x2 (n)   X ( z ) with ROC2 then z x(n)  x1 (n)  x2 (n)   X ( z)  X1 ( z)  X ( z) with ROC  ROC1  ROC2  Example: Determine the z-transform and ROC of the signals a) x(n)=[3(2)n-4(3)n]u(n) b) x(n)=cos(w0 n)u(n) c) x(n)=sin(w0 n)u(n) Digital Signal Processing z-Transform Properties of the z-transform  Time shifting: if then z x(n)   X ( z) z x(n  D)   z  D X ( z)  The ROC of z  D X (z ) is the same as that of X(z) except for z=0 if D>0 and z= if D

Ngày đăng: 15/04/2023, 20:54