1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 1 2TRƯỜNG ĐIỆN TỪ

14 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 337 KB

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 1.2 Cartesian Coordinate System 1.2-3 Cartesian Coordinate System z az O ay ax y x az ax ay z x y 1.2-4 Right-handed system a x a y a z a y a z a x xyz xy… a z a x a y ax, ay, az are uniform unit vectors, that is, the direction of each unit vector is same everywhere in space 1.2-5 (1) Vector from P1  x1 , y1 , z1  to P2  x2 , y2 , z2  z r1  R12 r2 P1 R12 r2  r1 P2 r2 r1 O  x2ax  y2a y  z2az    x1ax  y1a y  z1az  R12 x  x2  x1 ax   y2  y1 a y   z2  z1 az y 1.2-6 z R12 P1 (x – x1)ax x1 x x2 r1 O z1 r2 (y2 – y1)ay y1 P2 (z2 – z1)az z2 y2 y 1.2-7 P1.8 A(12, 0, 0), B(0, 15, 0), C(0, 0, –20) (a) Distance from B to C =(0 – 0)a x  (0 – 15)a y  (–20 – 0)a z = 15  20 25 (b) Component of vector from A to C along vector from B to C = Vector from A to C • Unit vector along vector from B to C 1.2-8  12ax  20az   15a   y  20az   15a y  20az 400  16 25 (c)Perpendicular distance from A to the line through B and C (Vector from A to C) (Vector from B to C) = BC   12ax  20az  15a y  25 20az  1.2-9 = (2) 180a z – 240a y – 300a x 25 = 12 Differential Length Vector (dl) az dl P  x, y , z   Q  x  dx, y  dy, z  dz  dx dz  ax  dy ay dl dx a x  dy a y dz a z 1.2-10 dl dx y = f(x) z = constant plane dy = f (x) dx dz = dl = dx ax + dy ay = dx ax + f (x) dx ay Unit vector normal to a surface: dl1 dl an  dl1 dl an dl2 dl1 Curve Curve 1.2-11 D1.5 Find dl along the line and having the projection dz on the z-axis (a) x 3, y –4 dx 0, dy 0  dl dz a z x  y 0, y  z 1 (b) dx  dy 0, dy  dz 0 dy – dz, dx – dy dz d l dz ax  dz a y  dz az ax  a y  az  dz 1.2-12 (c)Line passing through (0, 2, 0) and (0, 0, 1) dy dz x 0,  – –0 dx 0, dy – dz d l  dz a y  dz az  2a y  az  dz 1.2-13 (3) Differential Surface Vector (dS) dS dl1 dl2  sin   d l1 × d l2 an   dl2 dS dl1 Orientation of the surface is defined uniquely by the normal ± an to the surface dS  dS a n dl1 dl a n dl1 dl For example, in Cartesian coordinates, dS in any plane parallel to the xy plane is az dx dy a z dx a x dy a y dy dx dS x y 1.2-14 (4) Differential Volume (dv) dv dl1 • dl dl3 dl2 dl3 dv dl1 In Cartesian coordinates, dv dx a x • dy a y dz a z dx dy dz dz z dy dx y x

Ngày đăng: 12/04/2023, 21:02